RESUMO
Current therapies for Alzheimer's disease (AD) are symptomatic and do not target the underlying Aß pathology and other important hallmarks including neuronal loss. PPARγ-coactivator-1α (PGC-1α) is a cofactor for transcription factors including the peroxisome proliferator-activated receptor-γ (PPARγ), and it is involved in the regulation of metabolic genes, oxidative phosphorylation, and mitochondrial biogenesis. We previously reported that PGC-1α also regulates the transcription of ß-APP cleaving enzyme (BACE1), the main enzyme involved in Aß generation, and its expression is decreased in AD patients. We aimed to explore the potential therapeutic effect of PGC-1α by generating a lentiviral vector to express human PGC-1α and target it by stereotaxic delivery to hippocampus and cortex of APP23 transgenic mice at the preclinical stage of the disease. Four months after injection, APP23 mice treated with hPGC-1α showed improved spatial and recognition memory concomitant with a significant reduction in Aß deposition, associated with a decrease in BACE1 expression. hPGC-1α overexpression attenuated the levels of proinflammatory cytokines and microglial activation. This effect was accompanied by a marked preservation of pyramidal neurons in the CA3 area and increased expression of neurotrophic factors. The neuroprotective effects were secondary to a reduction in Aß pathology and neuroinflammation, because wild-type mice receiving the same treatment were unaffected. These results suggest that the selective induction of PGC-1α gene in specific areas of the brain is effective in targeting AD-related neurodegeneration and holds potential as therapeutic intervention for this disease.
Assuntos
Doença de Alzheimer/genética , Secretases da Proteína Precursora do Amiloide/genética , Ácido Aspártico Endopeptidases/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Agregação Patológica de Proteínas/genética , Doença de Alzheimer/patologia , Doença de Alzheimer/terapia , Peptídeos beta-Amiloides/metabolismo , Animais , Regulação da Expressão Gênica/genética , Vetores Genéticos/uso terapêutico , Humanos , Lentivirus/genética , Memória/fisiologia , Camundongos Transgênicos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/administração & dosagem , Agregação Patológica de Proteínas/terapia , Células Piramidais/metabolismo , Células Piramidais/patologiaRESUMO
With a dismal survival rate, pancreatic cancer (PC) remains one of the most aggressive and devastating malignancies, predominantly due to the absence of a valid biomarker for diagnosis and limited therapeutic options for advanced diseases. Exosomes (Exo) as cell-derived vesicles, are widely used as natural nanocarriers for drug delivery. P21-activated kinase 4 (PAK4) is oncogenic when overexpressed, promoting cell survival, migration and anchorage-independent growth. Herein we validated PAK4 as a therapeutic target in an in vivo PC tumour mouse model using Exo-mediated RNAi following intra-tumoural administration. PC derived Exo were firstly isolated by ultracentrifugation on sucrose cushion and characterised for their surface marker expression, size, number, purity and morphology. SiRNA was encapsulated into Exo via electroporation and dual uptake of Exo and siRNA was investigated by flow cytometry and confocal microscopy. In vitro siPAK4 silencing in PC cells following uptake was assessed by flow cytometry, western blotting, and in vitro scratch assay. In vivo efficacy (tumour growth delay and mouse survival) of siPAK4 was evaluated in PC bearing NSG mouse model. Ex vivo tumours were examined using Haematoxylin and eosin (H&E) staining and immunohistochemistry. Results showed high quality PC-derived PANC-1 Exo were obtained. SiRNA was incorporated in Exo with 16.5% encapsulation efficiency. In vitro imaging confirmed Exo and siRNA co-localisation in cells. PAK4 knockdown was successful with 30 nM Exo-siPAK4 at 24 h post incubation in vitro. Intra-tumoural administration of Exo-siPAK4 (0.03 mg/kg siPAK4 and 6.1 × 1011 Exo, each dose, two doses) reduced PC tumour growth in vivo and enhanced mice survival (p < 0.001), with minimal toxicity observed compared to polyethylenimine (PEI) used as a commercial transfection reagent. H&E staining of tumours showed significant tissue apoptosis in siPAK4 treated groups. PAK4 knockdown prolongs survival of PC-bearing mice suggesting its potential as a new therapeutic target for PC. PANC-1 Exo demonstrated comparable efficacy but safer profile than PEI as in vivo RNAi transfection reagent.
Assuntos
Exossomos , Neoplasias Pancreáticas , Animais , Linhagem Celular Tumoral , Exossomos/metabolismo , Camundongos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Interferência de RNA , Quinases Ativadas por p21/genética , Quinases Ativadas por p21/metabolismoRESUMO
Chronic stress can alter the immune system, adult hippocampal neurogenesis and induce anxiety- and depressive-like behaviour in rodents. However, previous studies have not discriminated between the effect(s) of different types of stress on these behavioural and biological outcomes. We investigated the effect(s) of repeated injection vs. permanent social isolation on behaviour, stress responsivity, immune system functioning and hippocampal neurogenesis, in young adult male mice, and found that the type of stress exposure does indeed matter. Exposure to 6 weeks of repeated injection resulted in an anxiety-like phenotype, decreased systemic inflammation (i.e., reduced plasma levels of TNFα and IL4), increased corticosterone reactivity, increased microglial activation and decreased neuronal differentiation in the dentate gyrus (DG). In contrast, exposure to 6 weeks of permanent social isolation resulted in a depressive-like phenotype, increased plasma levels of TNFα, decreased plasma levels of IL10 and VEGF, decreased corticosterone reactivity, decreased microglial cell density and increased cell density for radial glia, s100ß-positive cells and mature neuroblasts-all in the DG. Interestingly, combining the two distinct stress paradigms did not have an additive effect on behavioural and biological outcomes, but resulted in yet a different phenotype, characterized by increased anxiety-like behaviour, decreased plasma levels of IL1ß, IL4 and VEGF, and decreased hippocampal neuronal differentiation, without altered neuroinflammation or corticosterone reactivity. These findings demonstrate that different forms of chronic stress can differentially alter both behavioural and biological outcomes in young adult male mice, and that combining multiple stressors may not necessarily cause more severe pathological outcomes.