Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Cell Biol ; 223(6)2024 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-38478017

RESUMO

SM proteins including Sly1 are essential cofactors of SNARE-mediated membrane fusion. Using SNARE and Sly1 mutants and chemically defined in vitro assays, we separate and assess proposed mechanisms through which Sly1 augments fusion: (i) opening the closed conformation of the Qa-SNARE Sed5; (ii) close-range tethering of vesicles to target organelles, mediated by the Sly1-specific regulatory loop; and (iii) nucleation of productive trans-SNARE complexes. We show that all three mechanisms are important and operate in parallel, and that close-range tethering promotes trans-complex assembly when cis-SNARE assembly is a competing process. Further, we demonstrate that the autoinhibitory N-terminal Habc domain of Sed5 has at least two positive activities: it is needed for correct Sed5 localization, and it directly promotes Sly1-dependent fusion. "Split Sed5," with Habc presented solely as a soluble fragment, can function both in vitro and in vivo. Habc appears to facilitate events leading to lipid mixing rather than promoting opening or stability of the fusion pore.


Assuntos
Fusão de Membrana , Proteínas Munc18 , Proteínas SNARE , Proteínas de Saccharomyces cerevisiae , Proteínas Munc18/metabolismo , Ligação Proteica , Proteínas Qa-SNARE/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Proteínas de Transporte Vesicular/metabolismo
2.
J Cell Biol ; 223(6)2024 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-38478018

RESUMO

The essential Golgi protein Sly1 is a member of the Sec1/mammalian Unc-18 (SM) family of SNARE chaperones. Sly1 was originally identified through remarkable gain-of-function alleles that bypass requirements for diverse vesicle tethering factors. Employing genetic analyses and chemically defined reconstitutions of ER-Golgi fusion, we discovered that a loop conserved among Sly1 family members is not only autoinhibitory but also acts as a positive effector. An amphipathic lipid packing sensor (ALPS)-like helix within the loop directly binds high-curvature membranes. Membrane binding is required for relief of Sly1 autoinhibition and also allows Sly1 to directly tether incoming vesicles to the Qa-SNARE on the target organelle. The SLY1-20 mutation bypasses requirements for diverse tethering factors but loses this ability if the tethering activity is impaired. We propose that long-range tethers, including Golgins and multisubunit tethering complexes, hand off vesicles to Sly1, which then tethers at close range to initiate trans-SNARE complex assembly and fusion in the early secretory pathway.


Assuntos
Vesículas Citoplasmáticas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Animais , Complexo de Golgi/genética , Complexo de Golgi/metabolismo , Mamíferos/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Proteínas Munc18/análise , Proteínas Munc18/genética , Proteínas Munc18/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Vesículas Citoplasmáticas/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo
3.
Psychiatry Res Neuroimaging ; 327: 111545, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36272310

RESUMO

The extent and nature of cognitive impairment in brief psychotic disorder remains unclear, being rarely studied unlike schizophrenia. The present study hence sought to directly compare the visual cognitive dysfunction and its associated brain networks in brief psychotic disorder and schizophrenia. Data from picture completion (a complex visual task) and whole-brain functional connectome from resting-state fMRI were acquired from a sample of clinically stable patients with an established psychotic disorder (twenty with brief psychotic disorder, twenty with schizophrenia) and twenty-nine healthy controls. Group differences and the inter-relationships in task performances and brain networks were tested. Picture completion task deficits were found in brief psychotic disorder compared with healthy controls, though the deficits were less than schizophrenia. Task performance also correlated with severity of psychotic symptoms in patients. The task performance was inversely correlated with the functional connectivity between peripheral visual and attentional networks (dorsal attention and salience ventral attention), with increased functional connectivity in brief psychotic disorder compared with healthy controls and in schizophrenia compared with brief psychotic disorder. Present findings showed pronounced visual cognitive impairments in brief psychotic disorder that were worse in schizophrenia, underpinned by abnormal interactions between higher-order attentional and lower-order visual processing networks.


Assuntos
Transtornos Psicóticos , Esquizofrenia , Humanos , Esquizofrenia/complicações , Esquizofrenia/diagnóstico por imagem , Rede Nervosa/diagnóstico por imagem , Transtornos Psicóticos/complicações , Transtornos Psicóticos/diagnóstico por imagem , Cognição , Atenção
4.
Front Neuroanat ; 11: 73, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28928638

RESUMO

Trigeminal neuralgia (TN) is a severe chronic neuropathic facial pain disorder. Affect-related behavioral and structural brain changes have been noted across chronic pain disorders, but have not been well-studied in TN. We examined the potential impact of TN (37 patients: 23 with right-sided TN, 14 with left-sided TN), compared to age- and sex-matched healthy controls, on three major white matter tracts responsible for carrying affect-related signals-i.e., cingulum, fornix, and medial forebrain bundle. Diffusion magnetic resonance imaging (dMRI), deterministic multi-tensor tractography for tract modeling, and a model-driven region-of-interest approach was used. We also used volumetric gray matter analysis on key targets of these pathways (i.e., hippocampus, cingulate cortex subregions, nucleus accumbens, and ventral diencephalon). Hypotheses included: (1) successful modeling of tracts; (2) altered white matter microstructure of the cingulum and medial forebrain bundle (via changes in dMRI metrics such as fractional anisotropy, and mean, axial, and radial diffusivities) compared to controls; (3) no alterations in the control region of the fornix; (4) corresponding decreases in gray matter volumes. Results showed (1) all 325 tracts were successfully modeled, although 11 were partially complete; (2) The cingulum and medial forebrain bundle (MFB) were altered in those with TN, with dMRI metric changes in the middle (p = 0.001) and posterior cingulum (p < 0.0001), and the MFB near the ventral tegmental area (MFB-VTA) (p = 0.001). The posterior cingulum and MFB-VTA also showed unilateral differences between right- and left-sided TN patients; (3) No differences were noted at any fornix subdivision; (4) decreased volumes were noted for the hippocampus, posterior cingulate, nucleus accumbens, and ventral diencephalon. Together, these results support the notion of selectively altered affective circuits in patients with TN, which may be related to the experience of negative affect and the increased comorbidity of mood and anxiety disorders in this population.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA