RESUMO
Parkinson's disease (PD) is a common neurodegenerative disease with progressive loss of dopaminergic neurons in substantia nigra and the presence of α-synuclein-immunoreactive inclusions. Gaucher's disease is caused by homozygous mutations in ß-glucocerebrosidase gene (GBA). GBA mutation carriers have an increased risk of PD. Coptis chinensis (C. chinensis) rhizome extract is a major herb widely used to treat human diseases. This study examined the association of GBA L444P mutation with Taiwanese PD in 1016 cases and 539 controls. In addition, the protective effects of C. chinensis rhizome extract and its active constituents (berberine, coptisine, and palmatine) against PD were assayed using GBA reporter cells, LC3 reporter cells, and cells expressing mutated (A53T) α-synuclein. Case-control study revealed that GBA L444P carriers had a 3.93-fold increased risk of PD (95% confidence interval (CI): 1.37-11.24, p = 0.006) compared to normal controls. Both C. chinensis rhizome extract and its constituents exhibited chemical chaperone activity to reduce α-synuclein aggregation. Promoter reporter and endogenous GBA protein analyses revealed that C. chinensis rhizome extract and its constituents upregulated GBA expression in 293 cells. In addition, C. chinensis rhizome extract and its constituents induced autophagy in DsRed-LC3-expressing 293 cells. In SH-SY5Y cells expressing A53T α-synuclein, C. chinensis rhizome extract and its constituents reduced α-synuclein aggregation and associated neurotoxicity by upregulating GBA expression and activating autophagy. The results of reducing α-synuclein aggregation, enhancing GBA expression and autophagy, and protecting against α-synuclein neurotoxicity open up the therapeutic potentials of C. chinensis rhizome extract and constituents for PD.
Assuntos
Berberina , Doenças Neurodegenerativas , Doença de Parkinson , Humanos , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Berberina/análogos & derivados , Estudos de Casos e Controles , Coptis chinensis , Neurônios Dopaminérgicos/metabolismo , Mutação , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/genética , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , RizomaRESUMO
Polyglutamine (polyQ)-mediated spinocerebellar ataxia (SCA), including SCA1, 2, 3, 6, 7, and 17, are caused by mutant genes with expanded CAG repeats, leading to the intracellular accumulation of aggregated proteins, the production of reactive oxygen species, and cell death. Among SCA, SCA3 is caused by a mutation in the ATXN3 (ataxin-3) gene. In a circumstance of polyQ aggregation, the autophagic pathway is induced to degrade the aggregated proteins, thereby suppressing downstream deleterious effects and promoting neuronal survival. In this study, we tested the effects of synthetic indole (NC009-1, -2, -3, -6) and coumarin (LM-022, -031) derivatives as chemical chaperones to assist mutant ATXN3-Q75 folding, as well as autophagy inducers to clear aggregated protein. Among the tested compounds, NC009-1, -2, and -6 and LM-031 interfered with Escherichia coli-derived ATXN3-Q75 aggregation in thioflavin T binding and filter trap assays. In SH-SY5Y cells expressing GFP-fused ATXN3-Q75, these compounds displayed aggregation-inhibitory and neurite growth-promoting potentials compared to untreated cells. Furthermore, these compounds activated autophagy by increasing the phosphatidylethanolamine-conjugated LC3 (microtubule associated protein 1 light chain 3)-II:cytosolic LC3-I ratio in these cells. A biochemical co-immunoprecipitation assay by using a mixture of HEK 293T cell lysates containing recombinant ATXN3-Q75-Venus-C-terminus (VC) or Venus-N-terminus (VN)-LC3 protein indicated that NC009-1 and -2 and LM-031 served as an autophagosome-tethering compound (ATTEC) to interact with ATXN3-Q75 and LC3, and the interaction was further confirmed by bimolecular fluorescence complementation analysis in cells co-expressing both ATXN3-Q75-VC and VN-LC3 proteins. The study results suggest the potential of NC009-1 and -2 and LM-031 as an ATTEC in treating SCA3 and, probably, other polyQ diseases.
Assuntos
Ataxina-3 , Autofagia , Proteínas Associadas aos Microtúbulos , Peptídeos , Ataxina-3/metabolismo , Ataxina-3/genética , Humanos , Peptídeos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Ligação Proteica , Mutação , Linhagem Celular Tumoral , Indóis/farmacologia , Indóis/metabolismo , Proteínas RepressorasRESUMO
Neuroinflammation and oxidative stress have been emerging as important pathways contributing to Parkinson's disease (PD) pathogenesis. In PD brains, the activated microglia release inflammatory factors such as interleukin (IL)-ß, IL-6, tumor necrosis factor (TNF)-α, and nitric oxide (NO), which increase oxidative stress and mediate neurodegeneration. Using 1-methyl-4-phenylpyridinium (MPP+)-activated human microglial HMC3 cells and the sub-chronic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model of PD, we found the potential of indole derivative NC009-1 against neuroinflammation, oxidative stress, and neurodegeneration for PD. In vitro, NC009-1 alleviated MPP+-induced cytotoxicity, reduced NO, IL-1ß, IL-6, and TNF-α production, and suppressed NLR family pyrin domain containing 3 (NLRP3) inflammasome activation in MPP+-activated HMC3 cells. In vivo, NC009-1 ameliorated motor deficits and non-motor depression, increased dopamine and dopamine transporter levels in the striatum, and reduced oxidative stress as well as microglia and astrocyte reactivity in the ventral midbrain of MPTP-treated mice. These protective effects were achieved by down-regulating NLRP3, CASP1, iNOS, IL-1ß, IL-6, and TNF-α, and up-regulating SOD2, NRF2, and NQO1. These results strengthen the involvement of neuroinflammation and oxidative stress in PD pathogenic mechanism, and indicate NC009-1 as a potential drug candidate for PD treatment.
Assuntos
Doença de Parkinson , Camundongos , Humanos , Animais , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/etiologia , Doença de Parkinson/metabolismo , Neurotoxinas/farmacologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Doenças Neuroinflamatórias , Interleucina-6/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Microglia/metabolismo , 1-Metil-4-fenilpiridínio/toxicidade , Estresse Oxidativo , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/efeitos adversosRESUMO
BACKGROUND: Oxidative stress could participate in the pathogenesis of Parkinson's disease (PD). However, the role of genetic variation of superoxide dismutase 2 (SOD2), an important regulator against oxidative stress, in PD remains to be elucidated. METHODS: We screened SOD2 gene variation by sequencing cDNA from 72 patients with early onset PD. A cohort of PD (n = 609) and ethnically matched controls (n = 681) were further examined for the identified sequence variant by PCR and NaeI restriction analysis. RESULTS: Only a reported c.47T>C polymorphism (rs4880, SOD2 p.V16A) was found by cDNA sequencing. Case-control study of c.47T>C revealed that genotype and allele frequencies were in Hardy-Weinberg equilibrium in both patients and healthy controls. In a recessive model, those with CC genotype had a 2.61-fold increased risk of PD (95% CI: 1.08-6.30, P = 0.03) compared to subjects with TT and TC genotypes. Significant association between CC genotype and PD in non-smokers was also observed after stratification according to the history of smoking (3.54-fold increased risk of PD, 95% CI: 1.17-10.72, P = 0.02). Meta-analysis by combining studies of Chinese in China, Singapore, and Taiwan (total 2302 cases and 2029 controls) consistently showed CC genotype with increased risk of PD (OR = 1.77, 95% CI: 1.15-2.71, P = 0.01). CONCLUSION: Our findings demonstrate that SOD2 p.V16A may play a role in the susceptibility of PD in Han Chinese.
Assuntos
Doença de Parkinson , Superóxido Dismutase/genética , Povo Asiático/genética , Estudos de Casos e Controles , China , Frequência do Gene , Predisposição Genética para Doença , Genótipo , Humanos , Doença de Parkinson/genética , Polimorfismo de Nucleotídeo Único , TaiwanRESUMO
Parkinson's disease (PD) is a common neurodegenerative disorder characterized by the loss of dopaminergic (DAergic) neurons and the presence of α-synuclein-containing Lewy bodies. The unstructured α-synuclein forms insoluble fibrils and aggregates that result in increased reactive oxygen species (ROS) and cellular toxicity in PD. Neuroinflammation engaged by microglia actively contributes to the pathogenesis of PD. In this study, we showed that VB-037 (a quinoline compound), glycyrrhetic acid (a pentacyclic triterpenoid), Glycyrrhiza inflata (G. inflata, a Chinese herbal medicine), and Shaoyao Gancao Tang (SG-Tang, a formulated Chinese medicine) suppressed the nitric oxide (NO) production and interleukin (IL)-1ß maturation in α-synuclein-stimulated BV-2 cells. Mouse inflammation antibody array further revealed increased IL-1α, IL-1ß, tumor necrosis factor (TNF)-α, interferon (IFN)-γ, IL-6, granulocyte-macrophage colony-stimulating factor (GM-CSF) and granulocyte colony-stimulating factor (G-CSF) expression in α-synuclein-inflamed BV-2 cells and compound pretreatment effectively reduced the expression and release of these pro-inflammatory mediators. The test compounds and herbal medicines further reduced α-synuclein aggregation and associated oxidative stress, and protected cells against α-synuclein-induced neurotoxicity by downregulating NLR family pyrin domain containing 1 (NLRP1) and 3 (NLRP3), caspase 1, IL-1ß, IL-6, and associated nuclear factor (NF)-κB inhibitor alpha (IκBα)/NF-κB P65 subunit (P65), c-Jun N-terminal kinase (JNK)/proto-oncogene c-Jun (JUN), mitogen-activated protein kinase 14 (P38)/signal transducer and activator of transcription 1 (STAT1) and Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) pathways in dopaminergic neurons derived from α-synuclein-expressing SH-SY5Y cells. Our findings indicate the potential of VB-037, glycyrrhetic acid, G. inflata, and SG-Tang through mitigating α-synuclein-stimulated neuroinflammation in PD, as new drug candidates for PD treatment.
Assuntos
Suscetibilidade a Doenças , Doença de Parkinson/etiologia , Doença de Parkinson/metabolismo , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Proteínas de Bactérias/metabolismo , Biomarcadores , Linhagem Celular Tumoral , Citocinas/genética , Citocinas/metabolismo , Genes Reporter , Inflamassomos/metabolismo , Mediadores da Inflamação/metabolismo , Camundongos , Microglia/efeitos dos fármacos , Microglia/imunologia , Microglia/metabolismo , Estrutura Molecular , Terapia de Alvo Molecular/métodos , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/patologia , Fator de Transcrição STAT3/metabolismo , alfa-Sinucleína/metabolismoRESUMO
STATEMENT OF PROBLEM: Three-dimensional printing has the potential for clinical applications, and additive manufacturing materials for dental use merit further investigation. PURPOSE: The purpose of this in vitro study was to evaluate the properties of materials formulated with ethoxylated bisphenol A-dimethacrylate (Bis-EMA), urethane dimethacrylate (UDMA), and triethylene glycol dimethacrylate (TEGDMA) as 3D printing resins for ultraviolet digital light processing (UV-DLP) 3D printers and to characterize the mechanical and biological properties and accuracy of the printed objects. MATERIAL AND METHODS: Ten different light-polymerized resins were formulated using Bis-EMA, UDMA, and TEGDMA. Their viscosities were measured, and only 7 resins with viscosities lower than 1500 centipoise (cP) were selected for 3D printing and further material characterization. The light-polymerized resins were printed into representative shapes using a custom-made 3D printer equipped with a 405-nm UV-DLP projector as the light source. The printed specimens were subjected to biologic, mechanical, and accuracy tests, and the data were submitted to 1-way ANOVA and Tukey post hoc comparisons (α=.05). RESULTS: Photopolymerizable resins made of Bis-EMA, UDMA, and TEGDMA were successfully formulated for 3D printing to fabricate objects of various shapes and sizes. TEGDMA served as the diluent to reduce the viscosity and increase the degree of conversion, while UDMA and Bis-EMA provided strength as demonstrated by the mechanical testing. All the printed objects passed cytotoxicity testing. The flexural strengths of the printed specimens ranged between 60 MPa and 90 MPa; flexural modulus ranged between 1.7 GPa and 2.1 GPa; and surface hardness ranged between 14.5 HV and 24.6 HV. These represent similar mechanical properties to those of currently used clinical resin materials. In the accuracy test, the resin mixture composed of 80% Bis-EMA, 10% UDMA, and 10% TEGDMA had the highest accuracy, with a 0.051-mm deviation from the original design. CONCLUSIONS: Bis-EMA, UDMA, and TEGDMA are good candidates for the formulation of 3D printing resins for dental use. The printed objects demonstrated favorable biological and mechanical properties. Further, the accuracy of the printed specimens showed potential for clinical application.
Assuntos
Resinas Compostas , Ácidos Polimetacrílicos , Bis-Fenol A-Glicidil Metacrilato , Teste de Materiais , Metacrilatos , Polietilenoglicóis , Poliuretanos , Impressão TridimensionalRESUMO
BACKGROUND/PURPOSE: Leucine-rich repeat kinase 2 (LRRK2) is a large protein encoding multiple functional domains. Mutations within different LRRK2 domains have been considered to be involved in the development of Parkinson disease by different mechanisms. Our previous study found three LRRK2 mutations-p.R767H, p.S885N, and p.R1441H-in Taiwanese patients with Parkinson disease. METHODS: We evaluated the functional properties of LRRK2 p.R767H, p.S885N, and p.R1441H mutations by overexpressing them in human embryonic kidney 293 and neuroblastoma SK-N-SH cells. The common p.G2019S mutation in the kinase domain was included for comparison. RESULTS: In 293 cells, overexpressed p.R1441H-but not p.R767H, p.S885N, or p.G2019-increased GTP binding affinity to prolong the active state. Overexpressed p.R1441H and p.G2019S generated inclusions in 293 cells. In SK-N-SH cells, the α-synuclein was coexpressed with wild type as well as mutated p.R767H, p.S885N, p.R1441H, and p.G2019 LRRK2 proteins. Part of the perinuclear inclusions formed by p.R1441H and p.G2019S were colocalized with α-synuclein. Additionally, p.S885N and p.R1441H mutations caused reduced interaction between LRRK2 and ARHGEF7, a putative guanine nucleotide exchange factor for LRRK2, whereas this interaction was well preserved in p.R767H and p.G2019S mutations. CONCLUSION: Our study suggests that p.R1441H protein facilitates the formation of intracellular inclusions, compromises GTP hydrolysis by increasing its affinity for GTP, and reduces its interaction with ARHGEF7.
Assuntos
GTP Fosfo-Hidrolases/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Doença de Parkinson/genética , Doença de Parkinson/fisiopatologia , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Células HEK293 , Humanos , Mutação de Sentido Incorreto , TaiwanRESUMO
Mutations in HTRA2 have been reported to associate with Parkinson's disease (PD). This study investigates if the genetic variants in HTRA2 contribute to Taiwanese PD. HTRA2 cDNA fragments from 80 patients with early-onset PD (onset ≤50 years) were sequenced. The identified variants were further examined for a cohort of PD and ethnically matched controls. A novel heterozygous R36W was identified in one early-onset and two late-onset PD patients, which was absent in 606 normal controls. The clinical features and 99mTc-TRODAT-1 SPECT image of the early-onset patient carrying R36W were similar to that of idiopathic PD. The R36W mutation of the patient was inherited from his mother whose SPECT revealed asymmetric reduction of 99mTc-TRODAT-1 uptake in the left striatum, suggesting that the defect of the nigrostriatal pathway may be attributable to the R36W in this family. Protein subcellular fractionation further revealed that R36W affected the processing of the proprotein after transport into mitochondria. Although the functional assays are promising, a larger cohort of both cases and controls should be screened to clarify the role of R36W in Taiwanese PD pathogenicity.
Assuntos
Povo Asiático/genética , Variação Genética , Proteínas Mitocondriais/genética , Doença de Parkinson/genética , Serina Endopeptidases/genética , Adulto , Idade de Início , Idoso , Idoso de 80 Anos ou mais , Encéfalo/diagnóstico por imagem , Corpo Estriado/diagnóstico por imagem , Feminino , Lateralidade Funcional , Expressão Gênica , Serina Peptidase 2 de Requerimento de Alta Temperatura A , Humanos , Masculino , Pessoa de Meia-Idade , Mitocôndrias/metabolismo , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/metabolismo , Transporte Proteico , Cintilografia , Homologia de Sequência de Aminoácidos , TaiwanRESUMO
The purpose of tissue engineering is to reconstruct parts of injured tissues and to resolve the shortage of organ donations. However, the main concern is the limited size of engineered tissue due to insufficient oxygen and nutrition distribution in large three-dimensional (3D) tissue constructs. To provide better support for cells inside the scaffolds, the vascularization of blood vessels within the scaffold could be a solution. This study compared the effects of different culturing systems using human adipose tissue-derived stem/stromal cells (ASCs), human umbilical vein endothelial cells (HUVECs), and coculture of ASCs and HUVECs in 3D-bioprinted gelatin methacrylate (GelMA) hydrogel constructs. The in vitro results showed that the number of live cells was highest in the coculture of ASCs and HUVECs in the GelMA hydrogel after culturing for 21 days. Additionally, the tubular structure was the most abundant in the GelMA hydrogel, containing both ASCs and HUVECs. In the in vivo test, blood vessels were present in both the HUVECs and the coculture of ASCs and HUVECs hydrogels implanted in mice. However, the blood vessel density was the highest in the HUVEC and ASC coculture groups. These findings indicate that the 3D-bioprinted GelMA hydrogel coculture system could be a promising biomaterial for large tissue engineering applications.
Assuntos
Gelatina , Metacrilatos , Humanos , Animais , Camundongos , Células Endoteliais da Veia Umbilical Humana , Gelatina/farmacologia , Gelatina/química , Tecido Adiposo , Hidrogéis/químicaRESUMO
Negative pressure therapy (NPT) has been shown to facilitate wound healing and promote hair growth in a porcine model. However, there is a paucity of research on the impact of negative pressure on hair growth in murine models. Despite the ability of nude mice to develop hair follicles, the hair they produce is often flawed towing to genetically induced keratin disorders, rendering them a pertinent animal model for assessing hair regeneration. Therefore, this study aims to investigate the effects of negative pressure on hair follicle growth in a nude mouse model. To achieve this, a customized external tissue expansion device was developed to apply negative pressure to the dorsum of nude mice. The mice were subjected to several treatment courses consisting of 15 and 30 min of continuous negative pressure at 10 mmHg, which were repeated 5 and 10 times every other day until sacrifice. Dorsal skin samples were subsequently extracted from the suction and nonsuction areas. The sections were stained with various antibodies to assess the expression of SOX-9, LHX-2, Keratin-15, ß-catenin, CD31, and vascular endothelial growth factor-A, and a TUNEL assay was used to analyze cell apoptosis. The results showed that the number of hair follicles and angiogenesis were significantly higher in the suction area than in the nonsuction area in all groups. Moreover, mice that received NPT for 15 min for 10 times had a higher hair follicle density than the other three groups. Immunofluorescence staining for LHX-2 and Keratin 15 further validated the results of these findings. In conclusion, this study demonstrated that negative pressure effectively promotes hair follicle growth and angiogenesis in nude mice through SOX-9- and LHX-2-mediated follicular regeneration and ß-catenin-mediated hair follicle morphogenesis.
RESUMO
Cytometry plays a crucial role in characterizing cell properties, but its restricted optical window (400-850 nm) limits the number of stained fluorophores that can be detected simultaneously and hampers the study and utilization of short-wave infrared (SWIR; 900-1700 nm) fluorophores in cells. Here we introduce two SWIR-based methods to address these limitations: SWIR flow cytometry and SWIR image cytometry. We develop a quantification protocol for deducing cellular fluorophore mass. Both systems achieve a limit of detection of â¼0.1 fg cell-1 within a 30 min experimental time frame, using individualized, high-purity (6,5) single-wall carbon nanotubes as a model fluorophore and macrophage-like RAW264.7 as a model cell line. This high-sensitivity feature reveals that low-dose (6,5) serves as an antioxidant, and cell morphology and oxidative stress dose-dependently correlate with (6,5) uptake. Our SWIR cytometry holds immediate applicability for existing SWIR fluorophores and offers a solution to the issue of spectral overlapping in conventional cytometry.
Assuntos
Citometria de Fluxo , Corantes Fluorescentes , Raios Infravermelhos , Nanotubos de Carbono , Camundongos , Animais , Citometria de Fluxo/métodos , Corantes Fluorescentes/química , Nanotubos de Carbono/química , Células RAW 264.7 , Estresse Oxidativo , Macrófagos/metabolismo , Macrófagos/citologiaRESUMO
Tissue engineering primarily aimed to alleviate the insufficiency of organ donations worldwide. Nonetheless, the survival of the engineered tissue is often compromised due to the complexity of the natural organ architectures, especially the vascular system inside the organ, which allows food-waste transfer. Thus, vascularization within the engineered tissue is of paramount importance. A critical aspect of this endeavor is the ability to replicate the intricacies of the extracellular matrix and promote the formation of functional vascular networks within engineered constructs. In this study, human adipose-derived stem cells (hADSCs) and human umbilical vein endothelial cells (HUVECs) were cocultured in different types of gelatin methacrylate (GelMA). In brief, pro-angiogenic signaling growth factors (GFs), vascular endothelial growth factor (VEGF165) and basic fibroblast growth factor (bFGF), were conjugated onto GelMA via an EDC/NHS coupling reaction. The GelMA hydrogels conjugated with VEGF165 (GelMA@VEGF165) and bFGF (GelMA@bFGF) showed marginal changes in the chemical and physical characteristics of the GelMA hydrogels. Moreover, the conjugation of these growth factors demonstrated improved cell viability and cell proliferation within the hydrogel construct. Additionally, vascular-like network formation was observed predominantly on GelMA@GrowthFactor (GelMA@GF) hydrogels, particularly on GelMA@bFGF. This study suggests that growth factor-conjugated GelMA hydrogels would be a promising biomaterial for 3D vascular tissue engineering.
Assuntos
Técnicas de Cocultura , Fator 2 de Crescimento de Fibroblastos , Células Endoteliais da Veia Umbilical Humana , Hidrogéis , Engenharia Tecidual , Humanos , Tecido Adiposo/citologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Fator 2 de Crescimento de Fibroblastos/farmacologia , Fator 2 de Crescimento de Fibroblastos/metabolismo , Gelatina/química , Gelatina/farmacologia , Hidrogéis/química , Hidrogéis/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Metacrilatos/química , Metacrilatos/farmacologia , Neovascularização Fisiológica/efeitos dos fármacos , Células-Tronco/citologia , Células-Tronco/metabolismo , Células-Tronco/efeitos dos fármacos , Engenharia Tecidual/métodos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/farmacologiaRESUMO
The conception of vascularized organ-on-a-chip models provides researchers with the ability to supply controlled biological and physical cues that simulate the in vivo dynamic microphysiological environment of native blood vessels. The intention of this niche research area is to improve our understanding of the role of the vasculature in health or disease progression in vitro by allowing researchers to monitor angiogenic responses and cell-cell or cell-matrix interactions in real time. This review offers a comprehensive overview of the essential elements, including cells, biomaterials, microenvironmental factors, microfluidic chip design, and standard validation procedures that currently govern angiogenesis-on-a-chip assemblies. In addition, we emphasize the importance of incorporating a microvasculature component into organ-on-chip devices in critical biomedical research areas, such as tissue engineering, drug discovery, and disease modeling. Ultimately, advances in this area of research could provide innovative solutions and a personalized approach to ongoing medical challenges.
Assuntos
Dispositivos Lab-On-A-Chip , Neovascularização Fisiológica , Engenharia Tecidual , Humanos , Neovascularização Fisiológica/fisiologia , Engenharia Tecidual/métodos , Animais , Materiais Biocompatíveis , Neovascularização Patológica/patologia , Neovascularização Patológica/fisiopatologia , AngiogêneseRESUMO
Background: In Parkinson's disease (PD) brains, microglia are activated to release inflammatory factors to induce the production of reactive oxygen species (ROS) in neuron, and vice versa. Moreover, neuroinflammation and its synergistic interaction with oxidative stress contribute to the pathogenesis of PD. Methods: In this study, we investigated whether in-house synthetic coumarin-chalcone derivatives protect human microglia HMC3 and neuroblastoma BE(2)-M17 cells against 1-methyl-4-phenyl pyridinium (MPP+)-induced neuroinflammation and associated neuronal damage. Results: Treatment with MPP+ decreased cell viability as well as increased the release of inflammatory mediators including cytokines and nitric oxide in culture medium, and enhanced expression of microglial activation markers CD68 and MHCII in HMC3 cells. The protein levels of NLRP3, CASP1, iNOS, IL-1ß, IL-6, and TNF-α were also increased in MPP+-stimulated HMC3 cells. Among the four tested compounds, LM-016, LM-021, and LM-036 at 10 µM counteracted the inflammatory action of MPP+ in HMC3 cells. In addition, LM-021 and LM-036 increased cell viability, reduced lactate dehydrogenase release, ameliorated cellular ROS production, decreased caspase-1, caspase-3 and caspase-6 activities, and promoted neurite outgrowth in MPP+-treated BE(2)-M17 cells. These protective effects were mediated by down-regulating inflammatory NLRP1, IL-1ß, IL-6, and TNF-α, as well as up-regulating antioxidative NRF2, NQO1, GCLC, and PGC-1α, and neuroprotective CREB, BDNF, and BCL2. Conclusion: The study results strengthen the involvement of neuroinflammation and oxidative stress in PD pathogenic mechanisms, and indicate the potential use of LM-021 and LM-036 as dual inflammasome inhibitors in treating both NLRP1- and NLRP3-associated PD.
RESUMO
AIM: To investigate whether sphingosine-1-phosphate (S1P), a potent angiogenic factor, induced vascular endothelial growth factor-C (VEGF-C) expression in endothelial cells in vitro and to examine its underlying mechanisms. METHODS: Human umbilical vein endothelial cells (HUVECs) were examined. VEGF-C mRNA expression in the cells was assessed using real-time PCR. VEGF-C protein and FGFR-1 phosphorylation in the cells were measured with ELISA. RNA interference was used to downregulate the expression of matrix metalloproteinase-2 (MMP-2), fibroblast growth factor-1 (FGF-1) and FGF receptor-1 (FGFR-1). RESULTS: Incubation of HUVECs with S1P (1, 5, and 10 µmol/L) significantly increased VEGF-C expression. The effect was blocked by pretreatment with the MMP inhibitor GM6001 or the FGFR inhibitor SU5402, but not the EGFR inhibitor AG1478. The effect was also blocked in HUVECs that were transfected with FGFR-1 or MMP-2 siRNA. Furthermore, incubation of HUVECs with S1P (5 µmol/L) significantly increased FGFR-1 phosphorylation, which was blocked by GM6001. Moreover, knockdown of FGF-1, not FGF-2, in HUVECs with siRNAs, blocked S1P-induced VEGF-C expression. CONCLUSION: S1P induces VEGF-C expression through a MMP-2/ FGF-1/FGFR-1-dependent pathway in HUVECs.
Assuntos
Fator 1 de Crescimento de Fibroblastos/metabolismo , Lisofosfolipídeos/farmacologia , Metaloproteinase 2 da Matriz/metabolismo , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais , Esfingosina/análogos & derivados , Fator C de Crescimento do Endotélio Vascular/biossíntese , Técnicas de Cultura de Células , Regulação para Baixo , Ensaio de Imunoadsorção Enzimática , Fator 1 de Crescimento de Fibroblastos/genética , Células Endoteliais da Veia Umbilical Humana , Humanos , Lisofosfolipídeos/fisiologia , Metaloproteinase 2 da Matriz/genética , Fosforilação , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia , Reação em Cadeia da Polimerase em Tempo Real , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Transdução de Sinais/efeitos dos fármacos , Esfingosina/farmacologia , Esfingosina/fisiologiaRESUMO
In recent years, due to the environmental impact caused by electronic waste, decomposable components have become one of the most important topics in the world. In this study, the carrageenan material extracted from red algae was used as the resistance-switching layer of electronic components, and potassium was added to the carrageenan as a substrate (CK). CK has the advantages of excellent mechanical properties, transparency, and decomposability. In addition, the In/carrageenan/Ag/CK (ICACK) device exhibits good memory properties with a high ON/OFF ratio exceeding 107 and a retention time exceeding 104 s. Due to the doping of potassium ions, the ICACK element has a fairly good bending performance. Although bending or stretching under a small radius of curvature will not have a great impact on the electrical performance, it shows that in the future wearable or good potential in the field of implantable devices.
RESUMO
Three-dimensional (3D) bioprinting, or additive manufacturing, is a rapid fabrication technique with the foremost objective of creating biomimetic tissue and organ replacements in hopes of restoring normal tissue function and structure. Generating the engineered organs with an infrastructure that is similar to that of the real organs can be beneficial to simulate the functional organs that work inside our bodies. Photopolymerization-based 3D bioprinting, or photocuring, has emerged as a promising method in engineering biomimetic tissues due to its simplicity, and noninvasive and spatially controllable approach. In this review, we investigated types of 3D printers, mainstream materials, photoinitiators, phototoxicity, and selected tissue engineering applications of 3D photopolymerization bioprinting.
Assuntos
Bioimpressão , Engenharia Tecidual , Humanos , Engenharia Tecidual/métodos , Bioimpressão/métodos , Polímeros , Impressão Tridimensional , Alicerces Teciduais , Materiais BiocompatíveisRESUMO
Bioactive glass (BG) has been widely employed in the field of bone tissue engineering owing to its osteoconductive properties. These properties increase the stiffness and bioactivity of polymeric hydrogels, making them ideal for the repair, replacement, and regeneration of damaged bones. In this study, we investigated the effects of incorporating silanized 45S5 bioactive glass (Si-BG) into gelatin methacrylate (GelMA) hydrogel (GelMA/Si-BG) for potential bone tissue engineering. Our findings revealed that crosslinking GelMA with Si-BG had a striking increase in bioactivity with and without osteogenic induction of human mesenchymal stem cells (hMSCs) when compared to GelMA/BG hydrogels. Meanwhile, both GelMA/Si-BG and GelMA/BG hydrogels were able to maintain the cell viability of hMSC for up to 14 days. Additionally, GelMA/Si-BG hydrogels were shown to have a significantly higher compressive modulus than GelMA/BG hydrogels. This study has demonstrated the introduction of silanized 45S5 BG into GelMA hydrogel bioactivity and mechanical properties of GelMA hydrogels, exemplifying the potential application of silanization of BG in bone tissue engineering.
Assuntos
Gelatina , Engenharia Tecidual , Humanos , Hidrogéis/farmacologia , Metacrilatos/farmacologia , Osso e Ossos , Alicerces TeciduaisRESUMO
Parkinson's disease (PD) is featured mainly by the loss of dopaminergic neurons and the presence of α-synuclein-containing aggregates in the substantia nigra of brain. The α-synuclein fibrils and aggregates lead to increased oxidative stress and neural toxicity in PD. Chronic inflammation mediated by microglia is one of the hallmarks of PD pathophysiology. In this report, we showed that coumarin-chalcone hybrid LM-021 and indole derivative NC009-1 reduced the expression of major histocompatibility complex-II, NLR family pyrin domain containing (NLRP) 3, caspase-1, inducible nitric oxide synthase, interleukin (IL)-1ß, IL-6, and tumor necrosis factor (TNF)-α in α-synuclein-activated mouse BV-2 microglia. Release of pro-inflammatory mediators including nitric oxide, IL-1ß, IL-6 and TNF-α was also mitigated. In BE(2)-M17 cells expressing A53T α-synuclein aggregates, LM-021 and NC009-1 reduced α-synuclein aggregation, neuroinflammation, oxidative stress and apoptosis, and promoted neurite outgrowth. These protective effects were mediated by downregulating NLRP1, IL-1ß and IL-6, and their downstream pathways including nuclear factor (NF)-κB inhibitor alpha (IκBα)/NF-κB P65 subunit (P65), c-Jun N-terminal kinase (JNK)/proto-oncogene c-Jun (JUN), mitogen-activated protein kinase 14 (P38)/signal transducer and activator of transcription (STAT) 1, and Janus kinase 2 (JAK2)/STAT3. The study results indicate LM-021 and NC009-1 as potential new drug candidates for PD.
Assuntos
Chalconas , Doença de Parkinson , Camundongos , Animais , alfa-Sinucleína/metabolismo , Chalconas/farmacologia , Interleucina-6/metabolismo , Inflamação/metabolismo , Estresse Oxidativo , Indóis/farmacologia , NF-kappa B/metabolismo , Doença de Parkinson/metabolismo , Microglia/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Cumarínicos/farmacologia , Lipopolissacarídeos/farmacologiaRESUMO
Misfolded aggregation of the hyperphosphorylated microtubule binding protein Tau in the brain is a pathological hallmark of Alzheimer's disease (AD). Tau aggregation downregulates brain-derived neurotrophic factor (BDNF)/tropomycin receptor kinase B (TRKB) signaling and leads to neurotoxicity. Therefore, enhancement of BDNF/TRKB signaling could be a strategy to alleviate Tau neurotoxicity. In this study, eight compounds were evaluated for the potential of inhibiting Tau misfolding in human neuroblastoma SH-SY5Y cells expressing the pro-aggregator Tau folding reporter (ΔK280 TauRD-DsRed). Among them, coumarin derivative ZN-015 and quinoline derivatives VB-030 and VB-037 displayed chemical chaperone activity to reduce ΔK280 TauRD aggregation and promote neurite outgrowth. Studies of TRKB signaling revealed that ZN-015, VB-030 and VB-037 treatments significantly increased phosphorylation of TRKB and downstream Ca2+/calmodulin-dependent protein kinase II (CaMKII), extracellular signal-regulated kinase 1/2 (ERK) and AKT serine/threonine kinase (AKT), to activate ribosomal S6 kinase (RSK) and cAMP response element-binding protein (CREB). Subsequently, p-CREB enhanced the transcription of pro-survival BDNF and BCL2 apoptosis regulator (BCL2), accompanied with reduced expression of anti-survival BCL2-associated X protein (BAX) in ΔK280 TauRD-DsRed-expressing cells. The neurite outgrowth promotion effect of ZN-015, VB-030 and VB-037 was counteracted by a RNA interference-mediated knockdown of TRKB, suggesting the role of these compounds acting as TRKB agonists. Tryptophan fluorescence quenching analysis showed that ZN-015, VB-030 and VB-037 interacted directly with a Pichia pastoris-expressed TRKB extracellular domain, indirectly supporting the role through TRKB signaling. The results of up-regulation in TRKB signaling open up the therapeutic potentials of ZN-015, VB-030 and VB-037 for AD.