Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 270: 115923, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38171107

RESUMO

3,3',4',4',5-Polychlorinated biphenyls (PCB126) is classified as a persistent organic environmental pollutant that can cause liver damage by producing excessive reactive oxygen species (ROS). ROS also can stimulate neutrophil extracellular traps (NETs) formation, which cause damage to organism if NETs are produced in excess. Melatonin is generally considered to possess strong antioxidant and anti-inflammation prosperities, but it is unclear whether it can alleviate PCB126-induced injury. To explore whether PCB126-induced liver injury is related to the formation of NETs and whether melatonin has a potent protective effect, we established PCB126 exposure/ PCB126 and melatonin co-treatment mouse models by gavage. To further clarify the specific mechanism, we also cultured neutrophils and AML12 cells to replicate in vivo model. Here, we found PCB126 exposure resulted in an elevation in the activities of MDA, LPO, PCO, and 8-OHdG, and a reduction in the activities of CAT, GSH-PX and SOD. We found that PCB126 exposure led to an elevation in the expression levels of chemokines (CCL2, CCL3, CCL4, CXCL12, and CXCL8) and marker factors for NETs formation (MPO, NE, NOX2, PKCα, and PKCζ) in the PCB126 group. IF, SYTOX staining, and SEM results also revealed that PCB126 could stimulate NETs formation. In addition, results of a co-culture system of PBNs and AML12 cells revealed that the expression levels of inflammatory cytokines (IL-1ß, IL-6, and TNF-α) significantly decreased and the expression levels of metabolism factors (Fas, Acc, and Srebp) slightly decreased for scavenging NETs, indicating NETs formation aggravated PCB126-induced hepatic damages. Noteworthy, treatment with melatonin reversed these results. In summary, our findings revealed that melatonin alleviated hepatic damage aggravated by PCB126-induced ROS-dependent NETs formation through suppressing excessive ROS production. This finding not only enriches toxicological mechanism of PCB126, but more importantly extends biological effects of melatonin and its potential application values.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Armadilhas Extracelulares , Melatonina , Bifenilos Policlorados , Camundongos , Animais , Armadilhas Extracelulares/metabolismo , Bifenilos Policlorados/toxicidade , Bifenilos Policlorados/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Melatonina/farmacologia , Melatonina/metabolismo , Metabolismo dos Lipídeos , Doença Hepática Crônica Induzida por Substâncias e Drogas/metabolismo , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Neutrófilos/metabolismo
2.
Environ Toxicol ; 39(4): 2052-2063, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38095043

RESUMO

Imidacloprid (IMI) is a neonicotinoid insecticide with the highest global market share, and IMI exposure in the environment can negatively affect many nontarget organisms (a general term for organisms affected by drugs other than target organisms). Resveratrol (RSV), a non-flavonoid polyphenolic organic compound derived from peanuts, grapes, and other plants, has anti-inflammatory and antioxidant effects. It is currently unclear how RSV protects against cell damage caused by IMI. Therefore, we established an experimental model of chicken lymphocyte lines exposed to 110 µg/mL IMI and/or 0.5 µM RSV for 24 h. According to the experimental results, IMI markedly raised intracellular reactive oxygen species levels and diminished the activity of the cellular antioxidant enzymes (CAT, SOD, and GPx), leading to MDA accumulation and decreased T-AOC. JNK, ERK, and P38, the essential components of the mitogen-activated protein kinase (MAPK) signaling pathway, were also expressed more when IMI was present. Additionally, IMI resulted in upregulation of mitochondrial apoptosis (Caspase 3, Caspase 9, Bax, and Cyt-c) and necroptosis (Caspase 8, RIPK1, RIPK3, and MLKL) related factors expression, downregulation of Bcl-2 expression, induction of upregulation of cytokine IL-6 and TNF-α expression, and downregulation of IFN-γ expression. The combined treatment of RSV and IMI significantly reduced cellular oxidative stress levels, inhibited the MAPK signaling pathway, and alleviated IMI-induced mitochondrial apoptosis, necroptosis, and immune dysfunction. To summarize, RSV antagonized IMI-induced mitochondrial apoptosis, necroptosis, and immune dysfunction in chicken lymphocyte lines by inhibiting the ROS/MAPK signaling pathway.


Assuntos
Galinhas , Necroptose , Nitrocompostos , Animais , Espécies Reativas de Oxigênio/metabolismo , Resveratrol/farmacologia , Galinhas/metabolismo , Sistema de Sinalização das MAP Quinases , Apoptose , Antioxidantes/metabolismo , Neonicotinoides/toxicidade , Linfócitos/metabolismo
3.
Fish Shellfish Immunol ; 140: 108995, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37573970

RESUMO

Di (2-ethylhexyl) phthalate (DEHP) is a neuroendocrine disruptor that can cause multi-tissue organ damage by inducing oxidative stress. Evodiamine (EVO) is an indole alkaloid with anti-inflammatory, antitumor, and antioxidant pharmacological activity. In this manuscript, the effects of DEHP and EVO on the pyroptosis, necroptosis and immunology of grass carp hepatocytes (L8824) were investigated using DCFH-DA staining, PI staining, IF staining, AO/EB staining, LDH kit, qRT-PCR and protein Western blot. The results showed that DEHP exposure upregulated reactive oxygen species (ROS) levels, promoted the expression of TLR4/MyD88/NF-κB pathway, increased the expression of genes involved in cell pyroptosis pathway (LDH, NLRP3, ASC, caspase1, IL-1ß, IL-18 and GSDMD) and necroptosis-related genes (RIPK1, RIPK3 and MLKL). The expression of DEHP can also affect immune function, which can be demonstrated by variationsin the activation of antimicrobial peptides (LEAP2, HEPC, and ß-defensin) and inflammatory cytokines (TNF-α, IL-2, IL-6 and IL-10). EVO regulates cellular antioxidant capacity by inhibiting ROS burst, reduces DEHP-induced cell pyroptosis and necroptosis to some extent, and restores cellular immune function, after co-exposure with EVO. The TLR4 pathway was inhibited by the co-treatment of TLR4 inhibitor TLR-IN-C34 and DEHP, which attenuated the expression of cell pyroptosis, necroptosis, and immunosuppression. Thus, DEHP induced pyroptosis, necroptosis and abnormal immune function in L8824 cells by activating TLR4/MyD88/NF-κB pathway. In addition, EVO has a therapeutic effect on DEHP-induced toxic injury. This study further provides a theoretical basis for the risk assessment of plasticizer DEHP on aquatic organisms.


Assuntos
Carpas , Dietilexilftalato , Animais , NF-kappa B/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Piroptose/fisiologia , Dietilexilftalato/toxicidade , Fator 88 de Diferenciação Mieloide/metabolismo , Receptor 4 Toll-Like/genética , Antioxidantes/farmacologia , Carpas/metabolismo , Necroptose , Hepatócitos/metabolismo , Terapia de Imunossupressão
4.
Fish Shellfish Immunol ; 142: 109100, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37793490

RESUMO

Tetrabromobisphenol A (TBBPA) and lead (Pb) are widely used in industrial field, which poses a serious threat to human and animal health. In particular, a large volume of wastewater containing TBBPA and Pb was discharged into the aquatic environment, causing a seriously negative impact on fish. Currently, whether TBBPA and Pb have a synergistic toxicity on fish remains unclear. In this study, we used the grass carp hepatocytes (L8824 cell line) exposed to either TBBPA or Pb, or both to determine their potential impacts on fish. The results showed that Pb or TBBPA induced oxidative stress and the loss of mitochondrial membrane potential in grass carp hepatocytes. In contrast to the control cells, the levels of JAK2, p-JAK2, STAT3 and p-STAT3 were significantly upregulated after exposure to TBBPA and Pb. Furthermore, the levels of Caspase3, Caspase9 and Bax were all increased while the level of Bcl2 was decreased in hepatocytes exposed to TBBPA or Pb. Results of flow cytometry and AO/EB staining reveled significant increases in the number of apoptotic cells in the TBBPA and Pb group compared to the controls. Notably, cells exposed to both TBBPA and Pb exhibited more severe damage than the single exposure, manifested by a higher number of apoptotic cells in the co-exposure group than the single exposure groups. Nevertheless, N-acetyl-l-cysteine (NAC) treatment could remarkably alleviate oxidative damage and loss of membrane potential in grass carp hepatocytes induced by TBBPA and Pb. Altogether, our study showed that combined exposure of TBBPA and Pb has a synergistic toxicity due to, inducing oxidative stress to activate JAK2/STAT3 signaling pathway, resulting in apoptosis of carp hepatocytes. This study shed a new light on the toxicological mechanism of exposure of TBBPA and Pb and provided a potential treatment of toxicity induced by TBBPA and Pb.


Assuntos
Carpas , Animais , Humanos , Carpas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Chumbo/toxicidade , Estresse Oxidativo , Transdução de Sinais , Apoptose , Fígado/metabolismo , Janus Quinase 2 , Fator de Transcrição STAT3/metabolismo
5.
Fish Shellfish Immunol ; 142: 109101, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37758100

RESUMO

The toxic heavy metal lead is widely found in rivers and soils as an environmental pollutant, posing a threat to the health of aquatic organisms. Selenium is an essential trace element and a powerful antioxidant that has been shown to have anti-inflammatory and antioxidant properties as well as alleviating heavy metal poisoning. Many studies have shown that lead poisoning produces inflammatory responses and damage to the kidneys of a wide range of animals, but the effects on cellular pyroptosis and immune function and selenium antagonism in CIK cells are not clear. In this study, 500 µM Pb and 20 nM Se were applied to grass carp kidney cells, and the results showed that Pb exposure to CIK cells resulted in oxidative stress, activation of the IRAK1/TAK1/IKK pathway, up-regulation of the expression of cellular pyroptosis markers GSDMD and NLRP3, and cellular pyroptosis of CIK cells, as well as up-regulation of IL-1ß and IL-18, and the generation of cellular inflammatory response. In contrast, Se treatment significantly reduced the ROS level, the expression of cellular pyroptosis markers GSDMD, NLRP3 and inflammatory element IL-1ß and IL-18. Taken together, Se alleviated cellular pyroptosis and immune dysfunction caused by Pb exposure through oxidative stress and activation of the IRAK1/TAK1/IKK pathway. This study complements the harmful effects of the heavy metal Pb on fish and the real-life application of selenium in the healthy culture of fish as a reference will be provided.


Assuntos
Células Matadoras Induzidas por Citocinas , Selênio , Animais , Selênio/farmacologia , Antioxidantes , Piroptose , Interleucina-18 , Células Matadoras Induzidas por Citocinas/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Chumbo/toxicidade , Inflamação/induzido quimicamente
6.
Fish Shellfish Immunol ; 131: 312-322, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36220537

RESUMO

Atrazine (ATR) is a commonly used triazine herbicide, which will remain in the water source, soil and biological muscle tissue for a long time, threatening the survival of related organisms and future generations. Tannic acid (TAN), a glucosyl compound found in gallnuts, has previously been shown to antagonize heavy metal toxicity, antioxidant activity, and inflammation. However, it is unclear whether TAN can antagonize ATR-induced Grass carp hepatocytes (L8824 cells) cytotoxicity. Therefore, we treated L8824 cells with 3 µg mL-1 ATR for 24 h to establish a toxic group model. The experimental data of flow cytometry and AO/EB staining together showed that the ratio of apoptosis and necrosis in L8824 cells after ATR exposure was significantly higher than that in the control group. Furthermore, RT-qPCR showed that inflammatory factors (TNF-α, IL-1ß, IL-6, INF-γ) were up-regulated and antimicrobial peptides (hepcidin, ß-defensin and LEAP2) were induced down-regulated in L8824 cells, leading to immune dysfunction. The measurement results of oxidative stress-related indicators showed that the levels of ROS and MDA increased after ATR exposure, the overall anti-oxidative system was down-regulated. Western blotting confirmed that TNF-α/TNFR 1-related genes were also up-regulated. This indicates that ATR stimulates oxidative stress in L8824 cells, which in turn promotes the binding of TNF-α to TNFR 1. In addition, TRADD, FADD, Caspase-3, P53, RIP1, RIP3 and MLKL were found to be significantly up-regulated by Western blotting and RT-qPCR. Conditioned after ATR exposure compared to controls. It indicates that ATR activates apoptosis and necrosis of TNF-α/TNFR 1 pathway by inducing oxidative stress in L8824 cells. Furthermore, the use of TAN (5 µM) significantly alleviated the toxic effects of ATR on L8824 cells mentioned above. In conclusion, TAN restrains ATR-induced apoptosis, programmed necrosis and immune dysfunction through the ROS/TNF-α/TNFR 1 pathway.


Assuntos
Atrazina , Carpas , Animais , Apoptose , Atrazina/toxicidade , Carpas/metabolismo , Hepatócitos/metabolismo , Necrose , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/farmacologia
7.
Fish Shellfish Immunol ; 131: 1075-1084, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36396070

RESUMO

Atrazine (ATR) is a herbicide widely used in grass crops. The pollution of the soil and water environment is extremely harmful to aquatic animals and their offspring. iNOS/NO upregulation, DNA damage and cellular autophagy affect the immune function of fish liver cells. The effects of ATR at exposure doses on grass carp hepatocytes in terms of autophagy and DNA damage effects in genotoxicity, as well as the antagonistic effects of TAN on the above phenotypes and the internal mechanisms are not known. Therefore, we constructed control (Con group), ATR exposure (ATR group), TAN exposure (TAN group) and mixed group (ATR + TAN group) models on grass carp hepatocytes. Validation was performed by comet assay, MDC staining, qRT-PCR and protein blotting assay as well as iNOS/NO indicator levels and expression of immune factors as these experimental methods. Our data indicate that iNOS/NO assay kit measured that ATR treatment resulted in a significant increase in iNOS/NO activity and levels in grass carp hepatocytes (p < 0.05). We also found that NO/iNOS/NF-κB pathway genes were significantly activated (p < 0.05) at the exposure dose of ATR (3 µg mL-1). In addition, the proportion of cells that died due to DNA damage, autophagy, and immunotoxic effects was significantly increased at the exposure dose of ATR. Comet assay protein blotting detected increased DNA damage in cells at the ATR exposure dose (p < 0.05). MDC staining and qRT-PCR and protein blotting to detect the proportion of autophagic cells and autophagy-related genes also appeared upregulated at the exposed dose of ATR (p < 0.05). In brief, this study showed that ATR exposure caused cellular DNA damage and autophagy via the NO/iNOS/NF-κB axis, which led to immunotoxic effects and eventual death of grass carp hepatocytes. The present study facilitates the demonstration of the molecular mechanism of TAN alleviation of ATR cytotoxicity from the perspective of NO-mediated iNOS/NF-κB axis. It provides insights into the protection of farmed fish from agricultural contaminants and opens up new horizons in the use of natural plant-derived monomers for the clinical treatment of antagonistic triazine pesticide poisoning.


Assuntos
Atrazina , Carpas , Dano ao DNA , Hepatócitos , Animais , Atrazina/toxicidade , Autofagia , Carpas/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Imunidade , NF-kappa B/metabolismo , Transdução de Sinais
8.
Toxicol Appl Pharmacol ; 415: 115449, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33577919

RESUMO

Cadmium (Cd) was a serious heavy metal pollutant. Cd exposure will cause damage to reproductive organs. It was largely unknown whether Cd exposure caused inflammation and apoptosis in epididymis. In this study, we established models of Cd exposure in swine, and the apoptotic level of epididymis was detected by in situ TUNEL fluorescence staining assay, the results showed that Cd exposure significantly increased TUNEL-apoptosis index. Furthermore, the results of qRT-PCR and Western blot showed that Cd activated the proto-oncogenic serine/threonine kinase-1 (RAF1)/mitogen-activated protein kinase (MEK)/extracellular signal-regulated kinase (ERK) signal pathway (RAF1/MEK/ERK) and led to the subsequent up-regulation of the nuclear factor-κB (NF-κB), tumor necrosis factor α (TNF-α), cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), interleukin-1ß (IL-1ß), interleukin-6 (IL-6), interleukin-8 (IL-8), caused inflammation in epididymis. NF-κB inflammation pathway also mediated the tumor protein P53 (P53) and indirectly activated the Cytochrome c (Cytc), B-cell lymphoma-2 (Bcl-2), Bcl-2-Associated X protein (Bax), Caspase 3, Caspase 9. In summary, we believed that the RAF1/MEK/ERK pathway came into play in the apoptosis of epididymal tissues exposed to Cd by activating the NF-κB Inflammation pathway, followed by activation of the mitochondrial apoptotic pathway. This study provides more abundant data for exploring the reproductive toxicity of Cd.


Assuntos
Apoptose/efeitos dos fármacos , Cloreto de Cádmio/toxicidade , Epididimo/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular , Inflamação/induzido quimicamente , Mitocôndrias/efeitos dos fármacos , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-raf/metabolismo , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Epididimo/enzimologia , Epididimo/patologia , Proteínas de Choque Térmico/metabolismo , Inflamação/enzimologia , Inflamação/patologia , Mediadores da Inflamação/metabolismo , Masculino , Mitocôndrias/enzimologia , Mitocôndrias/patologia , Transdução de Sinais , Sus scrofa
9.
Ecotoxicol Environ Saf ; 206: 111151, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32858329

RESUMO

The wide application of plastic products led to the wide exposure of plasticizer in environment. As a new environmental pollutant, plasticizers' toxicity researches were far from enough in fish. In order to further explore these mechanisms, we used Diethylhexyl phthalate (DEHP), a common plasticizer, treated the grass carp hepatocytes, and selected Eucalyptol (EUC) to study its antagonistic effect on DEHP. The results showed that after DEHP exposure, oxidative stress level and inflammation in grass carp hepatocytes were increased, and then mRNA and protein expression of apoptosis related markers were increased significantly, leading to hepatocytes apoptosis. Moreover, AO/EB staining and Hoethst staining also showed that the number of apoptotic cells increased after DEHP exposure. It should be noted that both EUC pretreatment and EUC simultaneous treatment could alleviate the oxidative stress, levels of inflammatory factors and apoptosis induced by DEHP. In comparison, the effect of EUC simultaneous treatment was better. Our results showed that DEHP induced apoptosis in grass carp hepatocytes through oxidative stress and inflammation, while EUC could alleviate apoptosis by reducing oxidative stress and inflammation caused by DEHP. The innovation of this study was to explore the interaction between DEHP and EUC for the first time. This study found that DEHP could cause apoptosis in grass carp hepatocytes through oxidative stress and inflammation; EUC had a good antagonistic effect on a series of damage in grass carp hepatocytes caused by DEHP, and EUC pretreatment and simultaneous treatment had a certain effect, among which, simultaneous treatment had a better effect. This study enriched the theoretical mechanism of DEHP toxicity in fish hepatocytes, and put forward the methods to solve the toxicity of DEHP.


Assuntos
Carpas/fisiologia , Dietilexilftalato/toxicidade , Eucaliptol/metabolismo , Hepatócitos/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Apoptose/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Plastificantes/toxicidade
10.
Ecotoxicol Environ Saf ; 194: 110412, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32155482

RESUMO

Hydrogen sulfide (H2S) is a toxic air pollutant that causes immune damage. Recent studies have found that neutrophil extracellular trap (NET) formation is one way in which neutrophils exert immune functions. In addition, the formation of NETs is also related to thrombosis and autoimmune diseases. Recent studies have shown that miRNAs are involved in the regulation of a variety of pathophysiological processes. Here, we investigated the role of H2S in regulating the formation of NETs by affecting miR-16-5p. Our study established an in vitro H2S exposure model for neutrophils using phorbol-myristate-acetate (PMA) to induce NET formation. We observed the morphological changes of cells with scanning electron microscopy and fluorescence microscopy. Then, the content of extracellular DNA and the expression of MPO and NE in each group were detected. The results showed that H2S inhibited the formation of NETs. The expression of miR-16-5p and its target genes PiK3R1 and RAF1 was then measured by qRT-PCR. H2S upregulated miR-16-5p and inhibited expression of the target genes PiK3R1 and RAF1, and it subsequently inhibited the Pi3K/AKT and ERK pathways and decreased respiratory burst levels. Furthermore, H2S attenuated inositol 1,4,5-trisphosphate receptor (IP3R)-mediated endoplasmic reticulum calcium outflow as well as autophagy caused by PMA. This study enriches H2S immunotoxicity research and provides a possible solution for the treatment of NET-related diseases.


Assuntos
Poluentes Atmosféricos/toxicidade , Classe Ia de Fosfatidilinositol 3-Quinase/genética , Armadilhas Extracelulares/efeitos dos fármacos , Sulfeto de Hidrogênio/toxicidade , MicroRNAs/genética , Neutrófilos/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-raf/genética , Animais , Autofagia/efeitos dos fármacos , Galinhas , Armadilhas Extracelulares/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Modelos Animais , Neutrófilos/metabolismo , Neutrófilos/ultraestrutura , Acetato de Tetradecanoilforbol/farmacologia , Ativação Transcricional/efeitos dos fármacos , Regulação para Cima
11.
Fish Shellfish Immunol ; 94: 730-738, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31580934

RESUMO

Atrazine (ATR) causes environmental problems and damages the health of fish and aquatic animals. MicroRNAs (miRNAs) play important roles in immune regulation. However, the immunotoxicity mechanism of ATR in fish lymphocytes and the role of miRNA in this process remain unclear. To further study these mechanisms, spleen lymphocytes were exposed to 20, 40 and 60 µg/ml ATR for 18 h. Fluorescence staining and flow cytometry showed that the number of necrotic lymphocytes increased after ATR exposure. Compared with the control group, the mRNA expression of miR-181-5p was inhibited and the mRNA levels of TNF-α and HK2 were increased after ATR exposure. Additionally, the NF-κB inflammatory pathway and the levels of glycometabolism-related genes were upregulated. These results suggest that ATR induces inflammation and elevates glycometabolism in lymphocytes. We further found that the mRNA levels of receptor-interacting serine-threonine kinase 1 (RIP1), receptor-interacting serine-threonine kinase 3 (RIP3), mixed lineage kinase domain-like pseudokinase (MLKL), cylindromatosis (CYLD) and Fas-Associated protein with Death Domain (FADD) and the protein levels of RIP3 and MLKL in the treatment groups were significantly increased compared to those in control group, suggesting that ATR causes lymphocyte necroptosis. We conclude that miR-181-5p plays a key role in necroptosis in carp lymphocytes exposed to ATR by downregulating the expression of HK and TNF-α, which increases the level of glycometabolism and induces the inflammatory response, respectively.


Assuntos
Atrazina/toxicidade , Carpas/imunologia , Doenças dos Peixes/imunologia , Glicólise/imunologia , Inflamação/veterinária , MicroRNAs/metabolismo , Necroptose/imunologia , Animais , Relação Dose-Resposta a Droga , Doenças dos Peixes/induzido quimicamente , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Glicólise/efeitos dos fármacos , Herbicidas/toxicidade , Inflamação/induzido quimicamente , Inflamação/imunologia , Linfócitos/efeitos dos fármacos , Linfócitos/imunologia , Necroptose/efeitos dos fármacos , Baço/efeitos dos fármacos , Baço/imunologia
12.
Ecotoxicol Environ Saf ; 173: 225-234, 2019 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-30772712

RESUMO

Neutrophils represent an important part of the body's innate immunity and can resist the invasion of pathogenic microorganisms by releasing neutrophil extracellular traps (NETs). In this study, we investigated the toxic effects of lead (Pb) on the release of NETs, the antagonism of selenium (Se) on Pb toxicity and the potential molecular mechanisms. Our model was an in vitro exposure model for the addition of Se, Pb or both in the culture medium and was based on the separation of neutrophils from the peripheral blood of healthy chickens. Phorbol-myristate-acetate (PMA) was used as a stimulant. The scanning electron microscopy and fluorescence microscopy results showed that Pb weakened the PMA-induced formation of NETs. Exposure to Pb reduced the expression of the extracellular regulated protein kinase (ERK) pathway and the respiratory burst. Exposure to Pb also attenuated the release of Ca2+ in the endoplasmic reticulum mediated by the inositol 1,4,5-trisphosphate receptor (IP3R). These are two ways by which Pb decreases the formation of NETs. Pb also attenuates the expression levels of myeloperoxidase (MPO) and neutrophil elastase (NE), and attenuates histone removal by affecting the expression of different protein kinase C (PKC) isoforms. In contrast, Se can reduce the toxic damage caused by Pb. These results indicate that exposure to Pb decreases the formation of NETs, while Se can antagonize the toxicity of Pb to allow the formation of NETs.


Assuntos
Armadilhas Extracelulares/efeitos dos fármacos , Chumbo/toxicidade , Neutrófilos/efeitos dos fármacos , Selênio/farmacologia , Animais , Cálcio/metabolismo , Células Cultivadas , Galinhas , Antagonismo de Drogas , Histonas/metabolismo , Elastase de Leucócito/metabolismo , Neutrófilos/fisiologia , Peroxidase/metabolismo , Acetato de Tetradecanoilforbol
13.
Biochim Biophys Acta Gen Subj ; 1862(10): 2113-2123, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30017912

RESUMO

Selenoprotein S (SelenoS) is one of the cellular endoplasmic reticulum (ER) and membrane located selenoproteins, and it has the main functions of anti-oxidation, anti-apoptosis and anti-ER stress. To investigate the effect of SelenoS silencing on mouse hepatoma cell death and the intracellular biological function of SelenoS, we knocked down SelenoS in Hepa1-6 cells, and detected ER stress, intracellular calcium homeostasis, mitochondrial dynamics, apoptosis and necrosis. To further explore whether reactive oxygen species (ROS) has an effect on apoptosis and necrosis under SelenoS silencing, we used NAC (2.5 mM) to pretreat cells, and detected ΔΨm, ATP, and apoptosis and necrosis rates. SelenoS silencing broke the intracellular calcium homeostasis, induced mitochondrial dynamic disorder, ROS accumulation, loss of ΔΨm and ATP, and triggered apoptosis and necrosis in mouse hepatoma cells. The clearance of ROS alleviated the loss of ΔΨm and ATP caused by silencing of SelenoS, reduced cell necrosis and increased apoptosis. However, SelenoS silencing did not cause ER stress in Hepa1-6 cells. These results indicate that SelenoS silencing triggers mouse hepatoma cells apoptosis and necrosis through affecting intracellular calcium homeostasis and ROS-mPTP-ATP participates in cell death transformation from apoptosis to necrosis to rise damage.


Assuntos
Apoptose , Cálcio/metabolismo , Carcinoma Hepatocelular/patologia , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Necrose , Espécies Reativas de Oxigênio/metabolismo , Selenoproteínas/antagonistas & inibidores , Animais , Carcinoma Hepatocelular/metabolismo , Estresse do Retículo Endoplasmático , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Camundongos , Poro de Transição de Permeabilidade Mitocondrial , Selenoproteínas/metabolismo , Células Tumorais Cultivadas
14.
Biol Trace Elem Res ; 202(4): 1722-1740, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37422542

RESUMO

Selenium (Se) deficiency can affect the expression of microRNA (miRNA) and induce necroptosis, apoptosis, etc., resulting in damage to various tissues and organs. Bisphenol A (BPA) exposure can cause adverse consequences such as oxidative stress, endothelial dysfunction, and atherosclerosis. The toxic effects of combined treatment with Se-deficiency and BPA exposure may have a synergistic effect. We replicated the BPA exposure and Se-deficiency model in broiler to investigate whether the combined treatment of Se-deficiency and BPA exposure induced necroptosis and inflammation of chicken vascular tissue via the miR-26A-5p/ADAM17 axis. We found that Se deficiency and BPA exposure significantly inhibited the expression of miR-26a-5p and increased the expression of ADAM17, thereby increasing reactive oxygen species (ROS) production. Subsequently, we discovered that the tumor necrosis factor receptor (TNFR1), which was highly expressed, activated the necroptosis pathway through receptor-interacting protein kinase 1 (RIPK1), receptor-interacting protein kinase 3 (RIPK3), and mixed-lineage kinase domain-like (MLKL), and regulated the heat shock proteins-related genes expressions and inflammation-related genes expressions after exposure to BPA and selenium deficiency. In vitro, we found that miR-26a-5p knockdown and increased ADAM17 can induce necroptosis by activating the TNFR1 pathway. Similarly, both N-Acetyl-L-cysteine (NAC), Necrostatin-1 (Nec-1), and miR-26a-5p mimic prevented necroptosis and inflammation caused by BPA exposure and Se deficiency. These results suggest that BPA exposure activates the miR-26a-5p/ADAM17 axis and exacerbates Se deficient-induced necroptosis and inflammation through the TNFR1 pathway and excess ROS. This study lays a data foundation for future ecological and health risk assessments of nutrient deficiencies and environmental toxic pollution.


Assuntos
Compostos Benzidrílicos , MicroRNAs , Fenóis , Selênio , Animais , Apoptose , Galinhas/metabolismo , Inflamação/induzido quimicamente , MicroRNAs/genética , MicroRNAs/metabolismo , Necroptose , Proteínas Quinases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptores do Fator de Necrose Tumoral , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Selênio/metabolismo
15.
Biochim Biophys Acta Gen Subj ; 1868(4): 130564, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38272191

RESUMO

Selenium (Se) is involved in many physiopathologic processes in humans and animals and is strongly associated with the development of heart disease. Lipopolysaccharides (LPS) are cell wall components of gram-negative bacteria that are present in large quantities during environmental pollution. To investigate the mechanism of LPS-induced cardiac injury and the efficacy of the therapeutic effect of SeMet on LPS, a chicken model supplemented with selenomethionine (SeMet) and/or LPS treatment, as well as a primary chicken embryo cardiomyocyte model with the combined effect of SeMet / JAK2 inhibitor (INCB018424) and/or LPS were established in this experiment. CCK8 kit, Trypan blue staining, DCFH-DA staining, oxidative stress kits, immunofluorescence staining, LDH kit, real-time fluorescence quantitative PCR, and western blot were used. The results proved that LPS exposure led to ROS explosion, hindered the antioxidant system, promoted the expression of the JAK2 pathway, and increased the expression of genes involved in the pyroptosis pathway, inflammatory factors, and heat shock proteins (HSPs). Upon co-treatment with SeMet and LPS, SeMet reduced LPS-induced pyroptosis and inflammation and restored the expression of HSPs by inhibiting the ROS burst and modulating the antioxidant capacity. Co-treatment with INCB018424 and LPS resulted in inhibited of the JAK2 pathway, attenuating pyroptosis, inflammation, and high expression of HSPs. Thus, LPS induced pyroptosis, inflammation, and changes in HSPs activity by activating of the JAK2 / STAT3 / A20 signaling axis in chicken hearts. Moreover, SeMet has a positive effect on LPS-induced injury. This work further provides a theoretical basis for treating cardiac injury by SeMet.


Assuntos
Antioxidantes , Nitrilas , Pirazóis , Pirimidinas , Selenometionina , Animais , Embrião de Galinha , Antioxidantes/metabolismo , Galinhas/metabolismo , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Janus Quinase 2/metabolismo , Lipopolissacarídeos/toxicidade , Miócitos Cardíacos/metabolismo , Estresse Oxidativo , Piroptose , Espécies Reativas de Oxigênio/metabolismo , Selenometionina/farmacologia , Selenometionina/análise , Selenometionina/metabolismo , Fator de Transcrição STAT3/metabolismo
16.
Food Chem Toxicol ; 185: 114483, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38301994

RESUMO

Atrazine (ATR), a commonly used herbicide, is highly bioaccumulative and toxic, posing a threat to a wide range of organisms. Curcumin has strong antioxidant properties. However, it is unclear whether curcumin counteracts cellular pyroptosis as well as cell cycle arrest induced by ATR exposure. Therefore, we conducted a study using TCMK-1 cells and established cell models by adding 139 µmol/L ATR and 20 µmol/L curcumin. The results showed that ATR exposure produced excessive reactive oxygen species (ROS), reduced activities of enzymes such as GSH-PX, SOD and Total Antioxidant Capacity, markedly increased the content of H2O2, disrupted the antioxidant system, activated Caspase-1, and the expression levels of the pyroptosis-related genes NLRP3, GSDMD, ASC, Caspase-1, IL-1ß and IL-18 were increased. The simultaneous excess of ROS led to DNA damage, activation of P53 led to elevated expression levels of P53 and P21, as a consequence, the expression levels of cyclinE, CDK2 and CDK4 were reduced. These results suggest that Cur can modulate ATR exposure-induced pyroptosis as well as cell cycle arrest in TCMK-1 cells by governing oxidative stress.


Assuntos
Atrazina , Curcumina , Piroptose , Espécies Reativas de Oxigênio/metabolismo , Atrazina/toxicidade , Curcumina/farmacologia , Antioxidantes/farmacologia , Peróxido de Hidrogênio/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Transdução de Sinais , Estresse Oxidativo , Pontos de Checagem do Ciclo Celular , Caspase 1/genética
17.
Sci Total Environ ; 913: 169730, 2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38160834

RESUMO

Bisphenol A (BPA) is a phenolic organic synthetic compound that is used as the raw material of polycarbonate plastics, and its safety issues have recently attracted wide attention. Selenium (Se) deficiency has gradually developed into a global disease affecting intestinal function via oxidative stress and apoptosis. However, the toxic effects and potential mechanisms of BPA exposure and Se deficiency in the chicken intestines have not been studied. In this study, BPA exposure and/or Se deficiency models were established in vivo and in vitro to investigate the effects of Se deficiency and BPA on chicken jejunum. The results showed that BPA exposure and/or Se deficiency increased jejunum oxidative stress and DNA damage, activated P53 pathway, led to mitochondrial dysfunction, and induced apoptosis and cell cycle arrest. Using protein-protein molecular docking, we found a strong binding ability between P53 and peroxisome proliferator-activated receptor γ coactivator-1, thereby regulating mitochondrial dysfunctional apoptosis. In addition, we used N-acetyl-L-cysteine and pifithrin-α for in vitro intervention and found that N-acetyl-L-cysteine and pifithrin-α intervention reversed the aforementioned adverse effects. This study clarified the potential mechanism by which Se deficiency exacerbates BPA induced intestinal injury in chickens through reactive oxygen species/P53, which provides a new idea for the study of environmental combined toxicity of Se deficiency, and insights into animal intestinal health from a new perspective.


Assuntos
Compostos Benzidrílicos , Benzotiazóis , Fenóis , Selênio , Tolueno/análogos & derivados , Animais , Espécies Reativas de Oxigênio/metabolismo , Selênio/toxicidade , Selênio/metabolismo , Galinhas/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Acetilcisteína/farmacologia , Simulação de Acoplamento Molecular , Estresse Oxidativo , Intestinos , Apoptose , Pontos de Checagem do Ciclo Celular
18.
Artigo em Inglês | MEDLINE | ID: mdl-36368504

RESUMO

Di (2-ethylhexyl) phthalate (DEHP) is often used as a plasticizer for plastic products, and its excessive use can cause irreversible damage to aquatic animals and humans. Evodiamine (EVO) is an alkaloid component in the fruit of Evodia rutaecarpa, which has antioxidant and detoxification functions. To investigate the toxic mechanism of DEHP on grass carp (Ctenopharyngodon idellus) hepatocyte cell line (L8824) and the therapeutic effect of evodiamine, an experimental model of L8824 cells exposed to 800 µM DEHP and/or 10 µM EVO for 24 h was established. Flow cytometry, AO/EB fluorescence staining, real-time quantitative PCR, and western blot were used to detect the degree of cell injury, oxidative stress level, MAPK signaling pathway relative genes, and the expression of apoptosis-related molecules. The results showed that DEHP exposure could significantly increase the level of reactive oxygen species (ROS), inhibit the activities of antioxidant enzymes (CAT, SOD, GSH-Px), and cause the accumulation of MDA. DEHP also activated MAPK signaling pathway-related molecules (JNK, ERK, P38 MAPK), and then up-regulated the expression of pro-apoptotic factors Bcl-2-Associated X (Bax) and caspase 3, while inhibiting the anti-apoptotic factor B-cell lymphoma-2 (Bcl-2). In addition, EVO can also promote the dissociation of nuclear factor-E2-related factor 2 (Nrf2) into the nucleus, reduce the level of ROS and the occurrence of oxidative stress in grass carp hepatocytes, down-regulate the MAPK pathway, alleviate DEHP-induced apoptosis, and restore the expression of antioxidant genes. These results indicated that evodiamine could block Nrf2/MAPK pathway to inhibit DEHP-induced apoptosis of grass carp hepatocytes.


Assuntos
Carpas , Dietilexilftalato , Animais , Humanos , Fator 2 Relacionado a NF-E2/genética , Dietilexilftalato/toxicidade , Espécies Reativas de Oxigênio , Antioxidantes/farmacologia , Hepatócitos , Apoptose , Proteínas Proto-Oncogênicas c-bcl-2
19.
Biol Trace Elem Res ; 201(1): 220-228, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35118606

RESUMO

Cadmium (Cd) is a type of toxic substance, which widely exists in nature. However, the effect of Cd exposure on the toxicity of swine lungs and its underlying mechanism involved have not yet been reported. In our study, we divided swine into two groups, including a control group (C group) and Cd-exposed group. Swine in the C group were fed a basic diet, whereas swine in the Cd group were fed a 20 mg Cd/kg diet. Immunofluorescence, qRT-PCR, western blot analysis, and H&E staining were performed to detect necroptosis-related indicators. Our results found that after Cd exposure, Th1/Th2 imbalance occurred, miR-181-5p was down-regulated, TNF-α expression was increased, and the NF-κB/NLRP3 and JAK/STAT pathways and RIPK1/RIPK3/MLKL axis were activated. Furthermore, histopathological examination showed necrosis in swine lung after Cd exposure. Together, the above-mentioned results indicate that subacute Cd exposure is closely linked with necroptosis in swine lung. Our study provided evidence that Cd may act through miR-181-5p/TNF-α to induce necroptosis in swine lung. The findings of this study supplement the toxicological study of Cd and provide a reference for comparative medicine.


Assuntos
Cádmio , MicroRNAs , Animais , Suínos , Cádmio/toxicidade , Cádmio/metabolismo , Fator de Necrose Tumoral alfa/genética , Necroptose , MicroRNAs/genética , Pulmão/metabolismo
20.
Artigo em Inglês | MEDLINE | ID: mdl-36257570

RESUMO

Selenium deficiency can lead to multiple tissue and organ damage in the body and could coexist with chronic toxic exposures. Contamination from Bisphenol A (BPA) exposure can induce the occurrence of various injuries including pyroptosis. However, it is not clear whether selenium deficiency and BPA exposure affect tracheal tissue pyroptosis in chickens. To investigate whether selenium deficiency and BPA exposure induce chicken tracheal tissue pyroptosis via the NF-κB/NLRP3/Caspase-1 pathway and the effect of their combined exposure on tissue injury, we developed a model of relevant chicken tracheal injury. Sixty broilers were divided into four groups: the control group (C group), selenium-deficient group (SeD group), BPA-exposed group (BPA group) and combined exposure group (SeD + BPA group). The study examined the expression indicators of markers of pyroptosis (NLRP3&GSDMD), NF-κB pathway-related inflammatory factors (NF-κB, iNOS, TNF-α, COX-2), pyroptosis-related factors (ASC, Caspase-1, IL-1ß, IL-18), and some heat shock proteins and interleukins (HSP60, HSP90, IL-6, IL-17) in the samples. The results showed that the expression of the above indicators was significantly upregulated in the different treatment groups (P < 0.05). In addition, the expression levels of the above related indicators were more significantly up-regulated in the combined selenium-deficient and BPA-exposed group compared to the group in which they were individually exposed. It was concluded that selenium deficiency and BPA exposure induced tracheal tissue pyroptosis in chickens through NF-κB/NLRP3/Caspase-1 pathway, and BPA exposure exacerbated selenium deficiency-induced tracheal pyroptosis. The present study provides new ideas into studies related to the co-exposure of organismal micronutrient deficiency and chronic toxicants.


Assuntos
Piroptose , Selênio , Animais , NF-kappa B/metabolismo , Caspase 1/metabolismo , Caspase 1/farmacologia , Galinhas/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Selênio/farmacologia , Traqueia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA