Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS Genet ; 7(3): e1001354, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21483810

RESUMO

Methylation of histone H3 lysine 4 (H3K4me) is an evolutionarily conserved modification whose role in the regulation of gene expression has been extensively studied. In contrast, the function of H3K4 acetylation (H3K4ac) has received little attention because of a lack of tools to separate its function from that of H3K4me. Here we show that, in addition to being methylated, H3K4 is also acetylated in budding yeast. Genetic studies reveal that the histone acetyltransferases (HATs) Gcn5 and Rtt109 contribute to H3K4 acetylation in vivo. Whilst removal of H3K4ac from euchromatin mainly requires the histone deacetylase (HDAC) Hst1, Sir2 is needed for H3K4 deacetylation in heterochomatin. Using genome-wide chromatin immunoprecipitation (ChIP), we show that H3K4ac is enriched at promoters of actively transcribed genes and located just upstream of H3K4 tri-methylation (H3K4me3), a pattern that has been conserved in human cells. We find that the Set1-containing complex (COMPASS), which promotes H3K4me2 and -me3, also serves to limit the abundance of H3K4ac at gene promoters. In addition, we identify a group of genes that have high levels of H3K4ac in their promoters and are inadequately expressed in H3-K4R, but not in set1Δ mutant strains, suggesting that H3K4ac plays a positive role in transcription. Our results reveal a novel regulatory feature of promoter-proximal chromatin, involving mutually exclusive histone modifications of the same histone residue (H3K4ac and H3K4me).


Assuntos
Histonas/metabolismo , Lisina/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Acetilação , Eucromatina/genética , Eucromatina/metabolismo , Regulação Enzimológica da Expressão Gênica , Redes Reguladoras de Genes/genética , Heterocromatina/genética , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/genética , Lisina/genética , Metilação , Regiões Promotoras Genéticas , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/metabolismo , Sirtuína 2/genética , Sirtuína 2/metabolismo
2.
Dev Biol ; 271(1): 49-58, 2004 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-15196949

RESUMO

The Cdk8 proteins are kinases which phosphorylate the carboxy terminal domain (CTD) of RNA polymerase II (Pol II) as well as some transcription factors and, therefore, are involved in the regulation of transcription. Here, we report that a Cdk8 homologue from Dictyostelium discoideum is localized in the nucleus where it forms part of a high molecular weight complex that has CTD kinase activity. Insertional mutagenesis was used to abrogate gene function, and analysis of the null strain revealed that the DdCdk8 protein plays an important role in spore formation during late development. As previously reported [Dev. Growth Differ. 44 (2002) 213] Ddcdk8- cells also exhibit impaired aggregation, although we report that the severity of the defect depends upon experimental conditions. When aggregation occurs, Ddcdk8- cells form abnormal terminally differentiated structures within which the Ddcdk8- cells differentiate into stalk cells but fail to form spores, indicating a role for DdCdk8 in cell differentiation. When Ddcdk8 is expressed from its own promoter, the protein is able to rescue both the late developmental defect and the impaired aggregation. However, when expressed from an heterologous promoter, only the impaired aggregation is rescued. This result demonstrates that the defect during late development is not a consequence of impaired aggregation and indicates a direct role for DdCdk8 in spore formation.


Assuntos
Dictyostelium/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Fenótipo , Esporos/crescimento & desenvolvimento , Animais , Northern Blotting , Quimiotaxia/fisiologia , Cromatografia em Gel , Dictyostelium/enzimologia , Imunofluorescência , Biblioteca Gênica , Mutagênese Insercional , Testes de Precipitina , Análise de Sequência de DNA , Transfecção , beta-Galactosidase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA