Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Opt Lett ; 49(2): 391-394, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38194576

RESUMO

High-quality micro-resonators on thin-film lithium niobate (TFLN) have emerged as an ideal platform for on-chip nonlinear optical applications due to their strong light confinement and excellent natural nonlinear optical properties. Here, we present high-efficiency second-harmonic generation (SHG) in micro-resonators on a TFLN based on the modal phase matching and natural quasi-phase matching. By optimizing the phase-matching conditions through thermal tuning, we demonstrate an on-chip SHG efficiency of 149,000%/W in the low power regime. Furthermore, we achieve an absolute conversion efficiency of 10.3% with a 0.3 mW pump power. Our work paves the way toward future efficient on-chip frequency conversion of classical and quantum light without the need for poling of the LN films.

2.
Phys Rev Lett ; 132(25): 256902, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38996261

RESUMO

Non-Hermitian degeneracies reveal intriguing and nontrivial behaviors in open physical systems. Examples like parity-time (PT) symmetry breaking, topological encircling chirality, and enhanced sensing near an exceptional point (EP) are often associated with the abrupt nature of the phase transition around these degeneracies. Here we experimentally observe a cavity-enhanced second-harmonic frequency (SHG) conversion on a PT symmetry line, i.e., a set consisting of open-ended isofrequency or isoloss lines, both terminated at EPs on the Riemann surface in parameter space. The enhancement factor can reach as high as 300, depending on the crossing point whether in the symmetry or the broken phase of the PT line. Moreover, such enhancement of SHG enables sensitive distance sensing with a nanometer resolution. Our works may pave the way for practical applications in sensing, frequency conversion, and coherent wave control.

3.
BMC Genomics ; 24(1): 416, 2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37488494

RESUMO

BACKGROUND: Diaphorina citri Kuwayama is an important citrus pest. It serves as the vector for the transmission of Candidatus Liberibacter asiaticus (CLas), which induced a destructive disease, Huanglongbing, and caused huge economic losses. During the interaction between insects and plants, insects have evolved a series of mechanisms to adapt to various host plants. Murraya exotica and 'Shatangju' mandarin (Citrus reticulate cv. Shatangju) are the Rutaceae species from different genera that have been discovered as suitable hosts for D. citri adults. While the adaptation mechanism of this pest to these two host plants is unclear. RESULTS: In this study, RNA-seq and 16 S rDNA amplification sequencing were performed on the gut of D. citri adults reared on M. exotica and 'Shatangju' mandarin. RNA-seq results showed that a total of 964 differentially expressed genes were found in different gut groups with two host plant treatments. The impacted genes include those that encode ribosomal proteins, cathepsins, and mitochondrial respiratory chain complexes. According to 16 S rDNA sequencing, the compositions of the gut bacterial communities were altered by different treatments. The α and ß diversity analyses confirmed that the host plant changes influenced the gut microbial diversity. The functional classification analysis by Tax4Fun revealed that 27 KEGG pathways, mostly those related to metabolism, including those for nucleotide metabolism, energy metabolism, metabolism of cofactors and vitamins, amino acid metabolism, carbohydrate metabolism, xenbiotics biodegradation and metabolism, lipid metabolism, and biosynthesis of other secondary metabolites, were significantly altered. CONCLUSION: Our preliminary findings shed light on the connection between D. citri and host plants by showing that host plants alter the gene expression profiles and bacterial community composition of D. citri adults.


Assuntos
Citrus , Hemípteros , Murraya , Animais , DNA Ribossômico , Expressão Gênica
4.
Opt Express ; 31(19): 31556-31562, 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37710670

RESUMO

As one of the element photonic structures, the state-of-the-art thin-film lithium niobate (TFLN) microrings reach an intrinsic quality (Q) factor higher than 107. However, it is difficult to maintain such high-Q factors when monolithically integrated with bus waveguides. Here, a relatively narrow gap of an ultra-high Q monolithically integrated microring is achieved with 3.8 µm, and a high temperature annealing is carried out to improve the loaded (intrinsic) Q factor with 4.29 × 106 (4.04 × 107), leading to an ultra-low propagation loss of less than 1 dB/m, which is approximately 3 times better than the best values previously reported in ion-slicing TFLN platform.

5.
Opt Lett ; 48(3): 755-758, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36723581

RESUMO

Two coupled resonance modes can lead to exotic transmission spectra due to internal interference processes. Examples include electromagnetically induced transparency (EIT) in atoms and mode splitting in optics. The ability to control individual modes plays a crucial role in controlling such transmission spectra for practical applications. Here we experimentally demonstrate a controllable EIT-like mode splitting in a single microcavity using a double-port excitation. The mode splitting caused by internal coupling between two counter-propagating resonances can be effectively controlled by varying the power of the two inputs, as well as their relative phase. Moreover, the presence of asymmetric scattering in the microcavity leads to chiral behaviors in the mode splitting in the two propagating directions, manifesting itself in terms of a Fano-like resonance mode. These results may offer a compact platform for a tunable device in all-optical information processing.

6.
Opt Lett ; 48(16): 4344-4347, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37582028

RESUMO

A photonic integrated waveguide amplifier fabricated on erbium-ytterbium (Er-Yb) codoped thin-film lithium niobate (TFLN) has been investigated in this work. A small-signal internal net gain of 27 dB is achieved at a signal wavelength of 1532 nm in the fabricated Er-Yb TFLN waveguide amplifier pumped by a diode laser at ≈980 nm. Experimental characterizations reveal the suitability of waveguide fabrication by the photolithography-assisted chemo-mechanical etching (PLACE) technique and also the gain in an Yb-sensitized-Er material. The demonstrated high-gain chip-scale TFLN amplifier is promising for interfacing with established lithium niobate integrated devices, greatly extending the spectrum of TFLN photonic applications.

7.
Pestic Biochem Physiol ; 195: 105539, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37666589

RESUMO

The fall armyworm, Spodoptera frugiperda, is a highly polyphagous agricultural pest that is widely distributed around the world and causes severe crop yield loss. Carvacrol showed adverse effects on many pests, such as larval death and growth inhibition. While the effects of carvacrol on S. frugiperda larvae are not yet known. In this study, the effects of carvacrol on S. frugiperda, including larval growth inhibition and mortality induction, were observed. The detoxification and digestive enzyme activities of larvae with 1.0 and 2.0 g/kg carvacrol treatments were analyzed. Carvacrol boosted the enzyme activities of carboxylesterase (CarE) and glutathione S-transferase (GST) while decreasing the activities of α-amylase (AMS), lipase (LIP), and trypsin. A total of 3422 differentially expressed genes were identified in the larvae treated with 2.0 g/kg carvacrol, of which the DEGs involved in xenobiotic detoxification, food digestion, and insecticidal targets were further examined. These results suggest that carvacrol could regulate growth and development by affecting the process of food digestion, and exert its toxicity on the larvae through interaction with a variety of insecticidal targets. While the altered expressions of detoxification enzymes might be related to the detoxification and metabolism of carvacrol. Our findings offer a theoretical foundation for the use of carvacrol for S. frugiperda control in the field.


Assuntos
Inseticidas , Transcriptoma , Animais , Spodoptera/genética , Agricultura , Carboxilesterase/genética , Inseticidas/toxicidade , Larva/genética
8.
Pestic Biochem Physiol ; 195: 105537, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37666609

RESUMO

The fall armyworm, Spodoptera frugiperda, is a polyphagous pest worldwide and feeds on many grain and cash crops, which threatens the safety of agriculture and forestry production. Toosendanin (TSN) is a commercial insecticidal active ingredient used to manage various pests in the field and showed adverse effects against S. frugiperda, while the effects of TSN on the larval midguts are not yet known. In this study, the effects of 10 and 20 mg/kg TSN exposures on the larval midguts were analyzed. The structural changes of the larval midgut induced by TSN treatments were also determined by hematoxylin-eosin staining. Besides, TSN treatments also changed the enzyme activities of three digestive enzymes (α-amylase, lipase, and trypsin) and two detoxification enzymes (CarE and GST). A total of 2868 differentially expressed genes (DEGs) were identified by RNA-Seq in the larval midguts with 20 mg/kg TSN treatment, and the DEGs responsible for food digestion and detoxification were further examined. Our findings revealed the preliminary modes of action of TSN on the larval midguts of S. frugiperda, which provide a preliminary rationale for controlling S. frugiperda with TSN in the field.


Assuntos
Agricultura , Produtos Agrícolas , Animais , Spodoptera/genética , Larva , Expressão Gênica
9.
Pestic Biochem Physiol ; 187: 105192, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36127051

RESUMO

As a destructive agricultural pest, Spodoptera frugiperda has spread worldwide in the past few years. Azadirachtin, an environmentally friendly and most promising compound, showed adverse effects, including mortality and growth inhibition, against S. frugiperda. While the effects of azadirachtin on the midgut of this pest remain to be determined. In this study, structural damage was observed in the larval midguts of S. frugiperda with azadirachtin exposure. RNA-seq on the larval midguts with different azadirachtin treatments was performed. Compared to the control group, a total of 3344 and 4759 differentially expressed genes (DEGs) were identified in the midguts with 0.1 and 0.5 µg/g azadirachtin exposure, respectively. Among them, the DEGs encoding detoxification enzymes/proteins, immune-related proteins, digestion and absorption-related proteins, and transcript factors were further analyzed. High-throughput sequencing was also used for the identification of differentially expressed microRNAs in different treatments. A total of 153 conserved miRNAs and 147 novel miRNAs were identified, of which 11 and 29 miRNAs were affected by 0.1 and 0.5 µg/g azadirachtin treatments, respectively. The integrated analysis found that 13 and 178 miRNA versus mRNA pairs were acquired in the samples with 0.1 and 0.5 µg/g azadirachtin treatments, respectively. The results of high-throughput sequencing were confirmed by real-time quantitative polymerase chain reaction (RT-qPCR). These results provide useful information for revealing the molecular mechanism of S. frugiperda larval midgut in response to azadirachtin.


Assuntos
MicroRNAs , Animais , Perfilação da Expressão Gênica , Larva , Limoninas , MicroRNAs/genética , RNA Mensageiro , Spodoptera/genética
10.
BMC Genomics ; 22(1): 391, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-34039281

RESUMO

BACKGROUND: Spodoptera frugiperda is a serious pest that causes devastating losses to many major crops, including corn, rice, sugarcane, and peanut. Camptothecin (CPT) is a bioactive secondary metabolite of the woody plant Camptotheca acuminata, which has shown high toxicity to various pests. However, the effect of CPT against S. frugiperda remains unknown. RESULTS: In this study, bioassays have been conducted on the growth inhibition of CPT on S. frugiperda larvae. Histological and cytological changes were examined in the midgut of larvae fed on an artificial diet supplemented with 1.0 and 5.0 µg/g CPT. The potential molecular mechanism was explored by comparative transcriptomic analyses among midgut samples obtained from larvae under different treatments. A total of 915 and 3560 differentially expressed genes (DEGs) were identified from samples treated with 1.0 and 5.0 µg/g CPT, respectively. Among the identified genes were those encoding detoxification-related proteins and components of peritrophic membrane such as mucins and cuticle proteins. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses indicated that part of DEGs were involved in DNA replication, digestion, immunity, endocrine system, and metabolism. CONCLUSIONS: Our results provide useful information on the molecular basis for the impact of CPT on S. frugiperda and for future studies on potential practical application.


Assuntos
Camptotecina , Transcriptoma , Animais , Camptotecina/farmacologia , Sistema Digestório , Larva/genética , Spodoptera/genética
11.
Opt Lett ; 46(13): 3131-3134, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34197398

RESUMO

We report an on-chip single-mode microlaser with a low threshold fabricated on erbium doped lithium-niobate-on-insulator (LNOI). The single-mode laser emission at 1550.5 nm wavelength is generated in a coupled microdisk via the inverse Vernier effect at room temperature, when pumping the resonator at 977.7 nm wavelength. A threshold pump power as low as 200 µW is demonstrated due to the high quality factor above 106. Moreover, the measured linewidth of the microlaser reaches 348 kHz without discounting the broadening caused by the utilization of optical amplifiers, which is, to our knowledge, the best result in LNOI microlasers. Such a single-mode microlaser lithographically fabricated on chip is in high demand by the photonics community.

12.
Opt Lett ; 46(22): 5651-5654, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34780428

RESUMO

We demonstrate an on-chip Yb3+-doped lithium niobate (LN) microdisk laser. The intrinsic quality factors of the fabricated Yb3+-doped LN microdisk resonator are measured up to 3.79×105 at a 976 nm wavelength and 1.1×106 at a 1514 nm wavelength. The multi-mode laser emissions are obtained in a band from 1020 to 1070 nm pumped by a 984 nm laser and with the low threshold of 103µW, resulting in a slope efficiency of 0.53% at room temperature. Furthermore, both the second-harmonic frequency of pump light and the sum frequency of the pump light and laser emissions are generated in the on-chip Yb3+-doped LN microdisk, benefiting from the strong χ(2) nonlinearity of LN. These microdisk lasers are expected to contribute to the high-density integration of a lithium niobate on insulator-based photonic chip.

13.
J Invertebr Pathol ; 179: 107539, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33508316

RESUMO

Asian citrus psyllid (ACP), Diaphorina citri Kuwayama (Hemiptera: Liviidae), is a serious pest of citrus. The insect also transmits Candidatus Liberibacter asiaticus, the pathogen of a devastating citrus disease called Huanglongbing. Clonostachys rosea is a versatile fungus that possesses nematicidal and insecticidal activities. The effect of C. rosea against D. citri remains unclear. Here we examined the pathogenicity of C. rosea against D. citri adults. A mortality rate of 46.67% was observed in adults treated with 1 × 108 conidia/mL spore suspension. Comparative transcriptomic analyses identified 259 differentially-expressed genes (DEGs) between controls and samples treated with fungi. Among the DEGs, 183 were up-regulated and 76 down-regulated. Genes with altered expression included those involved in immunity, apoptosis and cuticle formation. Our preliminary observation indicated that C. rosea is virulent against ACP adults and has the potential as a biological control agent for ACP management in the field.


Assuntos
Agentes de Controle Biológico/farmacologia , Hemípteros/fisiologia , Hypocreales/fisiologia , Animais , Hemípteros/genética , Hemípteros/microbiologia , Controle de Insetos , Mortalidade , Controle Biológico de Vetores , Transcriptoma
14.
Ecotoxicol Environ Saf ; 228: 112968, 2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34763196

RESUMO

Spodoptera frugiperda is a serious threat to global food production. Our previous study demonstrated that Camptothecin (CPT), a bioactive secondary metabolite from Camptotheca acuminata (Decne: Nyssaceae), exhibits adverse impact on the larval midgut of S. frugiperda and inhibits insect growth. However, effects of CPT on fat bodies of S. frugiperda larvae have not been examined yet. In the present study, we found that histological structures of fat bodies of S. frugiperda larvae were damaged in insects treated with CPT. Comparative transcriptomic analyses among different fat body samples from controls and insects treated with 1.0 and 5.0 µg/g CPT were performed. A total of 4212 and 5044 differentially expressed genes (DEGs) were identified in the samples treated with 1.0 and 5.0 µg/g CPT, respectively. Our data indicated that the pathways of detoxification, immune response, fatty acids, chitin, and hormone biosynthesis in fat bodies were affected by CPT treatments based on DEGs. These results provided a comprehensive view of the damage and gene expression changes in fat bodies of S. frugiperda after CPT exposure, which shall be useful to reveal the mechanism of CPT toxicity against S. frugiperda in future.

15.
Pestic Biochem Physiol ; 172: 104745, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33518039

RESUMO

The fall armyworm Spodoptera frugiperda (Lepidoptera: Noctuidae) is a polyphagous pest with 353 plant species as its hosts, including maize, sorghum, cotton, and rice. Azadirachtin is one of the most effective botanical insecticides. The effect of azadirachtin against S. frugiperda remains to be determined. Here we report strong growth inhibition of azadirachtin on S. frugiperda larvae under either 1.0 or 5.0 µg/g azadirachtin. To explore the relevant mechanisms, the larvae fed with normal artificial diet and with 1.0 µg/g azadirachtin exposure for 3 days were collected as samples for RNA-Seq. RNA-Seq on S. frugiperda larvae under different treatments identified a total of 24,153 unigenes, including 3494 novel genes, were identified. Among them, 1282 genes were affected by 1.0 µg/g azadirachtin exposure, with 672 up-regulated and 610 down-regulated. The impacted genes include 61 coding for detoxification enzymes (31 P450s, 7 GSTs, 11 CarEs, 7 UGTs and 5 ABC transporters), 31 for cuticle proteins, and several proteins involved in insect chitin and hormone biosynthesis. Our results indicated that azadirachtin could regulate the growth of S. frugiperda by affecting insect chitin and hormone biosynthesis pathway. The enhanced expression of detoxification enzymes might be related to detoxifying azadirachtin. These findings provided a foundation for further delineating the molecular mechanism of growth regulation induced by azadirachtin in S. frugiperda larvae.


Assuntos
Limoninas , RNA-Seq , Animais , Larva/genética , Limoninas/toxicidade , Spodoptera/genética , Zea mays/genética
16.
Mol Phylogenet Evol ; 151: 106858, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32473334

RESUMO

Insect olfactory systems have evolved to recognize phytochemicals and respond to olfactory-triggered cues that vary depending on needs. Several Bactrocera species are attracted explicitly to particular phytochemicals, including methyl eugenol (ME) and cue lure/raspberry ketone (CL/RK). The attraction of Bactrocerans to ME/RK is primarily driven by olfaction. Therefore, the divergent behavioral phenotypes are due to the differences in genes expressed in antennae. High quality transcriptomes were generated with mRNA from dissected antennae, to analyze the differences in olfaction-related genes of three ME-responders B. dorsalis, B. papayae and B. correcta and two RK-responders B. cucurbitae and B. tau. Many distinct quantitative and qualitative differences were identified in their respective chemosensory repertoires. Tissue- and sex-specific expression analyses identified antennae-predominant and sex-biased chemosensory genes. Sequence comparison revealed variations among family members of odorant-binding proteins and odorant-receptors between ME-responders and RK-responders. Differences in composition, expression levels, and sequence of proteins encoded by olfactory-related genes were identified between ME-responders and RK-responders. Some of the differences might contribute to the divergence in response to plant-derived odorants. Taken together, our results provide insights into the evolution of an olfactory system at molecular level in Bactrocera ME- and CL/RK-responding species.


Assuntos
Evolução Biológica , Compostos Fitoquímicos/genética , Tephritidae/genética , Animais , Comportamento Animal , Feminino , Regulação da Expressão Gênica , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Masculino , Especificidade de Órgãos/genética , Feromônios/metabolismo , Filogenia , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Seleção Genética , Transcriptoma/genética
17.
Opt Express ; 28(8): 12416-12423, 2020 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-32403739

RESUMO

A lithium niobate on an insulator ridge waveguide allows constructing high-density photonic integrated circuits thanks to its small bending radius offered by the high index contrast. Meanwhile, the significant mode-field mismatch between an optical fiber and the single-mode lithium niobate waveguide leads to low coupling efficiencies. Here, we demonstrate, both numerically and experimentally, that the problem can be solved with a tapered single mode fiber of an optimized mode field profile. Numerical simulation shows that the minimum coupling losses for the TE and TM mode are 0.32 dB and 0.86 dB, respectively. Experimentally, though without anti-reflection coating, the measured coupling losses for TE and TM mode are 1.32 dB and 1.88 dB, respectively. Our technique paves a way for a broad range of on-chip lithium niobate applications.

18.
Phys Rev Lett ; 125(17): 173901, 2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-33156678

RESUMO

We observe high optical quality factor (Q) polygonal and star coherent optical modes in a lithium niobate microdisk. In contrast to the previous polygon modes achieved by deformed microcavities at lower mechanical and optical Q, we adopt weak perturbation from a tapered fiber for the polygon mode formation. The resulting high intracavity optical power of the polygon modes triggers second harmonic generation at high efficiency. With the combined advantages of a high mechanical Q cavity, we observe optomechanical oscillation in polygon modes for the first time. Finally, we observe frequency microcomb generation from the polygon modes with an ultrastable taper-on-disk coupling mechanism.

19.
BMC Genomics ; 20(1): 646, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31412763

RESUMO

BACKGROUND: The males of many Bactrocera species (Diptera: Tephritidae) respond strongly to plant-derived chemicals (male lures) and can be divided into cue lure/raspberry ketone (CL/RK) responders, methyl eugenol (ME) responders and non-responders. Representing a non-responders, Bactrocera minax display unique olfactory sensory characteristics compared with other Bactrocera species. The chemical senses of insects mediate behaviors that are associated with survival and reproduction. Here, we report the generation of transcriptomes from antennae and the rectal glands of both male and female adults of B. minax using Illumina sequencing technology, and annotated gene families potentially responsible for chemosensory. RESULTS: We developed four transcriptomes from different tissues of B. minax and identified a set of candidate genes potentially responsible for chemosensory by analyzing the transcriptomic data. The candidates included 40 unigenes coding for odorant receptors (ORs), 30 for ionotropic receptors (IRs), 17 for gustatory receptors (GRs), three for sensory neuron membrane proteins (SNMPs), 33 for odorant-binding proteins (OBPs), four for chemosensory proteins (CSPs). Sex- and tissue-specific expression profiles for candidate chemosensory genes were analyzed via transcriptomic data analyses, and expression profiles of all ORs and antennal IRs were investigated by real-time quantitative PCR (RT-qPCR). Phylogenetic analyses were also conducted on gene families and paralogs from other insect species together. CONCLUSIONS: A large number of chemosensory genes were identified from transcriptomic data. Identification of these candidate genes and their expression profiles in various tissues provide useful information for future studies towards revealing their function in B. minax.


Assuntos
Perfilação da Expressão Gênica , Genes de Insetos/genética , Tephritidae/genética , Animais , Anotação de Sequência Molecular , Olfato/genética
20.
Opt Lett ; 44(19): 4698-4701, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31568420

RESUMO

We report fabrication of a multifunctional photonic integrated chip on lithium niobate on insulator, which is achieved by femtosecond laser-assisted chemomechanical polish. We demonstrate a high-extinction-ratio beam splitter, a 1×6 optical switch, and a balanced 3×3 interferometer on the fabricated chip by reconfiguring the microelectrode array integrated with the multifunctional photonic circuit.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA