Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 262
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(33): e2402903121, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39102549

RESUMO

Immune checkpoint therapy has limited efficacy for patients with bone-metastatic castration-resistant prostate cancer (bmCRPC). To improve immunotherapy for bmCRPC, we aimed to identify the mechanism of bmCRPC-induced changes in the immune microenvironment. Among bmCRPC patients, higher levels of a 32-gene M2-like macrophage signature in bone metastasis samples correlated with shorter overall survival. Immunohistochemistry showed that CD206-positive (CD206+) macrophages were enriched in bmCRPC bone biopsy specimens compared with primary tumors or lymph node metastases. In preclinical osteogenic prostate cancer (Pca) xenograft models, CD206+ macrophages were recruited to areas with tumor-induced bone. RNA sequencing (RNAseq) analysis showed higher expression of an M2-like gene signature, with activated canonical and noncanonical Wnt pathways, in tumor-associated macrophages isolated from osteogenic tumors (bone-TAMs) than in TAMs isolated from nonosteogenic tumors (ctrl-TAMs). Mechanistic studies showed that endothelial cells (ECs) that had undergone EC-to-osteoblast (EC-to-OSB) transition, the precursors of tumor-induced OSBs, produced paracrine factors, including Wnts, CXCL14, and lysyl oxidase, which induced M2 polarization and recruited M2-like TAMs to the bone-tumor microenvironment (bone-TME). Bone-TAMs suppressed CD8+ T cells' proliferation and cytolytic activity, and these effects were partially reversed by treating bone-TAMs with Wnt inhibitors. Genetic or pharmacological inhibition of Pca-induced EC-to-OSB transition reduced the levels of M2-like macrophages in osteogenic tumors. Our study demonstrates that Pca-induced EC-to-OSB transition drives immunosuppression in the bone-TME, suggesting that therapies that reduce Pca-induced bone formation may improve immunotherapeutic outcomes for bmCRPC.


Assuntos
Neoplasias Ósseas , Células Endoteliais , Macrófagos , Osteoblastos , Microambiente Tumoral , Via de Sinalização Wnt , Masculino , Microambiente Tumoral/imunologia , Humanos , Neoplasias Ósseas/imunologia , Neoplasias Ósseas/secundário , Neoplasias Ósseas/patologia , Neoplasias Ósseas/metabolismo , Animais , Camundongos , Macrófagos/metabolismo , Macrófagos/imunologia , Células Endoteliais/metabolismo , Células Endoteliais/imunologia , Osteoblastos/metabolismo , Osteoblastos/imunologia , Neoplasias de Próstata Resistentes à Castração/imunologia , Neoplasias de Próstata Resistentes à Castração/patologia , Neoplasias de Próstata Resistentes à Castração/metabolismo , Linhagem Celular Tumoral , Neoplasias da Próstata/patologia , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/metabolismo , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/imunologia
2.
Plant Physiol ; 195(2): 1312-1332, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38438131

RESUMO

Changing ambient temperature often impairs plant development and sexual reproduction, particularly pollen ontogenesis. However, mechanisms underlying cold stress-induced male sterility are not well understood. Here, we exposed Chinese cabbage (Brassica campestris) to different cold conditions during flowering and demonstrated that the tetrad stage was the most sensitive. After completion of pollen development at optimal conditions, transient cold stress at the tetrad stage still impacted auxin levels, starch and lipid accumulation, and pollen germination, ultimately resulting in partial male sterility. Transcriptome and metabolome analyses and histochemical staining indicated that the reduced pollen germination rate was due to the imbalance of energy metabolism during pollen maturation. The investigation of ß-glucuronidase (GUS)-overexpressing transgenic plants driven by the promoter of DR5 (DR5::GUS report system) combined with cell tissue staining and metabolome analysis further validated that cold stress during the tetrad stage reduced auxin levels in mature pollen grains. Low-concentration auxin treatment on floral buds at the tetrad stage before cold exposure improved the cold tolerance of mature pollen grains. Artificially changing the content of endogenous auxin during pollen maturation by spraying chemical reagents and loss-of-function investigation of the auxin biosynthesis gene YUCCA6 by artificial microRNA technology showed that starch overaccumulation severely reduced the pollen germination rate. In summary, we revealed that transient cold stress at the tetrad stage of pollen development in Chinese cabbage causes auxin-mediated starch-related energy metabolism imbalance that contributes to the decline in pollen germination rate and ultimately seed set.


Assuntos
Brassica , Metabolismo Energético , Ácidos Indolacéticos , Pólen , Pólen/efeitos dos fármacos , Pólen/genética , Pólen/fisiologia , Pólen/crescimento & desenvolvimento , Ácidos Indolacéticos/metabolismo , Metabolismo Energético/efeitos dos fármacos , Brassica/genética , Brassica/fisiologia , Brassica/metabolismo , Brassica/efeitos dos fármacos , Resposta ao Choque Frio/fisiologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Plantas Geneticamente Modificadas , Temperatura Baixa , Germinação/efeitos dos fármacos
3.
J Virol ; 97(8): e0054023, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37504571

RESUMO

Epstein-Barr virus (EBV) is a human oncogenic γ-herpesvirus that establishes persistent infection in more than 90% of the world's population. EBV has two life cycles, latency and lytic replication. Reactivation of EBV from latency to the lytic cycle is initiated and controlled by two viral immediate-early transcription factors, Zta and Rta, encoded by BZLF1 and BRLF1, respectively. In this study, we found that IQGAP2 expression was elevated in EBV-infected B cells and identified Rta as a viral gene responsible for the IQGAP2 upregulation in both B cells and nasopharyngeal carcinoma cell lines. Mechanistically, we showed that Rta increases IQGAP2 expression through direct binding to the Rta-responsive element in the IQGAP2 promoter. We also demonstrated the direct interaction between Rta and IQGAP2 as well as their colocalization in the nucleus. Functionally, we showed that the induced IQGAP2 is required for the Rta-mediated Rta promoter activation in the EBV lytic cycle progression and may influence lymphoblastoid cell line clumping morphology through regulating E-cadherin expression. IMPORTANCE Elevated levels of antibodies against EBV lytic proteins and increased EBV DNA copy numbers in the sera have been reported in patients suffering from Burkitt's lymphoma, Hodgkin's lymphoma, and nasopharyngeal carcinoma, indicating that EBV lytic cycle progression may play an important role in the pathogenesis of EBV-associated diseases and highlighting the need for a more complete mechanistic understanding of the EBV lytic cycle. Rta acts as an essential transcriptional activator to induce lytic gene expression and thus trigger EBV reactivation. In this study, scaffolding protein IQGAP2 was found to be upregulated prominently following EBV infection via the direct binding of Rta to the RRE in the IQGAP2 promoter but not in response to other biological stimuli. Importantly, IQGAP2 was demonstrated to interact with Rta and promote the EBV lytic cycle progression. Suppression of IQGAP2 was also found to decrease E-cadherin expression and affect the clumping morphology of lymphoblastoid cell lines.


Assuntos
Infecções por Vírus Epstein-Barr , Herpesvirus Humano 4 , Proteínas Imediatamente Precoces , Neoplasias Nasofaríngeas , Humanos , Infecções por Vírus Epstein-Barr/genética , Regulação Viral da Expressão Gênica , Herpesvirus Humano 4/fisiologia , Proteínas Imediatamente Precoces/metabolismo , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas/genética , Proteínas Ativadoras de ras GTPase/genética , Proteínas Ativadoras de ras GTPase/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Regulação para Cima , Proteínas Virais/genética , Proteínas Virais/metabolismo , Ativação Viral
4.
J Virol ; 97(4): e0010223, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37022164

RESUMO

Whether and how a local virus infection affects the hematopoietic system in the bone marrow is largely unknown, unlike with systemic infection. In this study, we showed that influenza A virus (IAV) infection leads to demand-adapted monopoiesis in the bone marrow. The beta interferon (IFN-ß) promoter stimulator 1 (IPS-1)-type I IFN-IFN-α receptor 1 (IFNAR1) axis-mediated signaling was found to induce the emergency expansion of the granulocyte-monocyte progenitor (GMP) population and upregulate the expression of the macrophage colony-stimulating factor receptor (M-CSFR) on bipotent GMPs and monocyte progenitors via the signal transducer and activator of transcription 1 (STAT1), leading to a scaled-back proportion of granulocyte progenitors. To further address the influence of demand-adapted monopoiesis on IAV-induced secondary bacterial infection, IAV-infected wild-type (WT) and Stat1-/- mice were challenged with Streptococcus pneumoniae. Compared with WT mice, Stat1-/- mice did not demonstrate demand-adapted monopoiesis, had more infiltrating granulocytes, and were able to effectively eliminate the bacterial infection. IMPORTANCE Our findings show that influenza A virus infection induces type I interferon (IFN)-mediated emergency hematopoiesis to expand the GMP population in the bone marrow. The type I IFN-STAT1 axis was identified as being involved in mediating the viral-infection-driven demand-adapted monopoiesis by upregulating M-CSFR expression in the GMP population. As secondary bacterial infections often manifest during a viral infection and can lead to severe or even fatal clinical complications, we further assessed the impact of the observed monopoiesis on bacterial clearance. Our results suggest that the resulting decrease in the proportion of granulocytes may play a role in diminishing the IAV-infected host's ability to effectively clear secondary bacterial infection. Our findings not only provide a more complete picture of the modulatory functions of type I IFN but also highlight the need for a more comprehensive understanding of potential changes in hematopoiesis during local infections to better inform clinical interventions.


Assuntos
Interferon Tipo I , Infecções por Orthomyxoviridae , Receptor de Fator Estimulador de Colônias de Macrófagos , Fator de Transcrição STAT1 , Regulação para Cima , Animais , Humanos , Camundongos , Vírus da Influenza A/imunologia , Interferon Tipo I/imunologia , Receptor de Fator Estimulador de Colônias de Macrófagos/genética , Receptor de Fator Estimulador de Colônias de Macrófagos/imunologia , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/imunologia , Infecções por Orthomyxoviridae/imunologia , Hematopoese/imunologia , Células Progenitoras de Granulócitos e Macrófagos/imunologia , Streptococcus pneumoniae/imunologia , Infecções Pneumocócicas/imunologia
5.
Int J Mol Sci ; 25(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38203741

RESUMO

Male gametophyte development in plants relies on the functions of numerous genes, whose expression is regulated by transcription factors (TFs), non-coding RNAs, hormones, and diverse environmental stresses. Several excellent reviews are available that address the genes and enzymes associated with male gametophyte development, especially pollen wall formation. Growing evidence from genetic studies, transcriptome analysis, and gene-by-gene studies suggests that TFs coordinate with epigenetic machinery to regulate the expression of these genes and enzymes for the sequential male gametophyte development. However, very little summarization has been performed to comprehensively review their intricate regulatory roles and discuss their downstream targets and upstream regulators in this unique process. In the present review, we highlight the research progress on the regulatory roles of TF families in the male gametophyte development of flowering plants. The transcriptional regulation, epigenetic control, and other regulators of TFs involved in male gametophyte development are also addressed.


Assuntos
Magnoliopsida , Fatores de Transcrição , Humanos , Fatores de Transcrição/genética , Epigenômica , Perfilação da Expressão Gênica , Pólen/genética
6.
Prostate ; 83(10): 950-961, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37074030

RESUMO

BACKGROUND: Prostate cancer is the second most common cancer type and the second most common cancer-related cause of death in men. Cabazitaxel, a next-generation taxane, shows favorable toxicity profile and is effective in docetaxel-resistant tumors. Despite initial responses, in most cases, prostate cancer patients acquire resistance to cabazitaxel. There is a need to identify molecular markers that can monitor and predict treatment response. METHODS: We performed transcriptional exosome profiling (Human Transcriptome Array-HTA 2.0) from the plasma of 19 patients with castration-resistant prostate cancer at baseline and in patients after one cycle of cabazitaxel (C1). The patients were stratified in two groups (responders and nonresponders) according to their clinical response to cabazitaxel. Gene set enrichment analysis and ingenuity pathway analysis platforms were used for gene and pathway analysis. RESULTS: We detected molecular differences in the exosomes from two groups of patients (nonresponders vs. responders) at baseline in pathways related to prostate cancer, oncogenic signaling, cytoskeleton, and immune system. In nonresponders, we found enrichment of cytoskeleton related gene (Stathmin-1 and ITSN1) that have been associated with resistance to cabazitaxel. Monitoring of exosomal transcripts after the first cycle of treatment revealed changes in pathways associated with response to treatment. CONCLUSIONS: Sequential transcriptional profiling of plasma-derived exosomes reveals differential expression of genes that may reflect resistance to cabazitaxel treatment and therapy response.


Assuntos
Exossomos , Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Transcriptoma , Exossomos/genética , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Taxoides/farmacologia , Taxoides/uso terapêutico , Resultado do Tratamento
7.
Cancer ; 128(9): 1826-1831, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35253202

RESUMO

BACKGROUND: Smoking contributes to the top 3 deadliest cancers, cancers of the lung, colon, and pancreas, which account for nearly 40% of all cancer-related deaths in the United States. Despite historicly low smoking rates, substantial disparities remain among people with mental health conditions and substance use disorders (SUDs). METHODS: The study examined the prevalence of smoking among adults from underserved communities who are served at federally qualified health centers through an analysis of the 2014 Health Center Patient Survey. Furthermore, the study assessed associations of smoking with co-occurring mental health conditions and SUDs among adult smokers (n = 1735). RESULTS: The prevalence of smoking among health center patients was 28.1%. Among current smokers, 59.1% had depression and 45.4% had generalized anxiety. Non-Hispanic Black smokers had more than 2 times the odds of reporting SUDs (adjusted odds ratio [aOR], 2.13; 95% confidence interval [CI], 1.06-4.30). Individuals at or below 100% of the federal poverty level had more than 2 times the odds of having mental health conditions (aOR, 2.55; 95% CI, 1.58-4.11), and those who were unemployed had more than 3 times the odds for SUDs (aOR, 3.21; 95% CI, 1.27-8.10). CONCLUSIONS: The prevalence of smoking in underserved communities is nearly double the national prevalence. In addition, the study underscores important socioeconomic determinants of health in smoking cessation behavior and the marked disparities among individuals with mental health conditions and SUDs. Finally, the findings illuminate the unique need for tailored treatments supporting cancer prevention care to address challenges confronted by vulnerable populations.


Assuntos
Transtornos Mentais , Neoplasias , Transtornos Relacionados ao Uso de Substâncias , Adulto , Humanos , Transtornos Mentais/epidemiologia , Saúde Mental , Neoplasias/epidemiologia , Prevalência , Fumar/epidemiologia , Transtornos Relacionados ao Uso de Substâncias/epidemiologia , Estados Unidos/epidemiologia
8.
Ecotoxicol Environ Saf ; 239: 113666, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35605332

RESUMO

Hydrogen sulfide (H2S), a highly toxic gas, has become a polluting gas that cannot be ignored, while H2S exposure results in acute or chronic poisoning or even death in humans or animals and plants, but the relevant mechanisms remain poorly understood. In this study, 9-day-old zebrafish larvae were exposed continuously to culture medium containing 30 µM survival rate was counted on H2S, and our results indicated that H2S exposure increased intracellular ROS, Ca2+, NO and MDA contents and decreased SOD activity, meaning that H2S caused oxidative stress in embryo-larval stages of zebrafish. Furthermore, we found that transgenic zebrafish (cms Tg/+ AB) displayed a lower fluorescence intensity, and cytochrome c oxidase (COX) activity and JC-1 monomer fluorescence ratio increased under H2S treatment conditions. These findings indicated that H2S caused mitochondrial dysfunction. Moreover, in this experiment, after H2S treatment, the increase of apoptotic cells, activity of caspase 3 and transcription of typical apoptosis-associated genes including BCL2 associated agonist of cell death (Bad), and BCL2 associated X apoptosis (Baxa) and so on were found, which suggested that H2S caused apoptosis in zebrafish larvae. Therefore, our data meant that H2S-traggered oxidative stress mediate mitochondrial dysfunction, thus triggering apoptosis. In conclusion, oxidative stress triggered H2S-induced apoptosis via mitochondria pathway in embryo-larval stages of zebrafish.


Assuntos
Apoptose , Sulfeto de Hidrogênio , Mitocôndrias , Estresse Oxidativo , Animais , Sulfeto de Hidrogênio/efeitos adversos , Larva/metabolismo , Mitocôndrias/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Peixe-Zebra/metabolismo
9.
Int J Mol Sci ; 23(22)2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36430307

RESUMO

Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer, accounting for about 90% of cases. Sorafenib, lenvatinib, and the combination of atezolizumab and bevacizumab are considered first-line treatments for advanced HCC. However, clinical application of these drugs has also caused some adverse reactions such as hypertension, elevated aspartate aminotransferases, and proteinuria. At present, natural products and their derivatives have drawn more and more attention due to less side effects as cancer treatments. Isothiocyanates (ITCs) are one type of hydrolysis products from glucosinolates (GLSs), secondary plant metabolites found exclusively in cruciferous vegetables. Accumulating evidence from encouraging in vitro and in vivo animal models has demonstrated that ITCs have multiple biological activities, especially their potentially health-promoting activities (antibacterial, antioxidant, and anticarcinogenic effects). In this review, we aim to comprehensively summarize the chemopreventive, anticancer, and chemosensitizative effects of ITCs on HCC, and explain the underlying molecular mechanisms.


Assuntos
Anticarcinógenos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Anticarcinógenos/farmacologia , Anticarcinógenos/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Isotiocianatos/farmacologia , Isotiocianatos/uso terapêutico , Isotiocianatos/metabolismo
10.
Int J Mol Sci ; 23(12)2022 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35743022

RESUMO

Arabinogalactan proteins (AGPs) belong to a family of glycoproteins that are widely present in plants. AGPs are mostly composed of a protein backbone decorated with complex carbohydrate side chains and are usually anchored to the plasma membrane or secreted extracellularly. A trickle of compelling biochemical and genetic evidence has demonstrated that AGPs make exciting candidates for a multitude of vital activities related to plant growth and development. However, because of the diversity of AGPs, functional redundancy of AGP family members, and blunt-force research tools, the precise functions of AGPs and their mechanisms of action remain elusive. In this review, we put together the current knowledge about the characteristics, classification, and identification of AGPs and make a summary of the biological functions of AGPs in multiple phases of plant reproduction and developmental processes. In addition, we especially discuss deeply the potential mechanisms for AGP action in different biological processes via their impacts on cellulose synthesis and deposition based on previous studies. Particularly, five hypothetical models that may explain the AGP involvement in cellulose synthesis and deposition during plant cell wall biogenesis are proposed. AGPs open a new avenue for understanding cellulose synthesis and deposition in plants.


Assuntos
Fenômenos Biológicos , Proteínas de Plantas , Membrana Celular/metabolismo , Parede Celular/metabolismo , Celulose/metabolismo , Mucoproteínas , Proteínas de Plantas/genética , Plantas/metabolismo
11.
BMC Plant Biol ; 21(1): 254, 2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-34082704

RESUMO

BACKGROUND: As an important subfamily of arabinogalactan proteins (AGPs), fasciclin-like AGPs (FLAs) contribute to various aspects of growth, development and adaptation, yet their function remains largely elusive. Despite the diversity of FLAs, only two members, Arabidopsis FLA3 and rice MTR1, are reported to be involved in sexual reproduction. In this study, another Arabidopsis FLA-encoding gene, FLA14, was identified, and its role was investigated. RESULTS: Arabidopsis FLA14 was found to be a pollen grain-specific gene. Expression results from fusion with green fluorescent protein showed that FLA14 was localized along the cell membrane and in Hechtian strands. A loss-of-function mutant of FLA14 showed no discernible defects during male gametogenesis, but precocious pollen germination occurred inside the mature anthers under high moisture conditions. Overexpression of FLA14 caused 39.2% abnormal pollen grains with a shrunken and withered appearance, leading to largely reduced fertility with short mature siliques and lower seed set. Cytological and ultramicroscopic observation showed that ectopic expression of FLA14 caused disruption at the uninucleate stage, resulting in either collapsed pollen with absent intine or pollen of normal appearance but with a thickened intine. CONCLUSIONS: Taken together, our data suggest a role for FLA14 in pollen development and preventing premature pollen germination inside the anthers under high relative humidity in Arabidopsis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Ligadas por GPI/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Pólen/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Membrana Celular , Proteínas Ligadas por GPI/genética , Plantas Geneticamente Modificadas , Pólen/genética , Transporte Proteico , Água
12.
J Virol ; 94(4)2020 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-31776277

RESUMO

The strongest evidence of the oncogenicity of Epstein-Barr virus (EBV) in vitro is its ability to immortalize human primary B lymphocytes into lymphoblastoid cell lines (LCLs). Yet the underlying mechanisms explaining how the virus tempers the growth program of the host cells have not been fully elucidated. The mitogen-activated protein kinases (MAPKs) are implicated in many cellular processes and are constitutively activated in LCLs. We questioned the expression and regulation of the dual-specificity phosphatases (DUSPs), the main negative regulator of MAPKs, during EBV infection and immortalization. Thirteen DUSPs, including 10 typical and 3 atypical types of DUSPs, were tested. Most of them were downregulated after EBV infection. Here, a role of viral oncogene latent membrane protein 1 (LMP1) in limiting DUSP6 and DUSP8 expression was identified. Using MAPK inhibitors, we found that LMP1 activates extracellular signal-regulated kinase (ERK) or p38 to repress the expression of DUSP6 and DUSP8, with corresponding substrate specificity. Morphologically, overexpression of DUSP6 and DUSP8 attenuates the ability of EBV-immortalized LCL cells to clump together. Mechanistically, apoptosis induced by restoring DUSP6 and DUSP8 in LCLs indicated a novel mechanism for LMP1 to provide a survival signal during EBV immortalization. Collectively, this report provides the first description of the interplay between EBV genes and DUSPs and contributes considerably to the interpretation of MAPK regulation in EBV immortalization.IMPORTANCE Infections by the ubiquitous Epstein-Barr virus (EBV) are associated with a wide spectrum of lymphomas and carcinomas. It has been well documented that activation levels of MAPKs are found in cancer cells to translate various external or intrinsic stimuli into cellular responses. Physiologically, the dual-specificity phosphates (DUSPs) exhibit great ability in regulating MAPK activities with respect to their capability of dephosphorylating MAPKs. In this study, we found that DUSPs were generally downregulated after EBV infection. EBV oncogenic latent membrane protein 1 (LMP1) suppressed DUSP6 and DUSP8 expression via MAPK pathway. In this way, LMP1-mediated MAPK activation was a continuous process. Furthermore, DUSP downregulation was found to contribute greatly to prevent apoptosis of EBV-infected cells. To sum up, this report sheds light on a novel molecular mechanism explaining how EBV maintains the unlimited proliferation status of the immortalized cells and provides a new link to understand EBV-induced B cell survival.


Assuntos
Fosfatases de Especificidade Dupla/genética , Herpesvirus Humano 4/metabolismo , Proteínas da Matriz Viral/metabolismo , Apoptose/genética , Linfócitos B/virologia , Linhagem Celular Tumoral , Fosfatases de Especificidade Dupla/metabolismo , Infecções por Vírus Epstein-Barr/virologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Genes Virais/genética , Humanos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Cultura Primária de Células , Proteínas da Matriz Viral/fisiologia , Proteínas Virais/metabolismo , Latência Viral/genética , Latência Viral/fisiologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
13.
Int J Hyperthermia ; 38(1): 650-662, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33882773

RESUMO

BACKGROUND: Metastatic prostate cancer in bone is difficult to treat as the tumor cells are relatively resistant to hormonal or chemotherapies when compared to primary prostate cancer. Irreversible electroporation (IRE) is a minimally invasive ablation procedure that has potential applications in the management of prostate cancer in bone. However, a common limitation of IRE is tumor recurrence, which arises from incomplete ablation that allows remaining cancer cells to proliferate. In this study, we combined IRE with radium-223 (Ra-223), a bone-seeking radionuclide that emits short track length alpha particles and thus is associated with reduced damage to the bone marrow and evaluated the impact of the combination treatment on bone-forming prostate cancer tumors. METHODS: The antitumor activity of IRE and Ra-223 as single agents and in combination was tested in vitro against three bone morphogenetic protein 4 (BMP4)-expressing prostate cancer cell lines (C4-2B-BMP4, Myc-CaP-BMP4, and TRAMP-C2-BMP4). Similar evaluation was performed in vivo using a bone-forming C4-2B-BMP4 tumor model in nude mice. RESULTS: IRE and Ra-223 as monotherapy inhibited prostate cancer cell proliferation in vitro, and their combination resulted in significant reduction in cell viability compared to monotherapy. In vivo evaluation revealed that IRE with single-dose administration of Ra-233, compared to IRE alone, reduced the rate of tumor recurrence by 40% following initial apparent complete ablation and decreased the rate of proliferation of incompletely ablated tumor as quantified in Ki-67 staining (53.58 ± 16.0% for IRE vs. 20.12 ± 1.63%; for IRE plus Ra-223; p = 0.004). Histological analysis qualitatively showed the enhanced killing of tumor cells adjacent to bone by Ra-223 compared to those treated with IRE alone. CONCLUSION: IRE in combination with Ra-223, which enhanced the destruction of cancer cells that are adjacent to bone, resulted in reduction of tumor recurrence through improved clearance of proliferative cells in the tumor region.


Assuntos
Neoplasias da Próstata , Rádio (Elemento) , Animais , Eletroporação , Humanos , Masculino , Camundongos , Camundongos Nus , Recidiva Local de Neoplasia , Neoplasias da Próstata/radioterapia , Rádio (Elemento)/uso terapêutico
14.
Mol Cell ; 52(3): 325-39, 2013 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-24095281

RESUMO

Active metabolism regulates oocyte cell death via calcium/calmodulin-dependent protein kinase II (CaMKII)-mediated phosphorylation of caspase-2, but the link between metabolic activity and CaMKII is poorly understood. Here we identify coenzyme A (CoA) as the key metabolic signal that inhibits Xenopus laevis oocyte apoptosis by directly activating CaMKII. We found that CoA directly binds to the CaMKII regulatory domain in the absence of Ca(2+) to activate CaMKII in a calmodulin-dependent manner. Furthermore, we show that CoA inhibits apoptosis not only in X. laevis oocytes but also in Murine oocytes. These findings uncover a direct mechanism of CaMKII regulation by metabolism and further highlight the importance of metabolism in preserving oocyte viability.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Coenzima A/metabolismo , Oócitos/metabolismo , Xenopus laevis/metabolismo , Animais , Apoptose/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Caspase 2/metabolismo , Sobrevivência Celular/genética , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Oócitos/crescimento & desenvolvimento , Fosforilação/genética , Ligação Proteica , Transdução de Sinais , Ativação Transcricional , Xenopus laevis/crescimento & desenvolvimento
15.
Int J Mol Sci ; 22(23)2021 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-34884948

RESUMO

Arabinogalactan proteins (AGPs) are a superfamily of hydroxyproline-rich glycoproteins that are massively glycosylated, widely implicated in plant growth and development. No comprehensive analysis of the AGP gene family has been performed in Chinese cabbage (Brassica rapa ssp. chinensis). Here, we identified a total of 293 putative AGP-encoding genes in B. rapa, including 25 classical AGPs, three lysine-rich AGPs, 30 AG-peptides, 36 fasciclin-like AGPs (FLAs), 59 phytocyanin-like AGPs, 33 xylogen-like AGPs, 102 other chimeric AGPs, two non-classical AGPs and three AGP/extensin hybrids. Their protein structures, phylogenetic relationships, chromosomal location and gene duplication status were comprehensively analyzed. Based on RNA sequencing data, we found that 73 AGP genes were differentially expressed in the floral buds of the sterile and fertile plants at least at one developmental stage in B. rapa, suggesting a potential role of AGPs in male reproductive development. We further characterized BrFLA2, BrFLA28 and BrFLA32, three FLA members especially expressed in anthers, pollen grains and pollen tubes. BrFLA2, BrFLA28 and BrFLA32 are indispensable for the proper timing of pollen germination under high relative humidity. Our study greatly extends the repertoire of AGPs in B. rapa and reveals a role for three members of the FLA subfamily in pollen germination.


Assuntos
Brassica rapa/fisiologia , Perfilação da Expressão Gênica/métodos , Mucoproteínas/genética , Brassica rapa/genética , Clonagem Molecular , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Germinação , Filogenia , Infertilidade das Plantas , Proteínas de Plantas/genética , Análise de Sequência de RNA
16.
J Cell Mol Med ; 23(4): 2863-2871, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30729676

RESUMO

Obesity is associated with significant microvascular complications including renal injuries and may induce end-stage renal disease. Emerging studies have demonstrated microRNAs (miRNAs) are potential mediators in the pathophysiological process of nephropathy. The present study aimed to investigate the role of miR-802 in obesity-related nephropathy and potential molecular mechanisms. Through utilizing obese mouse model and human subjects, we explored the therapeutic benefits and clinical application of miR-802 in protecting against nephropathy. Renal miR-802 level was positively correlated with functional parameters, including blood urea nitrogen and creatinine in obese mice. Specific silencing of renal miR-802 improved high fat diet (HFD)-induced renal dysfunction, structural disorders and fibrosis. The up-regulated inflammatory response and infiltrated macrophages were also significantly decreased in miR-802 inhibitor-treated obese mice. Mechanistically, miR-802 directly bond to 3'-UTR of NF-κB-repressing factor (NRF) and suppressed its expression. In clinical study, the circulating miR-802 level was significantly increased in obese subjects, and positively correlated with plasma creatinine level but negatively correlated with creatinine clearance. Taken together, our findings provided evidence that miR-802/NRF signalling was an important pathway in mediating obesity-related nephropathy. It is a possible useful clinical approach of treating miR-802 inhibitor to combat nephropathy.


Assuntos
Modelos Animais de Doenças , Regulação da Expressão Gênica , Nefropatias/etiologia , MicroRNAs/genética , Obesidade/complicações , Proteínas Repressoras/metabolismo , Animais , Dieta Hiperlipídica/efeitos adversos , Humanos , Nefropatias/metabolismo , Nefropatias/patologia , Masculino , Camundongos , Camundongos Obesos , NF-kappa B/genética , NF-kappa B/metabolismo , Obesidade/fisiopatologia , Proteínas Repressoras/genética , Transdução de Sinais
17.
Plant J ; 94(1): 60-76, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29385650

RESUMO

Arabinogalactan proteins (AGPs) are extensively glycosylated hydroxyproline-rich glycoproteins ubiquitous in all plant tissues and cells. AtAGP6 and AtAGP11, the only two functionally known pollen-specific classical AGP encoding genes in Arabidopsis, are reported to have redundant functions in microspore development. BcMF18 and BcMF8 isolated from Brassica campestris are the orthologues of AtAGP6 and AtAGP11, respectively. In contrast to the functional redundancy of AtAGP6 and AtAGP11, single-gene disruption of BcMF8 led to deformed pollen grains with abnormal intine development and ectopic aperture formation in B. campestris. Here, we further explored the action of BcMF18 and its relationship with BcMF8. BcMF18 was specifically expressed in pollen during the late stages of microspore development. Antisense RNA transgenic lines with BcMF18 reduction resulted in aberrant pollen grains with abnormal cellulose distribution, lacking intine, cytoplasm and nuclei. Transgenic plants with repressive expression of both BcMF8 and BcMF18 showed a hybrid phenotype, expressing a mixture of the phenotypes of the single gene knockdown plant lines. In addition, we identified functional diversity between BcMF18/BcMF8 and AtAGP6/AtAGP11, mainly reflected by the specific contribution of BcMF18 and BcMF8 to pollen wall formation. These results suggest that, unlike the orthologous genes AtAGP6 and AtAGP11 in Arabidopsis, BcMF18 and BcMF8 are both integral to pollen biogenesis in B. campestris, acting through independent pathways during microspore development.


Assuntos
Brassica/crescimento & desenvolvimento , Galactanos/metabolismo , Glicoproteínas/fisiologia , Proteínas de Plantas/fisiologia , Pólen/crescimento & desenvolvimento , Brassica/metabolismo , Técnicas de Silenciamento de Genes , Glicoproteínas/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Pólen/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Alinhamento de Sequência
18.
Plant J ; 96(1): 203-222, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29975432

RESUMO

The importance of long non-coding RNAs (lncRNAs) in plant development has been established, but a systematic analysis of lncRNAs expressed during pollen development and fertilization has been elusive. We performed a time series of RNA-seq experiments at five developmental stages during pollen development and three different time points after pollination in Brassica rapa and identified 12 051 putative lncRNAs. A comprehensive view of dynamic lncRNA expression networks underpinning pollen development and fertilization was provided. B. rapa lncRNAs share many common characteristics of lncRNAs: relatively short length, low expression but specific in narrow time windows, and low evolutionary conservation. Gene modules and key lncRNAs regulating reproductive development such as exine formation were uncovered. Forty-seven cis-acting lncRNAs and 451 trans-acting lncRNAs were revealed to be highly coexpressed with their target protein-coding genes. Of particular importance are the discoveries of 14 lncRNAs that were highly coexpressed with 10 function-known pollen-associated coding genes. Fifteen lncRNAs were predicted as endogenous target mimics for 13 miRNAs, and two lncRNAs were proved to be functional target mimics for miR160 after experimental verification and shown to function in pollen development. Our study provides the systematic identification of lncRNAs during pollen development and fertilization in B. rapa and forms the foundation for future genetic, genomic, and evolutionary studies.


Assuntos
Brassica rapa/genética , Pólen/crescimento & desenvolvimento , RNA Longo não Codificante/genética , RNA de Plantas/genética , Brassica rapa/fisiologia , Fertilização/genética , Fertilização/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica de Plantas/genética , RNA Longo não Codificante/fisiologia , RNA de Plantas/fisiologia
19.
BMC Genomics ; 20(1): 264, 2019 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-30943898

RESUMO

BACKGROUND: Genic male sterility (GMS) line is an important approach to utilize heterosis in Brassica rapa, one of the most widely cultivated vegetable crops in Northeast Asia. However, the molecular genetic mechanisms of GMS remain to be largely unknown. RESULTS: Detailed phenotypic observation of 'Bcajh97-01A/B', a B. rapa genic male sterile AB line in this study revealed that the aberrant meiotic cytokinesis and premature tapetal programmed cell death occurring in the sterile line ultimately resulted in microspore degeneration and pollen wall defect. Further gene expression profile of the sterile and fertile floral buds of 'Bcajh97-01A/B' at five typical developmental stages during pollen development supported the result of phenotypic observation and identified stage-specific genes associated with the main events associated with pollen wall development, including tapetum development or functioning, callose metabolism, pollen exine formation and cell wall modification. Additionally, by using ChIP-sequencing, the genomic and gene-level distribution of trimethylated histone H3 lysine 4 (H3K4) and H3K27 were mapped on the fertile floral buds, and a great deal of pollen development-associated genes that were covalently modified by H3K4me3 and H3K27me3 were identified. CONCLUSIONS: Our study provids a deeper understanding into the gene expression and regulation network during pollen development and pollen wall formation in B. rapa, and enabled the identification of a set of candidate genes for further functional annotation.


Assuntos
Brassica rapa/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Pólen/fisiologia , Brassica rapa/crescimento & desenvolvimento , Brassica rapa/metabolismo , Imunoprecipitação da Cromatina , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Infertilidade das Plantas , Proteínas de Plantas/metabolismo , Pólen/genética , Transcriptoma
20.
Int J Mol Sci ; 20(19)2019 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-31569708

RESUMO

Male-sterile plants provide an important breeding tool for the heterosis of hybrid crops, such as Brassicaceae. In the last decade, circular RNAs (circRNAs), as a novel class of covalently closed and single-stranded endogenous non-coding RNAs (ncRNAs), have received much attention because of their functions as "microRNA (miRNA) sponges" and "competing endogenous RNAs" (ceRNAs). However, the information about circRNAs in the regulation of male-sterility and anther development is limited. In this study, we established the Polima cytoplasm male sterility (CMS) line "Bcpol97-05A", and the fertile line, "Bcajh97-01B", in Brassica campestris L. ssp. chinensis Makino, syn. B. rapa ssp. chinensis, and performed RNA expression profiling comparisons between the flower buds of the sterile line and fertile line by whole-transcriptome sequencing. A total of 31 differentially expressed (DE) circRNAs, 47 DE miRNAs, and 4779 DE mRNAs were identified. By using Cytoscape, the miRNA-mediated regulatory network and ceRNA network were constructed, and the circRNA A02:23507399|23531438 was hypothesized to be an important circRNA regulating anther development at the post-transcriptional level. The gene ontology (GO) analysis demonstrated that miRNAs and circRNAs could regulate the orderly secretion and deposition of cellulose, sporopollenin, pectin, and tryphine; the timely degradation of lipids; and the programmed cell death (PCD) of tapetum cells, which play key roles in anther development. Our study revealed a new circRNA-miRNA-mRNA network, which is involved in the anther development of B. campestris, which enriched the understanding of CMS in flowering plants, and laid a foundation for further study on the functions of circRNAs and miRNAs during anther development.


Assuntos
Brassica/genética , Flores/genética , Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , RNA Circular/genética , RNA Mensageiro/genética , Transcriptoma , Redes Reguladoras de Genes , Fenótipo , Desenvolvimento Vegetal/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA