Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
FASEB J ; 38(7): e23597, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38581235

RESUMO

Sepsis is a life-threatening condition that occurs when the body responds to an infection but subsequently triggers widespread inflammation and impaired blood flow. These pathologic responses can rapidly cause multiple organ dysfunction or failure either one by one or simultaneously. The fundamental common mechanisms involved in sepsis-induced multiple organ dysfunction remain unclear. Here, employing quantitative global and phosphoproteomics, we examine the liver's temporal proteome and phosphoproteome changes after moderate sepsis induced by cecum ligation and puncture. In total, 4593 global proteins and 1186 phosphoproteins according to 3275 phosphosites were identified. To characterize the liver-kidney comorbidity after sepsis, we developed a mathematical model and performed cross-analyses of liver and kidney proteome data obtained from the same set of mice. Beyond immune response, we showed the commonly disturbed pathways and key regulators of the liver-kidney comorbidity are linked to energy metabolism and consumption. Our data provide open resources to understand the communication between the liver and kidney as they work to fight infection and maintain homeostasis.


Assuntos
Proteoma , Sepse , Camundongos , Animais , Insuficiência de Múltiplos Órgãos/complicações , Insuficiência de Múltiplos Órgãos/patologia , Fígado/metabolismo , Rim/metabolismo , Sepse/metabolismo , Modelos Animais de Doenças
2.
PLoS Pathog ; 18(12): e1011020, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36542660

RESUMO

BACKGROUND: For almost a century, it has been recognized that influenza A virus (IAV) infection can promote the development of secondary bacterial infections (SBI) mainly caused by Streptococcus pneumoniae (Spn). Recent observations have shown that IAV is able to directly bind to the surface of Spn. To gain a foundational understanding of how direct IAV-Spn interaction alters bacterial biological fitness we employed combinatorial multiomic and molecular approaches. RESULTS: Here we show IAV significantly remodels the global transcriptome, proteome and phosphoproteome profiles of Spn independently of host effectors. We identified Spn surface proteins that interact with IAV proteins (hemagglutinin, nucleoprotein, and neuraminidase). In addition, IAV was found to directly modulate expression of Spn virulence determinants such as pneumococcal surface protein A, pneumolysin, and factors associated with antimicrobial resistance among many others. Metabolic pathways were significantly altered leading to changes in Spn growth rate. IAV was also found to drive Spn capsule shedding and the release of pneumococcal surface proteins. Released proteins were found to be involved in evasion of innate immune responses and actively reduced human complement hemolytic and opsonizing activity. IAV also led to phosphorylation changes in Spn proteins associated with metabolism and bacterial virulence. Validation of proteomic data showed significant changes in Spn galactose and glucose metabolism. Furthermore, supplementation with galactose rescued bacterial growth and promoted bacterial invasion, while glucose supplementation led to enhanced pneumolysin production and lung cell apoptosis. CONCLUSIONS: Here we demonstrate that IAV can directly modulate Spn biology without the requirement of host effectors and support the notion that inter-kingdom interactions between human viruses and commensal pathobionts can promote bacterial pathogenesis and microbiome dysbiosis.


Assuntos
Vírus da Influenza A , Influenza Humana , Infecções por Orthomyxoviridae , Humanos , Streptococcus pneumoniae/metabolismo , Vírus da Influenza A/genética , Virulência , Galactose/metabolismo , Multiômica , Proteômica , Influenza Humana/genética , Influenza Humana/complicações
3.
Circ Res ; 128(5): 570-584, 2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33501852

RESUMO

RATIONALE: Patients with and without cardiovascular diseases have been shown to be at risk of influenza-mediated cardiac complications. Recent clinical reports support the notion of a direct link between laboratory-confirmed influenza virus infections and adverse cardiac events. OBJECTIVE: Define the molecular mechanisms underlying influenza virus-induced cardiac pathogenesis after resolution of pulmonary infection and the role of necroptosis in this process. METHODS AND RESULTS: Hearts from wild-type and necroptosis-deficient (MLKL [mixed lineage kinase domain-like protein]-KO) mice were dissected 12 days after initial influenza A virus (IAV) infection when viral titers were undetectable in the lungs. Immunofluorescence microscopy and plaque assays showed presence of viable IAV particles in the myocardium without generation of interferon responses. Global proteome and phosphoproteome analyses using high-resolution accurate mass-based LC-MS/MS and label-free quantitation showed that the global proteome as well as the phosphoproteome profiles were significantly altered in IAV-infected mouse hearts in a strain-independent manner. Necroptosis-deficient mice had increased survival and reduced weight loss post-IAV infection, as well as increased antioxidant and mitochondrial function, indicating partial protection to IAV infection. These findings were confirmed in vitro by pretreatment of human and rat myocytes with antioxidants or necroptosis inhibitors, which blunted oxidative stress and mitochondrial damage after IAV infection. CONCLUSIONS: This study provides the first evidence that the cardiac proteome and phosphoproteome are significantly altered post-pulmonary influenza infection. Moreover, viral particles can persist in the heart after lung clearance, altering mitochondrial function and promoting cell death without active replication and interferon responses. Finally, our findings show inhibition of necroptosis or prevention of mitochondrial damage as possible therapeutic interventions to reduce cardiac damage during influenza infections. Graphic Abstract: A graphic abstract is available for this article.


Assuntos
Cardiopatias/metabolismo , Miócitos Cardíacos/metabolismo , Infecções por Orthomyxoviridae/metabolismo , Proteoma/metabolismo , Animais , Linhagem Celular , Cardiopatias/etiologia , Cardiopatias/virologia , Humanos , Vírus da Influenza A/patogenicidade , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/virologia , Necroptose , Infecções por Orthomyxoviridae/complicações , Estresse Oxidativo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Proteínas Quinases/genética , Proteoma/genética , Ratos
4.
J Org Chem ; 88(20): 14292-14302, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37768859

RESUMO

A series of calix[4]arenes with upper-rim sulfanylpropyl and p-methoxyphenylazo groups (compounds 8-10) were synthesized and found to be effective chromogenic sensors for selectively detecting Hg2+, Hg+, and Ag+ ions among 18 screened metal perchlorates. In comparison to previously reported diallyl- and dithioacetoxypropyl-substituted calix[4]arenes (5, 6, 14, 15, and 16) and the newly synthesized compound 7, the distal (5,17)-disulfanylpropyl-substituted di-p-methoxyphenylazocalix[4]arene 9 demonstrated superior performance with a limit of detection of 0.028 µM for Hg2+ ions in a chloroform/methanol (v/v = 399/1) cosolvent. Job's plot revealed 1:1 binding stoichiometry for all these upper-rim sulfanylpropyl- and p-methoxyphenylazo-substituted calix[4]arenes 8-10 with Hg2+ ions, and Benesi-Hildebrand plots from ultraviolet/visible (UV-vis) titration spectra were used for the determination of their association constants. Our findings indicated that the distal orientation of two p-methoxyphenylazo and two sulfanylpropyl groups in calix[4]arenes 8-10 is more favorable for binding Hg2+ ions than the proximal (5,11-) orientation; moreover, the adjacent sulfanylpropyl groups exhibited superior coordination as ligands compared to the allyl and thioacetoxypropyl groups. Notably, compounds 8-10 displayed a comparable trend in their association with Ag+ ions, albeit with 1 order of magnitude lower binding constants and a distinct binding mode compared to Hg2+ ions. UV-vis spectroscopy, Job's plots, high-resolution mass spectrometry, and 1H nuclear magnetic resonance titration studies are presented and discussed.

5.
J Virol ; 95(20): e0101021, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34319784

RESUMO

The host response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is poorly understood due to a lack of an animal model that recapitulates severe human disease. Here, we report a Syrian hamster model that develops progressive lethal pulmonary disease that closely mimics severe coronavirus disease 2019 (COVID-19). We evaluated host responses using a multi-omic, multiorgan approach to define proteome, phosphoproteome, and transcriptome changes. These data revealed both type I and type II interferon-stimulated gene and protein expression along with a progressive increase in chemokines, monocytes, and neutrophil-associated molecules throughout the course of infection that peaked in the later time points correlating with a rapidly developing diffuse alveolar destruction and pneumonia that persisted in the absence of active viral infection. Extrapulmonary proteome and phosphoproteome remodeling was detected in the heart and kidneys following viral infection. Together, our results provide a kinetic overview of multiorgan host responses to severe SARS-CoV-2 infection in vivo. IMPORTANCE The current pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has created an urgent need to understand the pathogenesis of this infection. These efforts have been impaired by the lack of animal models that recapitulate severe coronavirus disease 2019 (COVID-19). Here, we report a hamster model that develops severe COVID-19-like disease following infection with human isolates of SARS-CoV-2. To better understand pathogenesis, we evaluated changes in gene transcription and protein expression over the course of infection to provide an integrated multiorgan kinetic analysis of the host response to infection. These data reveal a dynamic innate immune response to infection and corresponding immune pathologies consistent with severe human disease. Altogether, this model will be useful for understanding the pathogenesis of severe COVID-19 and for testing interventions.


Assuntos
COVID-19/imunologia , COVID-19/metabolismo , Imunidade Inata , Proteoma , Transcriptoma , Animais , COVID-19/genética , COVID-19/virologia , Modelos Animais de Doenças , Ontologia Genética , Coração/virologia , Rim/metabolismo , Rim/virologia , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/patologia , Pulmão/virologia , Masculino , Mesocricetus , Miocárdio/metabolismo , Fosfoproteínas/metabolismo , Proteômica , SARS-CoV-2/genética , SARS-CoV-2/fisiologia , Índice de Gravidade de Doença , Carga Viral
6.
PLoS Pathog ; 16(8): e1008734, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32853279

RESUMO

AMPylation, the post-translational modification with adenosine monophosphate (AMP), is catalyzed by effector proteins from a variety of pathogens. Legionella pneumophila is thus far the only known pathogen that, in addition to encoding an AMPylase (SidM/DrrA), also encodes a deAMPylase, called SidD, that reverses SidM-mediated AMPylation of the vesicle transport GTPase Rab1. DeAMPylation is catalyzed by the N-terminal phosphatase-like domain of SidD. Here, we determined the crystal structure of full length SidD including the uncharacterized C-terminal domain (CTD). A flexible loop rich in aromatic residues within the CTD was required to target SidD to model membranes in vitro and to the Golgi apparatus within mammalian cells. Deletion of the loop (Δloop) or substitution of its aromatic phenylalanine residues rendered SidD cytosolic, showing that the hydrophobic loop is the primary membrane-targeting determinant of SidD. Notably, deletion of the two terminal alpha helices resulted in a CTD variant incapable of discriminating between membranes of different composition. Moreover, a L. pneumophila strain producing SidDΔloop phenocopied a L. pneumophila ΔsidD strain during growth in mouse macrophages and displayed prolonged co-localization of AMPylated Rab1 with LCVs, thus revealing that membrane targeting of SidD via its CTD is a critical prerequisite for its ability to catalyze Rab1 deAMPylation during L. pneumophila infection.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Membrana Celular/microbiologia , Legionella pneumophila/enzimologia , Doença dos Legionários/microbiologia , Monofosfato de Adenosina/metabolismo , Animais , Proteínas de Bactérias/genética , Feminino , Complexo de Golgi/metabolismo , Humanos , Legionella pneumophila/química , Legionella pneumophila/genética , Camundongos , Domínios Proteicos
7.
Mol Cell Proteomics ; 19(12): 2030-2047, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32963032

RESUMO

Sepsis-induced acute kidney injury (S-AKI) is the most common complication in hospitalized and critically ill patients, highlighted by a rapid decline of kidney function occurring a few hours or days after sepsis onset. Systemic inflammation elicited by microbial infections is believed to lead to kidney damage under immunocompromised conditions. However, although AKI has been recognized as a disease with long-term sequelae, partly because of the associated higher risk of chronic kidney disease (CKD), the understanding of kidney pathophysiology at the molecular level and the global view of dynamic regulations in situ after S-AKI, including the transition to CKD, remains limited. Existing studies of S-AKI mainly focus on deriving sepsis biomarkers from body fluids. In the present study, we constructed a mid-severity septic murine model using cecal ligation and puncture (CLP), and examined the temporal changes to the kidney proteome and phosphoproteome at day 2 and day 7 after CLP surgery, corresponding to S-AKI and the transition to CKD, respectively, by employing an ultrafast and economical filter-based sample processing method combined with the label-free quantitation approach. Collectively, we identified 2,119 proteins and 2950 phosphosites through multi-proteomics analyses. Among them, we identified an array of highly promising candidate marker proteins indicative of disease onset and progression accompanied by immunoblot validations, and further denoted the pathways that are specifically responsive to S-AKI and its transition to CKD, which include regulation of cell metabolism regulation, oxidative stress, and energy consumption in the diseased kidneys. Our data can serve as an enriched resource for the identification of mechanisms and biomarkers for sepsis-induced kidney diseases.


Assuntos
Injúria Renal Aguda/etiologia , Injúria Renal Aguda/metabolismo , Fosfoproteínas/metabolismo , Proteoma/metabolismo , Sepse/complicações , Animais , Biomarcadores/metabolismo , Ceco/patologia , Progressão da Doença , Inflamação/patologia , Rim/patologia , Cinética , Ligadura , Masculino , Camundongos Endogâmicos C57BL , Proteômica , Punções , Piroptose , Insuficiência Renal Crônica/etiologia , Insuficiência Renal Crônica/metabolismo
8.
Medicina (Kaunas) ; 58(3)2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35334536

RESUMO

Background and Objectives: Traditional assessment of the readiness for the weaning from the mechanical ventilator (MV) needs respiratory parameters in a spontaneous breath. Exempted from the MV disconnecting and manual measurements of weaning parameters, a prediction model based on parameters from MV and electronic medical records (EMRs) may help the assessment before spontaneous breath trials. The study aimed to develop prediction models using machine learning techniques with parameters from the ventilator and EMRs for predicting successful ventilator mode shifting in the medical intensive care unit. Materials and Methods: A retrospective analysis of 1483 adult patients with mechanical ventilators for acute respiratory failure in three medical intensive care units between April 2015 and October 2017 was conducted by machine learning techniques to establish the predicting models. The input candidate parameters included ventilator setting and measurements, patients' demographics, arterial blood gas, laboratory results, and vital signs. Several classification algorithms were evaluated to fit the models, including Lasso Regression, Ridge Regression, Elastic Net, Random Forest, Extreme Gradient Boosting (XGBoost), Support Vector Machine, and Artificial Neural Network according to the area under the Receiver Operating Characteristic curves (AUROC). Results: Two models were built to predict the success shifting from full to partial support ventilation (WPMV model) or from partial support to the T-piece trial (sSBT model). In total, 3 MV and 13 nonpulmonary features were selected for the WPMV model with the XGBoost algorithm. The sSBT model was built with 8 MV and 4 nonpulmonary features with the Random Forest algorithm. The AUROC of the WPMV model and sSBT model were 0.76 and 0.79, respectively. Conclusions: The weaning predictions using machine learning and parameters from MV and EMRs have acceptable performance. Without manual measurements, a decision-making system would be feasible for the continuous prediction of mode shifting when the novel models process real-time data from MV and EMRs.


Assuntos
Aprendizado de Máquina , Ventiladores Mecânicos , Adulto , Estudos de Viabilidade , Humanos , Unidades de Terapia Intensiva , Estudos Retrospectivos
9.
Microb Ecol ; 82(4): 1030-1046, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33155101

RESUMO

The human microbiome has been the focus of numerous research efforts to elucidate the pathogenesis of human diseases including cancer. Oral cancer mortality is high when compared with other cancers, as diagnosis often occurs during late stages. Its prevalence has increased in the USA over the past decade and accounts for over 40,000 new cancer patients each year. Additionally, oral cancer pathogenesis is not fully understood and is likely multifactorial. To unravel the relationships that are associated with the oral microbiome and their virulence factors, we used 16S rDNA and metagenomic sequencing to characterize the microbial composition and functional content in oral squamous cell carcinoma (OSCC) tumor tissue, non-tumor tissue, and saliva from 18 OSCC patients. Results indicate a higher number of bacteria belonging to the Fusobacteria, Bacteroidetes, and Firmicutes phyla associated with tumor tissue when compared with all other sample types. Additionally, saliva metaproteomics revealed a significant increase of Prevotella in five OSCC subjects, while Corynebacterium was mostly associated with ten healthy subjects. Lastly, we determined that there are adhesion and virulence factors associated with Streptococcus gordonii as well as from known oral pathogens belonging to the Fusobacterium genera found mostly in OSCC tissues. From these results, we propose that not only will the methods utilized in this study drastically improve OSCC diagnostics, but the organisms and specific virulence factors from the phyla detected in tumor tissue may be excellent biomarkers for characterizing disease progression.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Humanos , RNA Ribossômico 16S/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço , Fatores de Virulência/genética
10.
PLoS Pathog ; 14(2): e1006897, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29415051

RESUMO

The eukaryotic ubiquitylation machinery catalyzes the covalent attachment of the small protein modifier ubiquitin to cellular target proteins in order to alter their fate. Microbial pathogens exploit this post-translational modification process by encoding molecular mimics of E3 ubiquitin ligases, eukaryotic enzymes that catalyze the final step in the ubiquitylation cascade. Here, we show that the Legionella pneumophila effector protein RavN belongs to a growing class of bacterial proteins that mimic host cell E3 ligases to exploit the ubiquitylation pathway. The E3 ligase activity of RavN was located within its N-terminal region and was dependent upon interaction with a defined subset of E2 ubiquitin-conjugating enzymes. The crystal structure of the N-terminal region of RavN revealed a U-box-like motif that was only remotely similar to other U-box domains, indicating that RavN is an E3 ligase relic that has undergone significant evolutionary alteration. Substitution of residues within the predicted E2 binding interface rendered RavN inactive, indicating that, despite significant structural changes, the mode of E2 recognition has remained conserved. Using hidden Markov model-based secondary structure analyses, we identified and experimentally validated four additional L. pneumophila effectors that were not previously recognized to possess E3 ligase activity, including Lpg2452/SdcB, a new paralog of SidC. Our study provides strong evidence that L. pneumophila is dedicating a considerable fraction of its effector arsenal to the manipulation of the host ubiquitylation pathway.


Assuntos
Legionella pneumophila/enzimologia , Ubiquitina-Proteína Ligases/fisiologia , Sequência de Aminoácidos , Clonagem Molecular , Células HEK293 , Humanos , Legionella pneumophila/genética , Doença dos Legionários/genética , Doença dos Legionários/microbiologia , Modelos Moleculares , Conformação Proteica em alfa-Hélice , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/isolamento & purificação , Ubiquitinação/genética
11.
J Proteome Res ; 18(4): 1907-1915, 2019 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-30848925

RESUMO

Clinical biomarkers identified by shotgun proteomics require proteins in body fluids or tissues to be enzymatically digested before being separated and sequenced by liquid chromatography-tandem mass spectrometry. How well peptide signals can be resolved and detected is largely dependent on the quality of sample preparation. Conventional approaches such as in-gel, in-solution, and filter-based digestion, despite their extensive implementation by the community, become less appealing due to their unsatisfying protein/peptide recovery rate, lengthy sample processing, and/or lowcost-effectiveness. Suspension trapping has recently been demonstrated as an ultrafast approach for proteomic analysis. Here, for the first time, we extend its application to human salivary proteome analyses. In particular, we present a simple self-assembled glass fiber filter device which can be packed with minimal difficulty, is extremely cost-effective, and maintains the same performance as commercial filters. As a proof-of-principle, we analyzed the whole saliva from 8 healthy individuals as well as a cohort of 10 subjects of oral squamous cell carcinoma (OSCC) patients and non-OSCC subjects. Label-free quantification revealed surprisingly low interindividual variability and several known markers. Our study provides the first evidence of an easy-to-use and low-cost device for clinical proteomics as well as for general proteomic sample preparation.


Assuntos
Biomarcadores Tumorais/análise , Proteômica/instrumentação , Proteômica/métodos , Saliva/química , Carcinoma de Células Escamosas/diagnóstico , Desenho de Equipamento , Células HeLa , Humanos , Neoplasias Bucais/diagnóstico , Proteoma/análise , Proteoma/química
12.
J Cell Sci ; 130(12): 1985-1996, 2017 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-28476939

RESUMO

Pathogenic bacteria are in a constant battle for survival with their host. In order to gain a competitive edge, they employ a variety of sophisticated strategies that allow them to modify conserved host cell processes in ways that favor bacterial survival and growth. Ubiquitylation, the covalent attachment of the small modifier ubiquitin to target proteins, is such a pathway. Ubiquitylation profoundly alters the fate of a myriad of cellular proteins by inducing changes in their stability or function, subcellular localization or interaction with other proteins. Given the importance of ubiquitylation in cell development, protein homeostasis and innate immunity, it is not surprising that this post-translational modification is exploited by a variety of effector proteins from microbial pathogens. Here, we highlight recent advances in our understanding of the many ways microbes take advantage of host ubiquitylation, along with some surprising deviations from the canonical theme. The lessons learned from the in-depth analyses of these host-pathogen interactions provide a fresh perspective on an ancient post-translational modification that we thought was well understood.This article is part of a Minifocus on Ubiquitin Regulation and Function. For further reading, please see related articles: 'Mechanisms of regulation and diversification of deubiquitylating enzyme function' by Pawel Leznicki and Yogesh Kulathu (J. Cell Sci.130, 1997-2006). 'Cell scientist to watch - Mads Gyrd-Hansen' (J. Cell Sci.130, 1981-1983).


Assuntos
Bactérias/enzimologia , Fenômenos Fisiológicos Bacterianos , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina/metabolismo , Animais , Proteínas de Bactérias/metabolismo , Escherichia coli , Homeostase , Interações Hospedeiro-Patógeno , Humanos , Legionella , Camundongos , Plantas/microbiologia , Domínios Proteicos , Processamento de Proteína Pós-Traducional , Salmonella , Transdução de Sinais , Nicotiana , Ubiquitinação , Virulência , Xanthomonas campestris
13.
J Biol Chem ; 290(42): 25766-81, 2015 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-26316537

RESUMO

The facultative intracellular pathogen Legionella pneumophila, the causative agent of Legionnaires disease, infects and replicates within human alveolar macrophages. L. pneumophila delivers almost 300 effector proteins into the besieged host cell that alter signaling cascades and create conditions that favor intracellular bacterial survival. In order for the effectors to accomplish their intracellular mission, their activity needs to be specifically directed toward the correct host cell protein or target organelle. Here, we show that the L. pneumophila effector GobX possesses E3 ubiquitin ligase activity that is mediated by a central region homologous to mammalian U-box domains. Furthermore, we demonstrate that GobX exploits host cell S-palmitoylation to specifically localize to Golgi membranes. The hydrophobic palmitate moiety is covalently attached to a cysteine residue at position 175, which is part of an amphipathic α-helix within the C-terminal region of GobX. Site-directed mutagenesis of cysteine 175 or residues on the hydrophobic face of the amphipathic helix strongly attenuated palmitoylation and Golgi localization of GobX. Together, our study provides evidence that the L. pneumophila effector GobX exploits two post-translational modification pathways of host cells, ubiquitination and S-palmitoylation.


Assuntos
Complexo de Golgi/metabolismo , Legionella pneumophila/enzimologia , Ubiquitina-Proteína Ligases/metabolismo , Biocatálise , Transporte Proteico
15.
BMC Biotechnol ; 15: 25, 2015 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-25887558

RESUMO

BACKGROUND: Fragmentation at random nucleotide locations is an essential process for preparation of DNA libraries to be used on massively parallel short-read DNA sequencing platforms. Although instruments for physical shearing, such as the Covaris S2 focused-ultrasonicator system, and products for enzymatic shearing, such as the Nextera technology and NEBNext dsDNA Fragmentase kit, are commercially available, a simple and inexpensive method is desirable for high-throughput sequencing library preparation. MspJI is a recently characterised restriction enzyme which recognises the sequence motif CNNR (where R = G or A) when the first base is modified to 5-methylcytosine or 5-hydroxymethylcytosine. RESULTS: A semi-random enzymatic DNA amplicon fragmentation method was developed based on the unique cleavage properties of MspJI. In this method, random incorporation of 5-methyl-2'-deoxycytidine-5'-triphosphate is achieved through DNA amplification with DNA polymerase, followed by DNA digestion with MspJI. Due to the recognition sequence of the enzyme, DNA amplicons are fragmented in a relatively sequence-independent manner. The size range of the resulting fragments was capable of control through optimisation of 5-methyl-2'-deoxycytidine-5'-triphosphate concentration in the reaction mixture. A library suitable for sequencing using the Illumina MiSeq platform was prepared and processed using the proposed method. Alignment of generated short reads to a reference sequence demonstrated a relatively high level of random fragmentation. CONCLUSIONS: The proposed method may be performed with standard laboratory equipment. Although the uniformity of coverage was slightly inferior to the Covaris physical shearing procedure, due to efficiencies of cost and labour, the method may be more suitable than existing approaches for implementation in large-scale sequencing activities, such as bacterial artificial chromosome (BAC)-based genome sequence assembly, pan-genomic studies and locus-targeted genotyping-by-sequencing.


Assuntos
Proteínas de Bactérias/metabolismo , Enzimas de Restrição do DNA/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos , Agrobacterium/genética , Arabidopsis/genética , DNA Bacteriano/análise , DNA Bacteriano/genética , DNA de Plantas/análise , DNA de Plantas/genética , Nucleotídeos de Desoxicitosina , Técnicas de Genotipagem , Técnicas de Amplificação de Ácido Nucleico
16.
Chembiochem ; 16(15): 2183-90, 2015 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-26310519

RESUMO

The molecular logic gates that regulate gene circuits are necessarily intricate and highly regulated, particularly in the critical commitments necessary for pathogenesis. We now report simple AND and OR logic gates to be accessible within a single protein receptor. Pathogenesis by the bacterium Rhizobium radiobacter is mediated by a single histidine kinase, VirA, which processes multiple small molecule host signals (phenol and sugar). Mutagenesis analyses converged on a single signal integration node, and finer functional analyses revealed that a single residue could switch VirA from a functional AND logic gate to an OR gate where each of two signals activate independently. Host range preferences among natural strains of R. radiobacter correlate with these gate logic strategies. Although the precise mechanism for the signal integration node requires further analyses, long-range signal transmission through this histidine kinase can now be exploited for synthetic signaling circuits.


Assuntos
Agrobacterium tumefaciens/enzimologia , Agrobacterium tumefaciens/patogenicidade , Lógica , Proteínas Quinases/metabolismo , Agrobacterium tumefaciens/metabolismo , Carboidratos/química , Histidina Quinase , Estrutura Molecular , Fenóis/química , Fenóis/metabolismo , Proteínas Quinases/genética , Transdução de Sinais/genética
17.
J Clin Invest ; 134(13)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38713523

RESUMO

The smoothened (Smo) receptor facilitates hedgehog signaling between kidney fibroblasts and tubules during acute kidney injury (AKI). Tubule-derived hedgehog is protective in AKI, but the role of fibroblast-selective Smo is unclear. Here, we report that Smo-specific ablation in fibroblasts reduced tubular cell apoptosis and inflammation, enhanced perivascular mesenchymal cell activities, and preserved kidney function after AKI. Global proteomics of these kidneys identified extracellular matrix proteins, and nidogen-1 glycoprotein in particular, as key response markers to AKI. Intriguingly, Smo was bound to nidogen-1 in cells, suggesting that loss of Smo could affect nidogen-1 accessibility. Phosphoproteomics revealed that the 'AKI protector' Wnt signaling pathway was activated in these kidneys. Mechanistically, nidogen-1 interacted with integrin ß1 to induce Wnt in tubules to mitigate AKI. Altogether, our results support that fibroblast-selective Smo dictates AKI fate through cell-matrix interactions, including nidogen-1, and offers a robust resource and path to further dissect AKI pathogenesis.


Assuntos
Injúria Renal Aguda , Fibroblastos , Receptor Smoothened , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Injúria Renal Aguda/genética , Animais , Receptor Smoothened/metabolismo , Receptor Smoothened/genética , Camundongos , Fibroblastos/metabolismo , Fibroblastos/patologia , Via de Sinalização Wnt , Humanos , Camundongos Knockout , Microambiente Celular , Túbulos Renais/metabolismo , Túbulos Renais/patologia , Masculino , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética
18.
bioRxiv ; 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38529509

RESUMO

Brain metastasis of HER2+ breast cancer occurs in about 50% of all women with metastatic HER2+ breast cancer and confers poor prognosis for patients. Despite effective HER2-targeted treatments of peripheral HER2+ breast cancer with Trastuzumab +/-HER2 inhibitors, limited brain permeability renders these treatments inefficient for HER2+ breast cancer brain metastasis (BCBM). The scarcity of suitable patient-derived in-vivo models for HER2+ BCBM has compromised the study of molecular mechanisms that promote growth and therapeutic resistance in brain metastasis. We have generated and characterized new HER2+ BCBM cells (BCBM94) isolated from a patient HER2+ brain metastasis. Repeated hematogenic xenografting of BCBM94 consistently generated BCBM in mice. The clinically used receptor tyrosine kinase inhibitor (RTKi) Lapatinib blocked phosphorylation of all ErbB1-4 receptors and induced the intrinsic apoptosis pathway in BCBM94. Neuregulin-1 (NRG1), a ligand for ErbB3 and ErbB4 that is abundantly expressed in the brain, was able to rescue Lapatinib-induced apoptosis and clonogenic ability in BCBM94 and in HER2+ BT474. ErbB3 was essential to mediate the NRG1-induced survival pathway that involved PI3K-AKT signalling and the phosphorylation of BAD at serine 136 to prevent apoptosis. High throughput RTKi screening identified the brain penetrable Poziotinib as highly potent compound to reduce cell viability in HER2+ BCBM in the presence of NRG1. Successful in-vivo ablation of BCBM94- and BT474-derived HER2+ brain tumors was achieved upon two weeks of treatment with Poziotinib. MRI revealed BCBM remission upon poziotinib, but not with Lapatinib treatment. In conclusion, we have established a new patient-derived HER2+ BCBM in-vivo model and identified Poziotinib as highly efficacious RTKi with excellent brain penetrability that abrogated HER2+ BCBM brain tumors in our mouse models.

19.
Cell Rep ; 43(5): 114144, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38656874

RESUMO

The molecular mechanisms underlying seizure generation remain elusive, yet they are crucial for developing effective treatments for epilepsy. The current study shows that inhibiting c-Abl tyrosine kinase prevents apoptosis, reduces dendritic spine loss, and maintains N-methyl-d-aspartate (NMDA) receptor subunit 2B (NR2B) phosphorylated in in vitro models of excitotoxicity. Pilocarpine-induced status epilepticus (SE) in mice promotes c-Abl phosphorylation, and disrupting c-Abl activity leads to fewer seizures, increases latency toward SE, and improved animal survival. Currently, clinically used c-Abl inhibitors are non-selective and have poor brain penetration. The allosteric c-Abl inhibitor, neurotinib, used here has favorable potency, selectivity, pharmacokinetics, and vastly improved brain penetration. Neurotinib-administered mice have fewer seizures and improved survival following pilocarpine-SE induction. Our findings reveal c-Abl kinase activation as a key factor in ictogenesis and highlight the impact of its inhibition in preventing the insurgence of epileptic-like seizures in rodents and humans.


Assuntos
Pilocarpina , Proteínas Proto-Oncogênicas c-abl , Convulsões , Animais , Masculino , Camundongos , Apoptose/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Neurônios/patologia , Neurônios/metabolismo , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-abl/metabolismo , Proteínas Proto-Oncogênicas c-abl/antagonistas & inibidores , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico , Convulsões/patologia , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/tratamento farmacológico , Estado Epiléptico/patologia
20.
Ann Plast Surg ; 71 Suppl 1: S67-74, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24284744

RESUMO

Embryonic stem cells (ESCs) are pluripotent cells that can differentiate into various cell types, including keratinocyte-like cells, within suitable microniches. In this study, we aimed to investigate the effects of culture media, cell coculture, and a tissue-engineering biocomposite on the differentiation of mouse ESCs (MESCs) into keratinocyte-like cells and applied these cells to a surgical skin wound model. MESCs from BALB/c mice (ESC26GJ), which were transfected using pCX-EGFP expressing green fluorescence, were used to track MESC-derived keratinocytes. Weak expression of the keratinocyte early marker Cytokeratin 14 (CK-14) was observed up to 12 days when MESCs were cultured in a keratinocyte culture medium on tissue culture plastic and on a gelatin/collagen/polycaprolactone (GCP) biocomposite. MESCs cocultured with human keratinocyte cells (HKCs) also expressed CK-14, but did not express CK-14 when cocultured with human fibroblast cells (HFCs). Furthermore, CK-14 expression was observed when MESCs were cocultured by seeding HKCs or HFCs on the same or opposite side of the GCP biocomposite. The highest CK-14 expression was observed by seeding MESCs and HKCs on the same side of the GCP composite and with HFCs on the opposite side. To verify the effectiveness of wound healing in vivo, adipose-derived stem cells were applied to treat surgical wounds in nude mice. An obvious epidermis multilayer and better collagen deposition during wound healing were observed, as assessed by Masson staining. This study demonstrated the potential of keratinocyte-like differentiation from mesenchymal stem cells for use in promoting wound closure and skin regeneration.


Assuntos
Técnicas de Cocultura , Meios de Cultura , Queratinócitos/citologia , Engenharia Tecidual/métodos , Cicatrização/fisiologia , Animais , Diferenciação Celular , Fibroblastos/citologia , Humanos , Queratinócitos/metabolismo , Células-Tronco Mesenquimais/fisiologia , Camundongos , Camundongos Nus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA