Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Macromol Rapid Commun ; 37(22): 1795-1801, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27739218

RESUMO

Hydrogel microfibers have been considered as a potential biomaterial to spatiotemporally biomimic 1D native tissues such as nerves and muscles which are always assembled hierarchically and have anisotropic response to external stimuli. To produce facile hydrogel microfibers in a mathematical manner, a novel dynamic-crosslinking-spinning (DCS) method is demonstrated for direct fabrication of size-controllable fibers from poly(ethylene glycol diacrylate) oligomer in large scale, without microfluidic template and in a biofriendly environment. The diameter of fibers can be precisely controlled by adjusting the spinning parameters. Anisotropic swelling property is also dependent on inhomogeneous structure generated in spinning process. Comparing with bulk hydrogels, the resulting fibers exhibit superior rapid water adsorption property, which can be attributed to the large surface area/volume ratio of fiber. This novel DCS method is one-step technology suitable for large-scale production of anisotropic hydrogel fibers which has a promising application in the area such as biomaterials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA