Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Nat Cancer ; 5(5): 760-773, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38503896

RESUMO

Chimeric antigen receptor T cells have dramatically improved the treatment of hematologic malignancies. T cell antigen receptor (TCR)-based cell therapies are yet to achieve comparable outcomes. Importantly, chimeric antigen receptors not only target selected antigens but also reprogram T cell functions through the co-stimulatory pathways that they engage upon antigen recognition. We show here that a fusion receptor comprising the CD80 ectodomain and the 4-1BB cytoplasmic domain, termed 80BB, acts as both a ligand and a receptor to engage the CD28 and 4-1BB pathways, thereby increasing the antitumor potency of human leukocyte antigen-independent TCR (HIT) receptor- or TCR-engineered T cells and tumor-infiltrating lymphocytes. Furthermore, 80BB serves as a switch receptor that provides agonistic 4-1BB co-stimulation upon its ligation by the inhibitory CTLA4 molecule. By combining multiple co-stimulatory features in a single antigen-agnostic synthetic receptor, 80BB is a promising tool to sustain CD3-dependent T cell responses in a wide range of targeted immunotherapies.


Assuntos
Antígenos CD28 , Receptores de Antígenos de Linfócitos T , Receptores de Antígenos Quiméricos , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral , Humanos , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Antígenos CD28/imunologia , Animais , Camundongos , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/imunologia , Antígeno B7-1/imunologia , Linfócitos T/imunologia , Antígeno CTLA-4/imunologia , Linfócitos do Interstício Tumoral/imunologia , Imunoterapia Adotiva/métodos , Ativação Linfocitária/imunologia , Terapia Baseada em Transplante de Células e Tecidos/métodos
2.
Nat Biomed Eng ; 6(11): 1284-1297, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35941192

RESUMO

The production of autologous T cells expressing a chimaeric antigen receptor (CAR) is time-consuming, costly and occasionally unsuccessful. T-cell-derived induced pluripotent stem cells (TiPS) are a promising source for the generation of 'off-the-shelf' CAR T cells, but the in vitro differentiation of TiPS often yields T cells with suboptimal features. Here we show that the premature expression of the T-cell receptor (TCR) or a constitutively expressed CAR in TiPS promotes the acquisition of an innate phenotype, which can be averted by disabling the TCR and relying on the CAR to drive differentiation. Delaying CAR expression and calibrating its signalling strength in TiPS enabled the generation of human TCR- CD8αß+ CAR T cells that perform similarly to CD8αß+ CAR T cells from peripheral blood, achieving effective tumour control on systemic administration in a mouse model of leukaemia and without causing graft-versus-host disease. Driving T-cell maturation in TiPS in the absence of a TCR by taking advantage of a CAR may facilitate the large-scale development of potent allogeneic CD8αß+ T cells for a broad range of immunotherapies.


Assuntos
Células-Tronco Pluripotentes Induzidas , Receptores de Antígenos Quiméricos , Camundongos , Animais , Humanos , Linfócitos T , Células-Tronco Pluripotentes Induzidas/metabolismo , Receptores de Antígenos de Linfócitos T , Antígenos CD8/metabolismo , Receptores de Antígenos Quiméricos/metabolismo
3.
Nat Med ; 28(2): 345-352, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35027758

RESUMO

Chimeric antigen receptors (CARs) are receptors for antigen that direct potent immune responses. Tumor escape associated with low target antigen expression is emerging as one potential limitation of their efficacy. Here we edit the TRAC locus in human peripheral blood T cells to engage cell-surface targets through their T cell receptor-CD3 complex reconfigured to utilize the same immunoglobulin heavy and light chains as a matched CAR. We demonstrate that these HLA-independent T cell receptors (HIT receptors) consistently afford high antigen sensitivity and mediate tumor recognition beyond what CD28-based CARs, the most sensitive design to date, can provide. We demonstrate that the functional persistence of HIT T cells can be augmented by constitutive coexpression of CD80 and 4-1BBL. Finally, we validate the increased antigen sensitivity afforded by HIT receptors in xenograft mouse models of B cell leukemia and acute myeloid leukemia, targeting CD19 and CD70, respectively. Overall, HIT receptors are well suited for targeting cell surface antigens of low abundance.


Assuntos
Leucemia Mieloide Aguda , Receptores de Antígenos Quiméricos , Animais , Antígenos CD19 , Antígenos de Histocompatibilidade , Humanos , Imunoterapia Adotiva , Camundongos , Receptores de Antígenos de Linfócitos T , Receptores de Antígenos Quiméricos/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Mol Cancer Ther ; 19(10): 2089-2104, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32847974

RESUMO

The sole inhibitory Fcγ receptor CD32b (FcγRIIb) is expressed throughout B and plasma cell development and on their malignant counterparts. CD32b expression on malignant B cells is known to provide a mechanism of resistance to rituximab that can be ameliorated with a CD32b-blocking antibody. CD32b, therefore, represents an attractive tumor antigen for targeting with a monoclonal antibody (mAb). To this end, two anti-CD32b mAbs, NVS32b1 and NVS32b2, were developed. Their complementarity-determining regions (CDR) bind the CD32b Fc binding domain with high specificity and affinity while the Fc region is afucosylated to enhance activation of FcγRIIIa on immune effector cells. The NVS32b mAbs selectively target CD32b+ malignant cells and healthy B cells but not myeloid cells. They mediate potent killing of opsonized CD32b+ cells via antibody-dependent cellular cytotoxicity and phagocytosis (ADCC and ADCP) as well as complement-dependent cytotoxicity (CDC). In addition, NVS32b CDRs block the CD32b Fc-binding domain, thereby minimizing CD32b-mediated resistance to therapeutic mAbs including rituximab, obinutuzumab, and daratumumab. NVS32b mAbs demonstrate robust antitumor activity against CD32b+ xenografts in vivo and immunomodulatory activity including recruitment of macrophages to the tumor and enhancement of dendritic cell maturation in response to immune complexes. Finally, the activity of NVS32b mAbs on CD32b+ primary malignant B and plasma cells was confirmed using samples from patients with B-cell chronic lymphocytic leukemia (CLL) and multiple myeloma. The findings indicate the promising potential of NVS32b mAbs as a single agent or in combination with other mAb therapeutics for patients with CD32b+ malignant cells.


Assuntos
Linfoma de Células B/genética , Neoplasias de Plasmócitos/genética , Receptores de IgG/imunologia , Animais , Células CHO , Cricetulus , Humanos
6.
Expert Rev Clin Immunol ; 14(3): 197-206, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29465271

RESUMO

INTRODUCTION: Multiple myeloma (MM) is generally an incurable hematological malignancy with heterogeneous overall survival rates ranging from a few months to more than 10 years. Survival is especially poor for patients who developed disease that is refractory to immunomodulatory drugs and proteasome inhibitors. Areas covered: This review will discuss the importance of CD38-targeting antibodies for the treatment of MM patients to improve their outcome. Expert commentary: Intense immuno-oncological laboratory research has resulted in the development of functionally active monoclonal antibodies against cell surface markers present on MM cells. In this respect, CD38-targeting antibodies such as daratumumab, MOR202, and isatuximab, have high single agent activity in heavily pretreated MM patients by virtue of their pleiotropic mechanisms of action including Fc-dependent effector mechanisms and immunomodulatory activities. Importantly, CD38-targeting antibodies are well tolerated, with infusion reactions as most frequent adverse event. Altogether, this makes them attractive combination partners with other anti-MM agents. Daratumumab is already approved as monotherapy and in combination with lenalidomide-dexamethasone as well as bortezomib-dexamethasone in pretreated MM patients. Furthermore, results from studies evaluating CD38-targeting antibodies in newly diagnosed MM patients are also promising, indicating that CD38-targeting antibodies will be broadly used in MM, resulting in further improvements in survival.


Assuntos
ADP-Ribosil Ciclase 1/imunologia , Anticorpos Monoclonais/uso terapêutico , Antígenos de Neoplasias/imunologia , Imunoterapia/métodos , Mieloma Múltiplo/terapia , Animais , Anticorpos Monoclonais Humanizados , Dexametasona/uso terapêutico , Quimioterapia Combinada , Humanos , Reação no Local da Injeção , Terapia de Alvo Molecular , Mieloma Múltiplo/imunologia , Mieloma Múltiplo/mortalidade , Avaliação de Resultados da Assistência ao Paciente , Análise de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA