Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Neuroimage ; 290: 120575, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38479461

RESUMO

Investigation of neural mechanisms of real-time functional MRI neurofeedback (rtfMRI-nf) training requires an efficient study control approach. A common rtfMRI-nf study design involves an experimental group, receiving active rtfMRI-nf, and a control group, provided with sham rtfMRI-nf. We report the first study in which rtfMRI-nf procedure is controlled through counterbalancing training runs with active and sham rtfMRI-nf for each participant. Healthy volunteers (n = 18) used rtfMRI-nf to upregulate fMRI activity of an individually defined target region in the left dorsolateral prefrontal cortex (DLPFC) while performing tasks that involved mental generation of a random numerical sequence and serial summation of numbers in the sequence. Sham rtfMRI-nf was provided based on fMRI activity of a different brain region, not involved in these tasks. The experimental procedure included two training runs with the active rtfMRI-nf and two runs with the sham rtfMRI-nf, in a randomized order. The participants achieved significantly higher fMRI activation of the left DLPFC target region during the active rtfMRI-nf conditions compared to the sham rtfMRI-nf conditions. fMRI functional connectivity of the left DLPFC target region with the nodes of the central executive network was significantly enhanced during the active rtfMRI-nf conditions relative to the sham conditions. fMRI connectivity of the target region with the nodes of the default mode network was similarly enhanced. fMRI connectivity changes between the active and sham conditions exhibited meaningful associations with individual performance measures on the Working Memory Multimodal Attention Task, the Approach-Avoidance Task, and the Trail Making Test. Our results demonstrate that the counterbalanced active-sham study design can be efficiently used to investigate mechanisms of active rtfMRI-nf in direct comparison to those of sham rtfMRI-nf. Further studies with larger group sizes are needed to confirm the reported findings and evaluate clinical utility of this study control approach.


Assuntos
Neurorretroalimentação , Humanos , Neurorretroalimentação/métodos , Imageamento por Ressonância Magnética/métodos , Treino Cognitivo , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Mapeamento Encefálico/métodos
2.
Neuroimage ; 285: 120470, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38016527

RESUMO

Resting-state fMRI can be used to identify recurrent oscillatory patterns of functional connectivity within the human brain, also known as dynamic brain states. Alterations in dynamic brain states are highly likely to occur following pediatric mild traumatic brain injury (pmTBI) due to the active developmental changes. The current study used resting-state fMRI to investigate dynamic brain states in 200 patients with pmTBI (ages 8-18 years, median = 14 years) at the subacute (∼1-week post-injury) and early chronic (∼ 4 months post-injury) stages, and in 179 age- and sex-matched healthy controls (HC). A k-means clustering analysis was applied to the dominant time-varying phase coherence patterns to obtain dynamic brain states. In addition, correlations between brain signals were computed as measures of static functional connectivity. Dynamic connectivity analyses showed that patients with pmTBI spend less time in a frontotemporal default mode/limbic brain state, with no evidence of change as a function of recovery post-injury. Consistent with models showing traumatic strain convergence in deep grey matter and midline regions, static interhemispheric connectivity was affected between the left and right precuneus and thalamus, and between the right supplementary motor area and contralateral cerebellum. Changes in static or dynamic connectivity were not related to symptom burden or injury severity measures, such as loss of consciousness and post-traumatic amnesia. In aggregate, our study shows that brain dynamics are altered up to 4 months after pmTBI, in brain areas that are known to be vulnerable to TBI. Future longitudinal studies are warranted to examine the significance of our findings in terms of long-term neurodevelopment.


Assuntos
Concussão Encefálica , Lesões Encefálicas , Humanos , Criança , Concussão Encefálica/diagnóstico por imagem , Rede Nervosa/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Imageamento por Ressonância Magnética
3.
Hum Brain Mapp ; 44(17): 6173-6184, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37800467

RESUMO

There is a growing body of research showing that cerebral pathophysiological processes triggered by pediatric mild traumatic brain injury (pmTBI) may extend beyond the usual clinical recovery timeline. It is paramount to further unravel these processes, because the possible long-term cognitive effects resulting from ongoing secondary injury in the developing brain are not known. In the current fMRI study, neural processes related to cognitive control were studied in 181 patients with pmTBI at sub-acute (SA; ~1 week) and early chronic (EC; ~4 months) stages post-injury. Additionally, a group of 162 age- and sex-matched healthy controls (HC) were recruited at equivalent time points. Proactive (post-cue) and reactive (post-probe) cognitive control were examined using a multimodal attention fMRI paradigm for either congruent or incongruent stimuli. To study brain network function, the triple-network model was used, consisting of the executive and salience networks (collectively known as the cognitive control network), and the default mode network. Additionally, whole-brain voxel-wise analyses were performed. Decreased deactivation was found within the default mode network at the EC stage following pmTBI during both proactive and reactive control. Voxel-wise analyses revealed sub-acute hypoactivation of a frontal area of the cognitive control network (left pre-supplementary motor area) during proactive control, with a reversed effect at the EC stage after pmTBI. Similar effects were observed in areas outside of the triple-network during reactive control. Group differences in activation during proactive control were limited to the visual domain, whereas for reactive control findings were more pronounced during the attendance of auditory stimuli. No significant correlations were present between task-related activations and (persistent) post-concussive symptoms. In aggregate, current results show alterations in neural functioning during cognitive control in pmTBI up to 4 months post-injury, regardless of clinical recovery. We propose that subacute decreases in activity reflect a general state of hypo-excitability due to the injury, while early chronic hyperactivation represents a compensatory mechanism to prevent default mode interference and to retain cognitive control.


Assuntos
Concussão Encefálica , Transtornos Cognitivos , Disfunção Cognitiva , Humanos , Criança , Concussão Encefálica/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Transtornos Cognitivos/etiologia , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/complicações , Imageamento por Ressonância Magnética , Cognição
4.
Brain ; 145(11): 4124-4137, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-35727944

RESUMO

The underlying pathophysiology of paediatric mild traumatic brain injury and the time-course for biological recovery remains widely debated, with clinical care principally informed by subjective self-report. Similarly, clinical evidence indicates that adolescence is a risk factor for prolonged recovery, but the impact of age-at-injury on biomarkers has not been determined in large, homogeneous samples. The current study collected diffusion MRI data in consecutively recruited patients (n = 203; 8-18 years old) and age and sex-matched healthy controls (n = 170) in a prospective cohort design. Patients were evaluated subacutely (1-11 days post-injury) as well as at 4 months post-injury (early chronic phase). Healthy participants were evaluated at similar times to control for neurodevelopment and practice effects. Clinical findings indicated persistent symptoms at 4 months for a significant minority of patients (22%), along with residual executive dysfunction and verbal memory deficits. Results indicated increased fractional anisotropy and reduced mean diffusivity for patients, with abnormalities persisting up to 4 months post-injury. Multicompartmental geometric models indicated that estimates of intracellular volume fractions were increased in patients, whereas estimates of free water fractions were decreased. Critically, unique areas of white matter pathology (increased free water fractions or increased neurite dispersion) were observed when standard assumptions regarding parallel diffusivity were altered in multicompartmental models to be more biologically plausible. Cross-validation analyses indicated that some diffusion findings were more reproducible when ∼70% of the total sample (142 patients, 119 controls) were used in analyses, highlighting the need for large-sample sizes to detect abnormalities. Supervised machine learning approaches (random forests) indicated that diffusion abnormalities increased overall diagnostic accuracy (patients versus controls) by ∼10% after controlling for current clinical gold standards, with each diffusion metric accounting for only a few unique percentage points. In summary, current results suggest that novel multicompartmental models are more sensitive to paediatric mild traumatic brain injury pathology, and that this sensitivity is increased when using parameters that more accurately reflect diffusion in healthy tissue. Results also indicate that diffusion data may be insufficient to achieve a high degree of objective diagnostic accuracy in patients when used in isolation, which is to be expected given known heterogeneities in pathophysiology, mechanism of injury and even criteria for diagnoses. Finally, current results indicate ongoing clinical and physiological recovery at 4 months post-injury.


Assuntos
Concussão Encefálica , Substância Branca , Adolescente , Humanos , Criança , Concussão Encefálica/patologia , Estudos Prospectivos , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Imagem de Difusão por Ressonância Magnética/métodos , Água , Encéfalo/patologia
5.
Crit Care ; 25(1): 428, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34915927

RESUMO

BACKGROUND: Traumatic brain injury (TBI) and severe blood loss resulting in hemorrhagic shock (HS) represent leading causes of trauma-induced mortality, especially when co-occurring in pre-hospital settings where standard therapies are not readily available. The primary objective of this study was to determine if 17α-ethinyl estradiol-3-sulfate (EE-3-SO4) increases survival, promotes more rapid cardiovascular recovery, or confers neuroprotection relative to Placebo following TBI + HS. METHODS: All methods were approved by required regulatory agencies prior to study initiation. In this fully randomized, blinded preclinical study, eighty (50% females) sexually mature (190.64 ± 21.04 days old; 28.18 ± 2.72 kg) Yucatan swine were used. Sixty-eight animals received a closed-head, accelerative TBI followed by removal of approximately 40% of circulating blood volume. Animals were then intravenously administered EE-3-SO4 formulated in the vehicle at 5.0 mg/mL (dosed at 0.2 mL/kg) or Placebo (0.45% sodium chloride solution) via a continuous pump (0.2 mL/kg over 5 min). Twelve swine were included as uninjured Shams to further characterize model pathology and replicate previous findings. All animals were monitored for up to 5 h in the absence of any other life-saving measures (e.g., mechanical ventilation, fluid resuscitation). RESULTS: A comparison of Placebo-treated relative to Sham animals indicated evidence of acidosis, decreased arterial pressure, increased heart rate, diffuse axonal injury and blood-brain barrier breach. The percentage of animals surviving to 295 min post-injury was significantly higher for the EE-3-SO4 (28/31; 90.3%) relative to Placebo (24/33; 72.7%) cohort. EE-3-SO4 also restored pulse pressure more rapidly post-drug administration, but did not confer any benefits in terms of shock index. Primary blood-based measurements of neuroinflammation and blood brain breach were also null, whereas secondary measurements of diffuse axonal injury suggested a more rapid return to baseline for the EE-3-SO4 group. Survival status was associated with biological sex (female > male), as well as evidence of increased acidosis and neurotrauma independent of EE-3-SO4 or Placebo administration. CONCLUSIONS: EE-3-SO4 is efficacious in promoting survival and more rapidly restoring cardiovascular homeostasis following polytraumatic injuries in pre-hospital environments (rural and military) in the absence of standard therapies. Poly-therapeutic approaches targeting additional mechanisms (increased hemostasis, oxygen-carrying capacity, etc.) should be considered in future studies.


Assuntos
Lesões Encefálicas Traumáticas , Choque Hemorrágico , Animais , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/tratamento farmacológico , Modelos Animais de Doenças , Estradiol/análogos & derivados , Feminino , Hemodinâmica , Masculino , Doenças Neuroinflamatórias , Ressuscitação , Choque Hemorrágico/tratamento farmacológico , Suínos
6.
J Magn Reson Imaging ; 52(6): 1701-1713, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32592270

RESUMO

BACKGROUND: Physiological recovery from pediatric mild traumatic brain injury (pmTBI) as a function of age remains actively debated, with the majority of studies relying on subjective symptom report rather than objective markers of brain physiology. PURPOSE: To examine potential abnormalities in fractional amplitude of low-frequency fluctuations (fALFF) or regional homogeniety (ReHo) during resting-state fMRI following pmTBI. STUDY TYPE: Prospective cohort. POPULATION: Consecutively recruited pmTBI (N = 105; 8-18 years old) and age- and sex-matched healthy controls (HC; N = 113). FIELD STRENGTH/SEQUENCE: 3T multiecho gradient T1 -weighted and single-shot gradient-echo echo-planar imaging. ASSESSMENT: All pmTBI participants were assessed 1 week and 4 months postinjury (HC assessed at equivalent timepoints after the first visit). Comprehensive demographic, clinical, and cognitive batteries were performed in addition to primary investigation of fALFF and ReHo. All pmTBI were classified as "persistent" or "recovered" based on both assessment periods. STATISTICAL TESTS: Chi-square, nonparametric, and generalized linear models for demographic data. Generalized estimating equations for clinical and cognitive data. Voxelwise general linear models (AFNI's 3dMVM) for fALFF and ReHo assessment. RESULTS: Evidence of recovery was observed for some, but not all, clinical and cognitive measures at 4 months postinjury. fALFF was increased in the left striatum for pmTBI relative to HC both at 1 week and 4 months postinjury; whereas no significant group differences (P > 0.001) were observed for ReHo. Age-at-injury did not moderate either resting-state metric across groups. In contrast to analyses of pmTBI as a whole, there were no significant (P > 0.001) differences in either fALFF or ReHo in patients with persistent postconcussive symptoms compared to recovered patients and controls at 4 months postinjury. DATA CONCLUSIONS: Our findings suggest prolonged clinical recovery and alterations in the relative amplitude of resting-state fluctuations up to 4 months postinjury, but no clear relationship with age-at-injury or subjective symptom report. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY: 2 J. MAGN. RESON. IMAGING 2020;52:1701-1713.


Assuntos
Concussão Encefálica , Síndrome Pós-Concussão , Adolescente , Encéfalo/diagnóstico por imagem , Concussão Encefálica/diagnóstico por imagem , Criança , Humanos , Imageamento por Ressonância Magnética , Estudos Prospectivos
7.
J Psychiatry Neurosci ; 45(6): 430-440, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32869961

RESUMO

Background: Functional underpinnings of cognitive control deficits in unbiased samples (i.e., all comers) of patients with psychotic spectrum disorders (PSD) remain actively debated. While many studies suggest hypofrontality in the lateral prefrontal cortex (PFC) and greater deficits during proactive relative to reactive control, few have examined the full hemodynamic response. Methods: Patients with PSD (n = 154) and healthy controls (n = 65) performed the AX continuous performance task (AX-CPT) during rapid (460 ms) functional neuroimaging and underwent full clinical characterization. Results: Behavioural results indicated generalized cognitive deficits (slower and less accurate) across proactive and reactive control conditions in patients with PSD relative to healthy controls. We observed a delayed/prolonged neural response in the left dorsolateral PFC, the sensorimotor cortex and the superior parietal lobe during proactive control for patients with PSD. These proactive hemodynamic abnormalities were better explained by negative rather than by positive symptoms or by traditional diagnoses according to the Diagnostic and Statistical Manual of Mental Disorders Fourth Edition, Text Revision (DSM-IV-TR), with subsequent simulations unequivocally demonstrating how these abnormalities could be erroneously interpreted as hypoactivation. Conversely, true hypoactivity, unassociated with clinical symptoms or DSM-IV-TR diagnoses, was observed within the ventrolateral PFC during reactive control. Limitations: In spite of guidance for AX-CPT use in neuroimaging studies, one-third of patients with PSD could not perform the task above chance and were more clinically impaired. Conclusion: Current findings question the utility of the AX-CPT for neuroimaging-based appraisal of cognitive control across the full spectrum of patients with PSD. Previously reported lateral PFC "hypoactivity" during proactive control may be more indicative of a delayed/prolonged neural response, important for rehabilitative purposes. Negative symptoms may better explain certain behavioural and hemodynamic abnormalities in patients with PSD relative to DSM-IV-TR diagnoses.


Assuntos
Função Executiva/fisiologia , Neuroimagem Funcional/normas , Lobo Parietal/fisiopatologia , Córtex Pré-Frontal/fisiopatologia , Desempenho Psicomotor/fisiologia , Transtornos Psicóticos/fisiopatologia , Córtex Sensório-Motor/fisiopatologia , Adulto , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , Lobo Parietal/diagnóstico por imagem , Córtex Pré-Frontal/diagnóstico por imagem , Transtornos Psicóticos/diagnóstico por imagem , Córtex Sensório-Motor/diagnóstico por imagem , Adulto Jovem
8.
Hum Brain Mapp ; 40(13): 3843-3859, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31119818

RESUMO

It has been known for decades that head motion/other artifacts affect the blood oxygen level-dependent signal. Recent recommendations predominantly focus on denoising resting state data, which may not apply to task data due to the different statistical relationships that exist between signal and noise sources. Several blind-source denoising strategies (FIX and AROMA) and more standard motion parameter (MP) regression (0, 12, or 24 parameters) analyses were therefore compared across four sets of event-related functional magnetic resonance imaging (erfMRI) and block-design (bdfMRI) datasets collected with multiband 32- (repetition time [TR] = 460 ms) or older 12-channel (TR = 2,000 ms) head coils. The amount of motion varied across coil designs and task types. Quality control plots indicated small to moderate relationships between head motion estimates and percent signal change in both signal and noise regions. Blind-source denoising strategies eliminated signal as well as noise relative to MP24 regression; however, the undesired effects on signal depended both on algorithm (FIX > AROMA) and design (bdfMRI > erfMRI). Moreover, in contrast to previous results, there were minimal differences between MP12/24 and MP0 pipelines in both erfMRI and bdfMRI designs. MP12/24 pipelines were detrimental for a task with both longer block length (30 ± 5 s) and higher correlations between head MPs and design matrix. In summary, current results suggest that there does not appear to be a single denoising approach that is appropriate for all fMRI designs. However, even nonaggressive blind-source denoising approaches appear to remove signal as well as noise from task-related data at individual subject and group levels.


Assuntos
Artefatos , Encéfalo/fisiologia , Neuroimagem Funcional/métodos , Movimentos da Cabeça , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Adolescente , Adulto , Encéfalo/diagnóstico por imagem , Feminino , Neuroimagem Funcional/normas , Humanos , Processamento de Imagem Assistida por Computador/normas , Imageamento por Ressonância Magnética/normas , Masculino , Reconhecimento Visual de Modelos/fisiologia , Desempenho Psicomotor/fisiologia , Projetos de Pesquisa , Adulto Jovem
9.
Hum Brain Mapp ; 40(18): 5370-5381, 2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-31456319

RESUMO

Although much attention has been generated in popular media regarding the deleterious effects of pediatric mild traumatic brain injury (pmTBI), a paucity of empirical evidence exists regarding the natural course of biological recovery. Fifty pmTBI patients (12-18 years old) were consecutively recruited from Emergency Departments and seen approximately 1 week and 4 months post-injury in this prospective cohort study. Data from 53 sex- and age-matched healthy controls (HC) were also collected. Functional magnetic resonance imaging was obtained during proactive response inhibition and at rest, in conjunction with independent measures of resting cerebral blood flow. High temporal resolution imaging enabled separate modeling of neural responses for preparation and execution of proactive response inhibition. A priori predictions of failed inhibitory responses (i.e., hyperactivation) were observed in motor circuitry (pmTBI>HC) and sensory areas sub-acutely and at 4 months post-injury. Paradoxically, pmTBI demonstrated hypoactivation (HC>pmTBI) during target processing, along with decreased activation within prefrontal cognitive control areas. Functional connectivity within motor circuitry at rest suggested that deficits were limited to engagement during the inhibitory task, whereas normal resting cerebral perfusion ruled out deficits in basal perfusion. In conclusion, current results suggest blood oxygen-level dependent deficits during inhibitory control may exceed commonly held beliefs about physiological recovery following pmTBI, potentially lasting up to 4 months post-injury.


Assuntos
Concussão Encefálica/diagnóstico por imagem , Concussão Encefálica/psicologia , Circulação Cerebrovascular/fisiologia , Inibição Proativa , Desempenho Psicomotor/fisiologia , Adolescente , Concussão Encefálica/fisiopatologia , Criança , Feminino , Humanos , Masculino , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiopatologia , Córtex Pré-Frontal/diagnóstico por imagem , Córtex Pré-Frontal/fisiopatologia
10.
Hum Brain Mapp ; 40(3): 955-966, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30407681

RESUMO

The role of ventral versus dorsolateral prefrontal regions in instantiating proactive and reactive cognitive control remains actively debated, with few studies parsing cue versus probe-related activity. Rapid sampling (460 ms), long cue-probe delays, and advanced analytic techniques (deconvolution) were therefore used to quantify the magnitude and variability of neural responses during the AX Continuous Performance Test (AX-CPT; N = 46) in humans. Behavioral results indicated slower reaction times during reactive cognitive control (AY trials) in conjunction with decreased accuracy and increased variability for proactive cognitive control (BX trials). The anterior insula/ventrolateral prefrontal cortex (aI/VLPFC) was commonly activated across comparisons of both proactive and reactive cognitive control. In contrast, activity within the dorsomedial and dorsolateral prefrontal cortex was limited to reactive cognitive control. The instantiation of proactive cognitive control during the probe period was also associated with sparse neural activation relative to baseline, potentially as a result of the high degree of neural and behavioral variability observed across individuals. Specifically, the variability of the hemodynamic response function (HRF) within motor circuitry increased after the presentation of B relative to A cues (i.e., late in HRF) and persisted throughout the B probe period. Finally, increased activation of right aI/VLPFC during the cue period was associated with decreased motor circuit activity during BX probes, suggesting a possible role for the aI/VLPFC in proactive suppression of neural responses. Considered collectively, current results highlight the flexible role of the VLPFC in implementing cognitive control during the AX-CPT task but suggest large individual differences in proactive cognitive control strategies.


Assuntos
Cognição/fisiologia , Córtex Pré-Frontal/fisiologia , Tempo de Reação/fisiologia , Adulto , Imagem Ecoplanar/métodos , Feminino , Humanos , Masculino
11.
Cereb Cortex ; 27(5): 2831-2840, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-27166168

RESUMO

Parsing multisensory information from a complex external environment is a fundamental skill for all organisms. However, different organizational schemes currently exist for how multisensory information is processed in human (supramodal; organized by cognitive demands) versus primate (organized by modality/cognitive demands) lateral prefrontal cortex (LPFC). Functional magnetic resonance imaging results from a large cohort of healthy controls (N = 64; Experiment 1) revealed a rostral-caudal stratification of LPFC for auditory versus visual attention during an audio-visual Stroop task. The stratification existed in spite of behavioral and functional evidence of increased interference from visual distractors. Increased functional connectivity was also observed between rostral LPFC and auditory cortex across independent samples (Experiments 2 and 3) and multiple methodologies. In contrast, the caudal LPFC was preferentially activated during visual attention but functioned in a supramodal capacity for resolving multisensory conflict. The caudal LPFC also did not exhibit increased connectivity with visual cortices. Collectively, these findings closely mirror previous nonhuman primate studies suggesting that visual attention relies on flexible use of a supramodal cognitive control network in caudal LPFC whereas rostral LPFC is specialized for directing attention to auditory inputs (i.e., human auditory fields).


Assuntos
Vias Aferentes/fisiologia , Atenção , Percepção Auditiva/fisiologia , Cognição/fisiologia , Córtex Pré-Frontal/fisiologia , Percepção Visual/fisiologia , Estimulação Acústica , Adolescente , Adulto , Vias Aferentes/diagnóstico por imagem , Análise de Variância , Mapeamento Encefálico , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Oxigênio , Estimulação Luminosa , Córtex Pré-Frontal/diagnóstico por imagem , Adulto Jovem
12.
Hum Brain Mapp ; 37(2): 833-45, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26663463

RESUMO

There is great interest in developing physiological-based biomarkers such as diffusion tensor imaging to aid in the management of concussion, which is currently entirely dependent on clinical judgment. However, the time course for recovery of white matter abnormalities following sports-related concussion (SRC) is unknown. We collected diffusion tensor imaging and behavioral data in forty concussed collegiate athletes on average 1.64 days (T1; n = 33), 8.33 days (T2; n = 30), and 32.15 days post-concussion (T3; n = 26), with healthy collegiate contact-sport athletes (HA) serving as controls (n = 46). We hypothesized that fractional anisotropy (FA) would be increased acutely and partially recovered by one month post-concussion. Mood symptoms were assessed using structured interviews. FA differences were assessed using both traditional and subject-specific analyses. An exploratory analysis of tau plasma levels was conducted in a subset of participants. Results indicated that mood symptoms improved over time post-concussion, but remained elevated at T3 relative to HA. Across both group and subject-specific analyses, concussed athletes exhibited increased FA in several white matter tracts at each visit post-concussion with no longitudinal evidence of recovery. Increased FA at T1 and T3 was significantly associated with an independent, real-world outcome measure for return-to-play. Finally, we observed a nonsignificant trend for reduced tau in plasma of concussed athletes at T1 relative to HA, with tau significantly increasing by T2. These results suggest white matter abnormalities following SRC may persist beyond one month and have potential as an objective biomarker for concussion outcome. Hum Brain Mapp 37:833-845, 2016. © 2015 Wiley Periodicals, Inc.


Assuntos
Traumatismos em Atletas/patologia , Concussão Encefálica/patologia , Encéfalo/patologia , Afeto , Atletas , Traumatismos em Atletas/psicologia , Concussão Encefálica/etiologia , Concussão Encefálica/psicologia , Estudos Transversais , Imagem de Tensor de Difusão/métodos , Feminino , Humanos , Entrevista Psicológica , Estudos Longitudinais , Masculino , Vias Neurais/patologia , Substância Branca/patologia , Adulto Jovem
13.
Hum Brain Mapp ; 37(2): 745-55, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26598791

RESUMO

Functional magnetic resonance imaging (fMRI) of the blood oxygen level dependent (BOLD) response has commonly been used to investigate the neuropathology underlying cognitive and sensory deficits in patients with schizophrenia (SP) by examining the positive phase of the BOLD response, assuming a fixed shape for the hemodynamic response function (HRF). However, the individual phases (positive and post-stimulus undershoot (PSU)) of the HRF may be differentially affected by a variety of underlying pathologies. The current experiment used a multisensory detection task with a rapid event-related fMRI paradigm to investigate both the positive and PSU phases of the HRF in SP and healthy controls (HC). Behavioral results indicated no significant group differences during task performance. Analyses that examined the shape of the HRF indicated two distinct group differences. First, SP exhibited a reduced and/or prolonged PSU following normal task-related positive BOLD activation in secondary auditory and visual sensory areas relative to HC. Second, SP did not show task-induced deactivation in the anterior node of the default-mode network (aDMN) relative to HC. In contrast, when performing traditional analyses that focus on the positive phase, there were no group differences. Interestingly, the magnitude of the PSU in secondary auditory and visual areas was positively associated with the magnitude of task-induced deactivation within the aDMN, suggesting a possible common neural mechanism underlying both of these abnormalities (failure in neural inhibition). Results are consistent with recent views that separate neural processes underlie the two phases of the HRF and that they are differentially affected in SP. Hum Brain Mapp 37:745-755, 2016. © 2015 Wiley Periodicals, Inc.


Assuntos
Percepção Auditiva/fisiologia , Encéfalo/fisiopatologia , Circulação Cerebrovascular/fisiologia , Esquizofrenia/fisiopatologia , Percepção Visual/fisiologia , Adulto , Mapeamento Encefálico , Estudos de Coortes , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Vias Neurais/fisiopatologia , Testes Neuropsicológicos , Oxigênio/sangue , Psicologia do Esquizofrênico
14.
Am J Obstet Gynecol ; 215(4): 449.e1-449.e17, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27173081

RESUMO

BACKGROUND: Treatment of urgency urinary incontinence has focused on pharmacologically treating detrusor overactivity. Recent recognition that altered perception of internal stimuli (interoception) plays a role in urgency urinary incontinence suggests that exploration of abnormalities of brain function in this disorder could lead to better understanding of urgency incontinence and its treatment. OBJECTIVE: We sought to: (1) evaluate the relationship between bladder filling, perceived urgency, and activation at brain sites within the interoceptive network in urgency urinary incontinence; (2) identify coactivation of other brain networks that could affect interoception during bladder filling in urgency incontinence; and (3) demonstrate interaction between these sites prior to bladder filling by evaluating their resting-state connectivity. STUDY DESIGN: We performed an observational cohort study using functional magnetic resonance imaging to compare brain function in 53 women with urgency urinary incontinence and 20 controls. Whole-brain voxelwise analyses of covariance were performed to examine differences in functional brain activation between groups during a task consisting of bladder filling, hold (static volume), and withdrawal phases. The task was performed at 3 previously established levels of baseline bladder volume, the highest exceeding strong desire to void volume. All women continuously rated their urge on a 0- to 10-point Likert scale throughout the task and a mixed measures analysis of variance was used to test for differences in urge ratings. Empirically derived regions of interest from analysis of activation during the task were used as seeds for examining group differences in resting-state functional connectivity. RESULTS: In both urgency urinary incontinent participants and controls, changes in urge ratings were greatest during bladder filling initiated from a high baseline bladder volume and urgency incontinent participants' rating changes were greater than controls. During this bladder-filling phase urgency incontinent participant's activation of the interoceptive network was greater than controls, including in the left insula and the anterior and middle cingulate cortex. Urgency incontinent participant's activation was also greater than controls at sites in the ventral attention network and posterior default mode network. Urgency incontinent participant's connectivity was greater than controls between a middle cingulate seed point and the dorsal attention network, a "top-down" attentional network. Control connectivity was greater between the midcingulate seed point and the ventral attention network, a "bottom-up" attentional network. CONCLUSION: Increasing urge was associated with greater urgency incontinent participant than control activation of the interoceptive network and activation in networks that are determinants of self-awareness (default mode network) and of response to unexpected external stimuli (ventral attention network). Differences in connectivity between interoceptive networks and opposing attentional networks (ventral attention network vs dorsal attention network) were present even before bladder filling (in the resting state). These findings are strong evidence for a central nervous system component of urgency urinary incontinence that could be mediated by brain-directed therapies.


Assuntos
Mapeamento Encefálico , Interocepção/fisiologia , Bexiga Urinária/fisiopatologia , Incontinência Urinária de Urgência/diagnóstico por imagem , Incontinência Urinária de Urgência/fisiopatologia , Adulto , Idoso , Atenção/fisiologia , Estudos de Casos e Controles , Estudos de Coortes , Feminino , Giro do Cíngulo/diagnóstico por imagem , Giro do Cíngulo/fisiopatologia , Humanos , Imageamento por Ressonância Magnética , Pessoa de Meia-Idade
15.
J Psychiatry Neurosci ; 41(5): 312-21, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26883319

RESUMO

BACKGROUND: Previous studies of response inhibition in patients with schizophrenia have focused on reactive inhibition tasks (e.g., stop-signal, go/no-go), primarily observing lateral prefrontal cortex abnormalities. However, recent studies suggest that purposeful and sustained (i.e., proactive) inhibition may also be affected in these patients. METHODS: Patients with chronic schizophrenia and healthy controls underwent fMRI while inhibiting motor responses during multisensory (audiovisual) stimulation. Resting state data were also collected. RESULTS: We included 37 patients with schizophrenia and 37 healthy controls in our study. Both controls and patients with schizophrenia successfully inhibited the majority of overt motor responses. Functional results indicated basic inhibitory failure in the lateral premotor and sensorimotor cortex, with opposing patterns of positive (schizophrenia) versus negative (control) activation. Abnormal activity was associated with independently assessed signs of psychomotor retardation. Patients with schizophrenia also exhibited unique activation of the pre-supplementary motor area (pre-SMA)/SMA and precuneus relative to baseline as well as a failure to deactivate anterior nodes of the default mode network. Independent resting-state connectivity analysis indicated reduced connectivity between anterior (task results) and posterior regions of the sensorimotor cortex for patients as well as abnormal connectivity between other regions (cerebellum, thalamus, posterior cingulate gyrus and visual cortex). LIMITATIONS: Aside from rates of false-positive responses, true proactive response inhibition tasks do not provide behavioural metrics that can be independently used to quantify task performance. CONCLUSION: Our results suggest that basic cortico-cortico and intracortical connections between the sensorimotor cortex and adjoining regions are impaired in patients with schizophrenia and that these impaired connections contribute to inhibitory failures (i.e., a positive rather than negative hemodynamic response).


Assuntos
Percepção Auditiva/fisiologia , Atividade Motora/fisiologia , Inibição Proativa , Esquizofrenia/fisiopatologia , Córtex Sensório-Motor/fisiopatologia , Percepção Visual/fisiologia , Adulto , Mapeamento Encefálico , Doença Crônica , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Vias Neurais/diagnóstico por imagem , Vias Neurais/fisiopatologia , Testes Neuropsicológicos , Descanso , Esquizofrenia/diagnóstico por imagem , Psicologia do Esquizofrênico , Córtex Sensório-Motor/diagnóstico por imagem
16.
Hum Brain Mapp ; 36(11): 4394-406, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26493161

RESUMO

Mild traumatic brain injury patients (mTBI) frequently report symptoms of increased distractability and sensory disturbances during mutisensory stimulation. These common post-concussive symptoms could putatively result from dysfunction within the cognitive control network (CCN; top-down) or from unisensory cortex (bottom-up) itself. Functional magnetic resonance imaging (fMRI) and high-resolution structural data were therefore prospectively collected during a multisensory (audio-visual) cognitive control task from 46 mTBI patients within 3 weeks of injury and 46 matched healthy controls (HC), with a subset of participants returning at 4 months. Multisensory stimuli were presented at two frequencies to manipulate cognitive and perceptual load. Patients self-reported more cognitive, emotional, somatic, vestibular and visual symptoms relative to HC, which improved, but did not entirely resolve, over the 4 month follow-up period. There were no group differences in behavior or functional activation during cognitive control (incongruent--congruent trials). In contrast, patients exhibited abnormal activation within different regions of visual cortex that depended on whether attention was focused on auditory or visual information streams. Patients also exhibited increased activation within bilateral inferior parietal lobules during higher cognitive/perceptual loads, suggesting a compensatory mechanism to achieve similar levels of behavioral performance. Functional abnormalities within the visual cortex and inferior parietal lobules were only partially resolved at 4 months post-injury, suggesting that neural abnormalities may take longer to resolve than behavioral measures used in most clinical settings. In summary, current results indicate that abnormalities within unisensory cortex (particularly visual areas) following mTBI, which likely contribute to deficits commonly reported during multisensory stimulation.


Assuntos
Atenção/fisiologia , Percepção Auditiva/fisiologia , Lesões Encefálicas/fisiopatologia , Córtex Cerebral/fisiopatologia , Transtornos Cognitivos/fisiopatologia , Função Executiva/fisiologia , Desempenho Psicomotor/fisiologia , Percepção Visual/fisiologia , Adulto , Lesões Encefálicas/complicações , Transtornos Cognitivos/etiologia , Feminino , Seguimentos , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Adulto Jovem
17.
Br J Psychiatry ; 207(5): 420-8, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26382953

RESUMO

BACKGROUND: Studies have produced conflicting evidence regarding whether cognitive control deficits in patients with schizophrenia result from dysfunction within the cognitive control network (CCN; top-down) and/or unisensory cortex (bottom-up). AIMS: To investigate CCN and sensory cortex involvement during multisensory cognitive control in patients with schizophrenia. METHOD: Patients with schizophrenia and healthy controls underwent functional magnetic resonance imaging while performing a multisensory Stroop task involving auditory and visual distracters. RESULTS: Patients with schizophrenia exhibited an overall pattern of response slowing, and these behavioural deficits were associated with a pattern of patient hyperactivation within auditory, sensorimotor and posterior parietal cortex. In contrast, there were no group differences in functional activation within prefrontal nodes of the CCN, with small effect sizes observed (incongruent-congruent trials). Patients with schizophrenia also failed to upregulate auditory cortex with concomitant increased attentional demands. CONCLUSIONS: Results suggest a prominent role for dysfunction within auditory, sensorimotor and parietal areas relative to prefrontal CCN nodes during multisensory cognitive control.


Assuntos
Atenção , Transtornos Cognitivos/fisiopatologia , Cognição , Córtex Pré-Frontal/fisiopatologia , Esquizofrenia/complicações , Adulto , Mapeamento Encefálico , Estudos de Casos e Controles , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Modelos Lineares , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , Estimulação Luminosa , Tempo de Reação , Adulto Jovem
18.
Hum Brain Mapp ; 35(11): 5457-70, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24931496

RESUMO

Algorithms that are capable of capturing subject-specific abnormalities (SSA) in neuroimaging data have long been an area of focus for diverse neuropsychiatric conditions such as multiple sclerosis, schizophrenia, and traumatic brain injury. Several algorithms have been proposed that define SSA in patients (i.e., comparison group) relative to image intensity levels derived from healthy controls (HC) (i.e., reference group) based on extreme values. However, the assumptions underlying these approaches have not always been fully validated, and may be dependent on the statistical distributions of the transformed data. The current study evaluated variations of two commonly used techniques ("pothole" method and standardization with an independent reference group) for identifying SSA using simulated data (derived from normal, t and chi-square distributions) and fractional anisotropy maps derived from 50 HC. Results indicated substantial group-wise bias in the estimation of extreme data points using the pothole method, with the degree of bias being inversely related to sample size. Statistical theory was utilized to develop a distribution-corrected z-score (DisCo-Z) threshold, with additional simulations demonstrating elimination of the bias and a more consistent estimation of extremes based on expected distributional properties. Data from previously published studies examining SSA in mild traumatic brain injury were then re-analyzed using the DisCo-Z method, with results confirming the evidence of group-wise bias. We conclude that the benefits of identifying SSA in neuropsychiatric research are substantial, but that proposed SSA approaches require careful implementation under the different distributional properties that characterize neuroimaging data.


Assuntos
Lesões Encefálicas/diagnóstico , Encéfalo/patologia , Esclerose Múltipla/diagnóstico , Esquizofrenia/diagnóstico , Adolescente , Adulto , Algoritmos , Anisotropia , Criança , Simulação por Computador , Bases de Dados Factuais/estatística & dados numéricos , Imagem de Tensor de Difusão , Feminino , Humanos , Masculino , Modelos Neurológicos , Dinâmica não Linear , Adulto Jovem
19.
J Neurosci ; 32(50): 17961-9, 2012 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-23238712

RESUMO

Pediatric mild traumatic brain injury (pmTBI) is the most prevalent neurological insult in children and is associated with both acute and chronic neurobehavioral sequelae. However, little is known about underlying pathophysiology and how injuries change as a function of recovery. Fractional anisotropy, axial diffusivity, and radial diffusivity were examined in 15 semi-acute pmTBI patients and 15 well-matched controls, with a subset of participants returning for a second visit. A novel analytic strategy was applied to capture spatially heterogeneous white matter injuries (lesions) in addition to standard analyses. Evidence of cognitive dysfunction after pmTBI was observed in the domains of attention (p = 0.02, d = -0.92) and processing speed (p = 0.05, d = -0.73) semi-acutely. Region of interest (ROI) and voxelwise analyses indicated increased anisotropic diffusion for pmTBI patients, with an elevated number of clusters with high anisotropy. Metrics of increased anisotropy were able to objectively classify pmTBI from healthy controls at 90% accuracy but were not associated with neuropsychological deficits. Little evidence of recovery in white matter abnormalities was observed over a 4-month interval in returning patients, indicating that physiological recovery may lag behind subjective reports of normality. Increased anisotropic diffusion has been previously linked with cytotoxic edema after TBI, and the magnitude and duration of these abnormalities appear to be greater in pediatric patients. Current findings suggest that developing white matter may be more susceptible to initial mechanical injury forces and that anisotropic diffusion provides an objective biomarker of pmTBI.


Assuntos
Lesões Encefálicas/complicações , Lesões Encefálicas/patologia , Encéfalo/patologia , Transtornos Cognitivos/etiologia , Transtornos Cognitivos/patologia , Adolescente , Anisotropia , Encéfalo/fisiopatologia , Lesões Encefálicas/fisiopatologia , Criança , Transtornos Cognitivos/fisiopatologia , Imagem de Difusão por Ressonância Magnética , Feminino , Humanos , Interpretação de Imagem Assistida por Computador , Masculino
20.
Brain ; 135(Pt 4): 1281-92, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22505633

RESUMO

Mild traumatic brain injury is the most prevalent neurological insult and frequently results in neurobehavioural sequelae. However, little is known about the pathophysiology underlying the injury and how these injuries change as a function of time. Although diffusion tensor imaging holds promise for in vivo characterization of white matter pathology, both the direction and magnitude of anisotropic water diffusion abnormalities in axonal tracts are actively debated. The current study therefore represents both an independent replication effort (n = 28) of our previous findings (n = 22) of increased fractional anisotropy during semi-acute injury, as well as a prospective study (n = 26) on the putative recovery of diffusion abnormalities. Moreover, new analytical strategies were applied to capture spatially heterogeneous white matter injuries, which minimize implicit assumptions of uniform injury across diverse clinical presentations. Results indicate that whereas a general pattern of high anisotropic diffusion/low radial diffusivity was present in various white matter tracts in both the replication and original cohorts, this pattern was only consistently observed in the genu of the corpus callosum across both samples. Evidence for a greater number of localized clusters with increased anisotropic diffusion was identified across both cohorts at trend levels, confirming heterogeneity in white matter injury. Pooled analyses (50 patients; 50 controls) suggested that measures of diffusion within the genu were predictive of patient classification, albeit at very modest levels (71% accuracy). Finally, we observed evidence of recovery in lesion load in returning patients across a 4-month interval, which was correlated with a reduction in self-reported post-concussive symptomatology. In summary, the corpus callosum may serve as a common point of injury in mild traumatic brain injury secondary to anatomical (high frequency of long unmyelinated fibres) and biomechanics factors. A spatially heterogeneous pattern of increased anisotropic diffusion exists in various other white matter tracts, and these white matter anomalies appear to diminish with recovery. This macroscopic pattern of diffusion abnormalities may be associated with cytotoxic oedema following mechanical forces, resulting in changes in ionic homeostasis, and alterations in the ratio of intracellular and extracellular water. Animal models more specific to the types of mild traumatic brain injury typically incurred by humans are needed to confirm the histological correlates of these macroscopic markers of white matter pathology.


Assuntos
Biomarcadores/metabolismo , Lesões Encefálicas/metabolismo , Lesões Encefálicas/patologia , Encéfalo/patologia , Imagem de Difusão por Ressonância Magnética , Fibras Nervosas Mielinizadas/patologia , Adolescente , Adulto , Análise de Variância , Anisotropia , Estudos de Casos e Controles , Feminino , Humanos , Estudos Longitudinais , Masculino , Testes Neuropsicológicos , Análise de Regressão , Índice de Gravidade de Doença , Tomografia Computadorizada por Raios X , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA