Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Acad Radiol ; 31(3): 921-928, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37500416

RESUMO

RATIONALE AND OBJECTIVES: To determine the impact on acquisition time reduction and image quality of a deep learning (DL) reconstruction for accelerated diffusion-weighted imaging (DWI) of the pelvis at 1.5 T compared to standard DWI. MATERIALS AND METHODS: A total of 55 patients (mean age, 61 ± 13 years; range, 27-89; 20 men, 35 women) were consecutively included in this retrospective, monocentric study between February and November 2022. Inclusion criteria were (1) standard DWI (DWIS) in clinically indicated magnetic resonance imaging (MRI) at 1.5 T and (2) DL-reconstructed DWI (DWIDL). All patients were examined using the institution's standard MRI protocol according to their diagnosis including DWI with two different b-values (0 and 800 s/mm2) and calculation of apparent diffusion coefficient (ADC) maps. Image quality was qualitatively assessed by four radiologists using a visual 5-point Likert scale (5 = best) for the following criteria: overall image quality, noise level, extent of artifacts, sharpness, and diagnostic confidence. The qualitative scores for DWIS and DWIDL were compared with the Wilcoxon signed-rank test. RESULTS: The overall image quality was evaluated to be significantly superior in DWIDL compared to DWIS for b = 0 s/mm2, b = 800 s/mm2, and ADC maps by all readers (P < .05). The extent of noise was evaluated to be significantly less in DWIDL compared to DWIS for b = 0 s/mm2, b = 800 s/mm2, and ADC maps by all readers (P < .001). No significant differences were found regarding artifacts, lesion detectability, sharpness of organs, and diagnostic confidence (P > .05). Acquisition time for DWIS was 2:06 minutes, and simulated acquisition time for DWIDL was 1:12 minutes. CONCLUSION: DL image reconstruction improves image quality, and simulation results suggest that a reduction in acquisition time for diffusion-weighted MRI of the pelvis at 1.5 T is possible.


Assuntos
Aprendizado Profundo , Masculino , Humanos , Feminino , Pessoa de Meia-Idade , Idoso , Estudos Retrospectivos , Razão Sinal-Ruído , Reprodutibilidade dos Testes , Imagem de Difusão por Ressonância Magnética/métodos , Pelve/diagnóstico por imagem , Artefatos , Imageamento por Ressonância Magnética
2.
Eur J Radiol Open ; 12: 100557, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38495213

RESUMO

Purpose: The objective of this study was to implement a 5-minute MRI protocol for the shoulder in routine clinical practice consisting of accelerated 2D turbo spin echo (TSE) sequences with deep learning (DL) reconstruction at 1.5 and 3 Tesla, and to compare the image quality and diagnostic performance to that of a standard 2D TSE protocol. Methods: Patients undergoing shoulder MRI between October 2020 and June 2021 were prospectively enrolled. Each patient underwent two MRI examinations: first a standard, fully sampled TSE (TSES) protocol reconstructed with a standard reconstruction followed by a second fast, prospectively undersampled TSE protocol with a conventional parallel imaging undersampling pattern reconstructed with a DL reconstruction (TSEDL). Image quality and visualization of anatomic structures as well as diagnostic performance with respect to shoulder lesions were assessed using a 5-point Likert-scale (5 = best). Interchangeability analysis, Wilcoxon signed-rank test and kappa statistics were performed to compare the two protocols. Results: A total of 30 participants was included (mean age 50±15 years; 15 men). Overall image quality was evaluated to be superior in TSEDL versus TSES (p<0.001). Noise and edge sharpness were evaluated to be significantly superior in TSEDL versus TSES (noise: p<0.001, edge sharpness: p<0.05). No difference was found concerning qualitative diagnostic confidence, assessability of anatomical structures (p>0.05), and quantitative diagnostic performance for shoulder lesions when comparing the two sequences. Conclusions: A fast 5-minute TSEDL MRI protocol of the shoulder is feasible in routine clinical practice at 1.5 and 3 T, with interchangeable results concerning the diagnostic performance, allowing a reduction in scan time of more than 50% compared to the standard TSES protocol.

3.
Diagnostics (Basel) ; 13(20)2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37892062

RESUMO

OBJECTIVES: Hip MRI using standard multiplanar sequences requires long scan times. Accelerating MRI is accompanied by reduced image quality. This study aimed to compare standard two-dimensional (2D) turbo spin echo (TSE) sequences with accelerated 2D TSE sequences with deep learning (DL) reconstruction (TSEDL) for routine clinical hip MRI at 1.5 and 3 T in terms of feasibility, image quality, and diagnostic performance. MATERIAL AND METHODS: In this prospective, monocentric study, TSEDL was implemented clinically and evaluated in 14 prospectively enrolled patients undergoing a clinically indicated hip MRI at 1.5 and 3T between October 2020 and May 2021. Each patient underwent two examinations: For the first exam, we used standard sequences with generalized autocalibrating partial parallel acquisition reconstruction (TSES). For the second exam, we implemented prospectively undersampled TSE sequences with DL reconstruction (TSEDL). Two radiologists assessed the TSEDL and TSES regarding image quality, artifacts, noise, edge sharpness, diagnostic confidence, and delineation of anatomical structures using an ordinal five-point Likert scale (1 = non-diagnostic; 2 = poor; 3 = moderate; 4 = good; 5 = excellent). Both sequences were compared regarding the detection of common pathologies of the hip. Comparative analyses were conducted to assess the differences between TSEDL and TSES. RESULTS: Compared with TSES, TSEDL was rated to be significantly superior in terms of image quality (p ≤ 0.020) with significantly reduced noise (p ≤ 0.001) and significantly improved edge sharpness (p = 0.003). No difference was found between TSES and TSEDL concerning the extent of artifacts, diagnostic confidence, or the delineation of anatomical structures (p > 0.05). Example acquisition time reductions for the TSE sequences of 52% at 3 Tesla and 70% at 1.5 Tesla were achieved. CONCLUSION: TSEDL of the hip is clinically feasible, showing excellent image quality and equivalent diagnostic performance compared with TSES, reducing the acquisition time significantly.

4.
Acad Radiol ; 30(5): 863-872, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-35810067

RESUMO

RATIONALE AND OBJECTIVES: To investigate the impact of a prototypical deep learning-based super-resolution reconstruction algorithm tailored to partial Fourier acquisitions on acquisition time and image quality for abdominal T1-weighted volume-interpolated breath-hold examination (VIBESR) at 3 Tesla. The standard T1-weighted images were used as the reference standard (VIBESD). MATERIALS AND METHODS: Patients with diverse abdominal pathologies, who underwent a clinically indicated contrast-enhanced abdominal VIBE magnetic resonance imaging at 3T between March and June 2021 were retrospectively included. Following the acquisition of the standard VIBESD sequences, additional images for the non-contrast, dynamic contrast-enhanced and post-contrast T1-weighted VIBE acquisition were retrospectively reconstructed using the same raw data and employing a prototypical deep learning-based super-resolution reconstruction algorithm. The algorithm was designed to enhance edge sharpness by avoiding conventional k-space filtering and to perform a partial Fourier reconstruction in the slice phase-encoding direction for a predefined asymmetric sampling ratio. In the retrospective reconstruction, the asymmetric sampling was realized by omitting acquired samples at the end of the acquisition and therefore corresponding to a shorter acquisition. Four radiologists independently analyzed the image datasets (VIBESR and VIBESD) in a blinded manner. Outcome measures were: sharpness of abdominal organs, sharpness of vessels, image contrast, noise, hepatic lesion conspicuity and size, overall image quality and diagnostic confidence. These parameters were statistically compared and interrater reliability was computed using Fleiss' Kappa and intraclass correlation coefficient (ICC). Finally, the rate of detection of hepatic lesions was documented and was statistically compared using the paired Wilcoxon test. RESULTS: A total of 32 patients aged 59 ± 16 years (23 men (72%), 9 women (28%)) were included. For VIBESR, breath-hold time was significantly reduced by approximately 13.6% (VIBESR 11.9 ± 1.2 seconds vs. VIBESD: 13.9 ± 1.4 seconds, p < 0.001). All readers rated sharpness of abdominal organs, sharpness of vessels to be superior in images with VIBESR (p values ranged between p = 0.005 and p < 0.001). Despite reduction of acquisition time, image contrast, noise, overall image quality and diagnostic confidence were not compromised, as there was no evidence of a difference between VIBESR and VIBESD (p > 0.05). The inter-reader agreement was substantial with a Fleiss' Kappa of >0.7 in all contrast phases. A total of 13 hepatic lesions were analyzed. The four readers observed a superior lesion conspicuity in VIBESR than in VIBESD (p values ranged between p = 0.046 and p < 0.001). In terms of lesion size, there was no significant difference between VIBESD and VIBESR for all readers. Finally, there was an excellent inter-reader agreement regarding lesion size (ICC > 0.9). For all readers, no statistically significant difference was observed regarding detection of hepatic lesions between VIBESD and VIBESR. CONCLUSION: The deep learning-based super-resolution reconstruction with partial Fourier in the slice phase-encoding direction enabled a reduction of breath-hold time and improved image sharpness and lesion conspicuity in T1-weighted gradient echo sequences in abdominal magnetic resonance imaging at 3 Tesla. Faster acquisition time without compromising image quality or diagnostic confidence was possible by using this deep learning-based reconstruction technique.


Assuntos
Aprendizado Profundo , Doenças do Sistema Digestório , Masculino , Humanos , Feminino , Estudos Retrospectivos , Reprodutibilidade dos Testes , Meios de Contraste , Imageamento por Ressonância Magnética/métodos , Aumento da Imagem/métodos , Artefatos
5.
Eur J Radiol ; 165: 110953, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37399667

RESUMO

PURPOSE: Routine multiparametric MRI of the prostate reduces overtreatment and increases sensitivity in the diagnosis of the most common solid cancer in men. However, the capacity of MRI systems is limited. Here we investigate the ability of deep learning image reconstruction to accelerate time consuming diffusion-weighted imaging (DWI) acquisition while maintaining diagnostic image quality. METHOD: In this retrospective study, raw data of DWI sequences of consecutive patients undergoing MRI of the prostate at a tertiary care hospital in Germany were reconstructed using standard and deep learning reconstruction. To simulate a shortening of acquisition times by 39 %, one instead of two and six instead of ten averages were used in the reconstruction of b = 0 and 1000 s/mm2 images, respectively. Image quality was assessed by three radiologists and objective image quality metrics. RESULTS: After the application of exclusion criteria, 35 out of 147 patients examined between September 2022 and January 2023 were included in this study. The radiologists perceived less image noise on deep learning reconstructed images at b = 0 s/mm2 images and ADC maps with good inter-reader agreement. Signal-to-noise ratios were similar overall with discretely reduced values in the transitional zone after deep learning reconstruction. CONCLUSIONS: An acquisition time reduction of 39 % without loss in image quality is feasible in DWI of the prostate when using deep learning image reconstruction.


Assuntos
Aprendizado Profundo , Neoplasias da Próstata , Masculino , Humanos , Próstata/diagnóstico por imagem , Estudos Retrospectivos , Neoplasias da Próstata/diagnóstico por imagem , Reprodutibilidade dos Testes , Imagem de Difusão por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética , Processamento de Imagem Assistida por Computador/métodos
6.
Diagnostics (Basel) ; 13(17)2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37685285

RESUMO

OBJECTIVE: The objective of this study was to evaluate a deep learning (DL) reconstruction for turbo spin echo (TSE) sequences of the elbow regarding image quality and visualization of anatomy. MATERIALS AND METHODS: Between October 2020 and June 2021, seventeen participants (eight patients, nine healthy subjects; mean age: 43 ± 16 (20-70) years, eight men) were prospectively included in this study. Each patient underwent two examinations: standard MRI, including TSE sequences reconstructed with a generalized autocalibrating partial parallel acquisition reconstruction (TSESTD), and prospectively undersampled TSE sequences reconstructed with a DL reconstruction (TSEDL). Two radiologists evaluated the images concerning image quality, noise, edge sharpness, artifacts, diagnostic confidence, and delineation of anatomical structures using a 5-point Likert scale, and rated the images concerning the detection of common pathologies. RESULTS: Image quality was significantly improved in TSEDL (mean 4.35, IQR 4-5) compared to TSESTD (mean 3.76, IQR 3-4, p = 0.008). Moreover, TSEDL showed decreased noise (mean 4.29, IQR 3.5-5) compared to TSESTD (mean 3.35, IQR 3-4, p = 0.004). Ratings for delineation of anatomical structures, artifacts, edge sharpness, and diagnostic confidence did not differ significantly between TSEDL and TSESTD (p > 0.05). Inter-reader agreement was substantial to almost perfect (κ = 0.628-0.904). No difference was found concerning the detection of pathologies between the readers and between TSEDL and TSESTD. Using DL, the acquisition time could be reduced by more than 35% compared to TSESTD. CONCLUSION: TSEDL provided improved image quality and decreased noise while receiving equal ratings for edge sharpness, artifacts, delineation of anatomical structures, diagnostic confidence, and detection of pathologies compared to TSESTD. Providing more than a 35% reduction of acquisition time, TSEDL may be clinically relevant for elbow imaging due to increased patient comfort and higher patient throughput.

7.
Diagnostics (Basel) ; 11(12)2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34943604

RESUMO

Over the last decades, overall survival for most cancer types has increased due to earlier diagnosis and more effective treatments. Simultaneously, whole-body MRI-(WB-MRI) has gained importance as a radiation free staging alternative to computed tomography. The aim of this study was to evaluate the diagnostic confidence and reproducibility of a novel abbreviated 20-min WB-MRI for oncologic follow-up imaging in patients with melanoma. In total, 24 patients with melanoma were retrospectively included in this institutional review board-approved study. All patients underwent three consecutive staging examinations via WB-MRI in a clinical 3 T MR scanner with an abbreviated 20-min protocol. Three radiologists independently evaluated the images in a blinded, random order regarding image quality (overall image quality, organ-based image quality, sharpness, noise, and artifacts) and regarding its diagnostic confidence on a 5-point-Likert-Scale (5 = excellent). Inter-reader agreement and reproducibility were assessed. Overall image quality and diagnostic confidence were rated to be excellent (median 5, interquartile range [IQR] 5-5). The sharpness of anatomic structures, and the extent of noise and artifacts, as well as the assessment of lymph nodes, liver, bone, and the cutaneous system were rated to be excellent (median 5, IQR 4-5). The image quality of the lung was rated to be good (median 4, IQR 4-5). Therefore, our study demonstrated that the novel accelerated 20-min WB-MRI protocol is feasible, providing high image quality and diagnostic confidence with reliable reproducibility for oncologic follow-up imaging.

8.
Invest Radiol ; 56(5): 313-319, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33208596

RESUMO

OBJECTIVE: The aim of this study was to evaluate the feasibility of a single breath-hold fast half-Fourier single-shot turbo spin echo (HASTE) sequence using a deep learning reconstruction (HASTEDL) for T2-weighted magnetic resonance imaging of the abdomen as compared with 2 standard T2-weighted imaging sequences (HASTE and BLADE). MATERIALS AND METHODS: Sixty-six patients who underwent 1.5-T liver magnetic resonance imaging were included in this monocentric, retrospective study. The following T2-weighted sequences in axial orientation and using spectral fat suppression were compared: a conventional respiratory-triggered BLADE sequence (time of acquisition [TA] = 4:00 minutes), a conventional multiple breath-hold HASTE sequence (HASTES) (TA = 1:30 minutes), as well as a single breath-hold HASTE with deep learning reconstruction (HASTEDL) (TA = 0:16 minutes). Two radiologists assessed the 3 sequences regarding overall image quality, noise, sharpness, diagnostic confidence, and lesion detectability as well as lesion characterization using a Likert scale ranging from 1 to 4 with 4 being the best. Comparative analyses were conducted to assess the differences between the 3 sequences. RESULTS: HASTEDL was successfully acquired in all patients. Overall image quality for HASTEDL was rated as good (median, 3; interquartile range, 3-4) and was significantly superior to HASTEs (P < 0.001) and inferior to BLADE (P = 0.001). Noise, sharpness, and artifacts for HASTEDL reached similar levels to BLADE (P ≤ 0.176) and were significantly superior to HASTEs (P < 0.001). Diagnostic confidence for HASTEDL was rated excellent by both readers and significantly superior to HASTEs (P < 0.001) and inferior to BLADE (P = 0.044). Lesion detectability and lesion characterization for HASTEDL reached similar levels to those of BLADE (P ≤ 0.523) and were significantly superior to HASTEs (P < 0.001). Concerning the number of detected lesions and the measured diameter of the largest lesion, no significant differences were found comparing BLADE, HASTES, and HASTEDL (P ≤ 0.912). CONCLUSIONS: The single breath-hold HASTEDL is feasible and yields comparable image quality and diagnostic confidence to standard T2-weighted TSE BLADE and may therefore allow for a remarkable time saving in abdominal imaging.


Assuntos
Aprendizado Profundo , Abdome/diagnóstico por imagem , Artefatos , Estudos de Viabilidade , Humanos , Imageamento por Ressonância Magnética , Estudos Retrospectivos
9.
Invest Radiol ; 55(5): 277-284, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31895222

RESUMO

OBJECTIVES: The aim of this study was to evaluate the performance of an automated workflow for multiparametric magnetic resonance imaging (mpMRI) of the prostate compared with a manual mpMRI workflow. MATERIALS AND METHODS: This retrospective study was approved by the local ethics committee. Two MR technicians scanned 2 healthy volunteers with a prototypical highly automated workflow (Siemens Healthineers GmbH, Erlangen, Germany) and with a manually adjusted scan protocol each. Thirty patients (mean age ± standard deviation, 68 ± 11 years; range, 41-93 years) with suspected prostate cancer underwent mpMRI on a 3 T MRI scanner. Fifteen patients were examined with the automated workflow and 15 patients with a conventional manual workflow. Two readers assessed image quality (contrast, zone distinction, organ margins, seminal vesicles, lymph nodes), organ coverage, orientation (T2w sequences), and artifacts (motion, susceptibility, noise) on a 5-point scale (1, poor; 5, excellent). Examination time and MR technicians' acceptance were compared between both groups. Interreader agreement was evaluated with Cohen's kappa (κ). RESULTS: The automated workflow proved consistent for sequence orientation and image quality in the intraindividual comparisons. There were no significant differences in examination time (automated vs manual; median 26 vs 28 minutes; interquartile range [IQR], 25-28 minutes each; P = 0.57), study volume coverage, artifacts, or scores for T2w sequence orientation (5 vs 4 each; P > 0.3). Overall image quality was superior for automated MRI (4.6 vs 3.8; IQR, 3.9-4.8 vs 3.2-4.3; P = 0.002), especially concerning organ delineation and seminal vesicles (P = 0.045 and P = 0.013). The acceptance score was higher for the manual workflow (median, 10 vs 8; IQR, 10 vs 7-10; P = 0.002). General interreader agreement was excellent (κ = 0.832; P < 0.001). CONCLUSIONS: The automated workflow for prostate MRI ensures accurate sequence orientation and maintains high image quality, whereas examination time remained unaffected compared with the manual procedure in our institution.


Assuntos
Artefatos , Imageamento por Ressonância Magnética Multiparamétrica/métodos , Neoplasias da Próstata/diagnóstico , Adulto , Idoso , Idoso de 80 Anos ou mais , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA