Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
New Phytol ; 2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38853424

RESUMO

The 'assimilates inhibition hypothesis' posits that accumulation of nonstructural carbohydrates (NSCs) in leaves reduces leaf net photosynthetic rate, thus internally regulating photosynthesis. Experimental work provides equivocal support mostly under controlled conditions without identifying a particular NSC as involved in the regulation. We combined 3-yr in situ leaf gas exchange observations (natural dynamics) in the upper crown of mature Betula pendula simultaneously with measurements of concentrations of sucrose, hexoses (glucose and fructose), and starch, and similar measurements during several one-day shoot girdling (perturbation dynamics). Leaf water potential and water and nitrogen content were measured to account for their possible contribution to photosynthesis regulation. Leaf photosynthetic capacity (A/Ci) was temporally negatively correlated with NSC accumulation under both natural and perturbation states. For developed leaves, leaf hexose concentration explained A/Ci variation better than environmental variables (temperature history and daylength); the opposite was observed for developing leaves. The weaker correlations between NSCs and A/Ci in developing leaves may reflect their strong internal sink strength for carbohydrates. By contrast, the strong decline in photosynthetic capacity with NSCs accumulation in mature leaves, observed most clearly with hexose, and even more tightly with its constituents, provides support for the role of assimilates in regulating photosynthesis under natural conditions.

2.
J Exp Bot ; 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38779859

RESUMO

Stem CO2 efflux is an important component of the carbon balance in forests. The efflux is considered to principally reflect the net result of two dominating and opposing processes: stem respiration and stem photosynthesis. In addition, transport of CO2 in xylem sap is thought to play an appreciable role in affecting the net flux. This work presents an approach to partition stem CO2 efflux among these processes using sap-flux data and CO2-exchange measurements from dark and transparent chambers placed on mature Scots pine (Pinus sylvestris) trees. Seasonal changes and monthly parameters describing the studied processes were determined. Respiration contributed most to stem net CO2 flux, reaching up to 79% (considering the sum of the absolute values of stem respiration, stem photosynthesis and flux from CO2 transported in xylem sap to be 100%) in June, when stem growth was greatest. Photosynthesis contribution accounted for up to 13 % of the stem net CO2 flux, increasing over the monitoring period. CO2 transported axially with sap flow, decreased towards the end of the growing season. At a reference temperature, respiration decreased starting around midsummer, while its temperature sensitivity increased during the summer. A decline was observed for photosynthetic quantum yield around midsummer together with decreasing light-saturation point. The proposed approach facilitates modeling net stem CO2 flux at a range of time scales.

3.
Glob Chang Biol ; 30(4): e17275, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38624252

RESUMO

Solar radiation is scattered by cloud cover, aerosols and other particles in the atmosphere, all of which are affected by global changes. Furthermore, the diffuse fraction of solar radiation is increased by more frequent forest fires and likewise would be if climate interventions such as stratospheric aerosol injection were adopted. Forest ecosystem studies predict that an increase in diffuse radiation would result in higher productivity, but ecophysiological data are required to identify the processes responsible within the forest canopy. In our study, the response of a boreal forest to direct, diffuse and heterogeneous solar radiation conditions was examined during the daytime in the growing season to determine how carbon uptake is affected by radiation conditions at different scales. A 10-year data set of ecosystem, shoot and forest floor vegetation carbon and water-flux data was examined. Ecosystem-level carbon assimilation was higher under diffuse radiation conditions in comparison with direct radiation conditions at equivalent total photosynthetically active radiation (PAR). This was driven by both an increase in shoot and forest floor vegetation photosynthetic rate. Most notably, ecosystem-scale productivity was strongly related to the absolute amount of diffuse PAR, since it integrates both changes in total PAR and diffuse fraction. This finding provides a gateway to explore the processes by which absolute diffuse PAR enhances productivity, and the long-term persistence of this effect under scenarios of higher global diffuse radiation.


Assuntos
Ecossistema , Taiga , Florestas , Atmosfera , Carbono
4.
J Exp Bot ; 74(18): 5840-5853, 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37463327

RESUMO

Freeze-thaw-induced embolism, a key limiting factor for perennial plants results from the formation of gas bubbles during freezing and their expansion during thawing. However, the ice volumetric increase generates local pressures, which can affect the formation of bubbles. To characterize local dynamics of pressure tension and the physical state of the sap during freeze-thaw cycles, we simultaneously used ultrasonic acoustic emission analysis and synchrotron-based high-resolution computed tomography on the diffuse-porous species Betula pendula. Visualization of individual air-filled vessels and the distribution of gas bubbles in frozen xylem were performed.. Ultrasonic emissions occurred after ice formation, together with bubble formation, whereas the development of embolism took place after thawing. The pictures of frozen tissues indicated that the positive pressure induced by the volumetric increase of ice can provoke inward flow from the cell wall toward the lumen of the vessels. We found no evidence that wider vessels within a tissue were more prone to embolism, although the occurrence of gas bubbles in larger conduits would make them prone to earlier embolism. These results highlight the need to monitor local pressure as well as ice and air distribution during xylem freezing to understand the mechanism leading to frost-induced embolism.

5.
New Phytol ; 235(1): 66-77, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35342950

RESUMO

Plants are recognized as sources of aerobically produced methane (CH4 ), but the seasonality, environmental drivers and significance of CH4 emissions from the canopies of evergreen boreal trees remain poorly understood. We measured the CH4 fluxes from the shoots of Pinus sylvestris (Scots pine) and Picea abies (Norway spruce) saplings in a static, non-steady-state chamber setup to investigate if the shoots of boreal conifers are a source of CH4 during spring. We found that the shoots of Scots pine emitted CH4 and these emissions correlated with the photosynthetically active radiation. For Norway spruce, the evidence for CH4 emissions from the shoots was inconclusive. Our study shows that the canopies of evergreen boreal trees are a potential source of CH4 in the spring and that these emissions are driven by a temperature-by-light interaction effect of solar radiation either directly or indirectly through its effects on tree physiological processes.


Assuntos
Picea , Pinus sylvestris , Pinus , Metano , Árvores
6.
Ecol Appl ; 31(4): e02312, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33630380

RESUMO

Climate change will impact forest productivity worldwide. Forecasting the magnitude of such impact, with multiple environmental stressors changing simultaneously, is only possible with the help of process-based models. In order to assess their performance, such models require careful evaluation against measurements. However, direct comparison of model outputs against observational data is often not reliable, as models may provide the right answers due to the wrong reasons. This would severely hinder forecasting abilities under unprecedented climate conditions. Here, we present a methodology for model assessment, which supplements the traditional output-to-observation model validation. It evaluates model performance through its ability to reproduce observed seasonal changes of the most limiting environmental driver (MLED) for a given process, here daily gross primary productivity (GPP). We analyzed seasonal changes of the MLED for GPP in two contrasting pine forests, the Mediterranean Pinus halepensis Mill. Yatir (Israel) and the boreal Pinus sylvestris L. Hyytiälä (Finland) from three years of eddy-covariance flux data. Then, we simulated the same period with a state-of-the-art process-based simulation model (LandscapeDNDC). Finally, we assessed if the model was able to reproduce both GPP observations and MLED seasonality. We found that the model reproduced the seasonality of GPP in both stands, but it was slightly overestimated without site-specific fine-tuning. Interestingly, although LandscapeDNDC properly captured the main MLED in Hyytiälä (temperature) and in Yatir (soil water availability), it failed to reproduce high-temperature and high-vapor pressure limitations of GPP in Yatir during spring and summer. We deduced that the most likely reason for this divergence is an incomplete description of stomatal behavior. In summary, this study validates the MLED approach as a model evaluation tool, and opens up new possibilities for model improvement.


Assuntos
Ecossistema , Pinus , Finlândia , Florestas , Israel
7.
New Phytol ; 226(3): 690-703, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31955422

RESUMO

Photosynthetic rate is concurrently limited by stomatal limitations and nonstomatal limitations (NSLs). However, the controls on NSLs to photosynthesis and their coordination with stomatal control on different timescales remain poorly understood. According to a recent optimization hypothesis, NSLs depend on leaf osmotic or water status and are coordinated with stomatal control so as to maximize leaf photosynthesis. Drought and notching experiments were conducted on Pinus sylvestris, Picea abies, Betula Pendula and Populus tremula seedlings in glasshouse conditions to study the dependence of NSLs on leaf osmotic and water status, and their coordination with stomatal control, on timescales of minutes and weeks, to test the assumptions and predictions of the optimization hypothesis. Both NSLs and stomatal conductance followed power-law functions of leaf osmotic concentration and leaf water potential. Moreover, stomatal conductance was proportional to the square root of soil-to-leaf hydraulic conductance, as predicted by the optimization hypothesis. Though the detailed mechanisms underlying the dependence of NSLs on leaf osmotic or water status lie outside the scope of this study, our results support the hypothesis that NSLs and stomatal control are coordinated to maximize leaf photosynthesis and allow the effect of NSLs to be included in models of tree gas-exchange.


Assuntos
Árvores , Água , Carbono , Fotossíntese , Folhas de Planta , Estômatos de Plantas
8.
Plant Cell Environ ; 43(3): 532-547, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31873942

RESUMO

Understanding stomatal regulation is fundamental to predicting the impact of changing environmental conditions on vegetation. However, the influence of soil temperature (ST) and soil water content (SWC) on canopy conductance (gs ) through changes in belowground hydraulic conductance (kbg ) remains poorly understood, because kbg has seldom been measured in field conditions. Our aim was to (a) examine the dependence of kbg on ST and SWC, (b) examine the dependence of gs on kbg and (c) test a recent stomatal optimization model according to which gs and soil-to-leaf hydraulic conductance are strongly coupled. We estimated kbg from continuous sap flow and xylem diameter measurements in three boreal species. kbg increased strongly with increasing ST when ST was below +8°C, and typically increased with increasing SWC when ST was not limiting. gs was correlated with kbg in all three species, and modelled and measured gs were well correlated in Pinus sylvestris (a model comparison was only possible for this species). These results imply an important role for kbg in mediating linkages between the soil environment and leaf gas exchange. In particular, our finding that ST strongly influences kbg in mature trees may help us to better understand tree behaviour in cold environments.


Assuntos
Gases/metabolismo , Folhas de Planta/fisiologia , Solo , Temperatura , Água/metabolismo , Alnus/fisiologia , Modelos Biológicos , Pinus/fisiologia , Caules de Planta/fisiologia , Especificidade da Espécie , Tilia/fisiologia , Fatores de Tempo , Xilema/fisiologia
9.
New Phytol ; 218(4): 1383-1392, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29655212

RESUMO

Trees scale leaf (AL ) and xylem (AX ) areas to couple leaf transpiration and carbon gain with xylem water transport. Some species are known to acclimate in AL  : AX balance in response to climate conditions, but whether trees of different species acclimate in AL  : AX in similar ways over their entire (continental) distributions is unknown. We analyzed the species and climate effects on the scaling of AL vs AX in branches of conifers (Pinus sylvestris, Picea abies) and broadleaved (Betula pendula, Populus tremula) sampled across a continental wide transect in Europe. Along the branch axis, AL and AX change in equal proportion (isometric scaling: b Ëœ 1) as for trees. Branches of similar length converged in the scaling of AL vs AX with an exponent of b = 0.58 across European climates irrespective of species. Branches of slow-growing trees from Northern and Southern regions preferentially allocated into new leaf rather than xylem area, with older xylem rings contributing to maintaining total xylem conductivity. In conclusion, trees in contrasting climates adjust their functional balance between water transport and leaf transpiration by maintaining biomass allocation to leaves, and adjusting their growth rate and xylem production to maintain xylem conductance.


Assuntos
Folhas de Planta/anatomia & histologia , Árvores/crescimento & desenvolvimento , Madeira/anatomia & histologia , Europa (Continente) , Geografia , Modelos Estatísticos , Especificidade da Espécie , Árvores/anatomia & histologia , Xilema/anatomia & histologia
10.
Plant Cell Environ ; 40(10): 2160-2173, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28671720

RESUMO

Preconditions of phloem transport in conifers are relatively unknown. We studied the variation of needle and inner bark axial osmotic gradients and xylem water potential in Scots pine and Norway spruce by measuring needle and inner bark osmolality in saplings and mature trees over several periods within a growing season. The needle and inner bark osmolality was strongly related to xylem water potential in all studied trees. Sugar concentrations were measured in Scots pine, and they had similar dynamics to inner bark osmolality. The sucrose quantity remained fairly constant over time and position, whereas the other sugars exhibited a larger change with time and position. A small osmotic gradient existed from branch to stem base under pre-dawn conditions, and the osmotic gradient between upper stem and stem base was close to zero. The turgor in branches was significantly driven by xylem water potential, and the turgor loss point in branches was relatively close to daily minimum needle water potentials typically reported for Scots pine. Our results imply that xylem water potential considerably impacts the turgor pressure gradient driving phloem transport and that gravitation has a relatively large role in phloem transport in the stems of mature Scots pine trees.


Assuntos
Osmose , Picea/fisiologia , Pinus sylvestris/fisiologia , Casca de Planta/fisiologia , Folhas de Planta/fisiologia , Meio Ambiente , Frutose/metabolismo , Glucose/metabolismo , Concentração Osmolar , Caules de Planta/fisiologia , Pressão , Água , Xilema/fisiologia
11.
Tree Physiol ; 44(4)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38470306

RESUMO

Drought is a major environmental stressor that limits seedling growth. Several studies have found that some ectomycorrhizal fungi may increase the drought tolerance of nursery-raised seedlings. However, the precise role that different ectomycorrhizal fungi species play in drought tolerance remains unclear. We evaluated the transpiration rate of Pinus sylvestris seedlings under drought stress in greenhouse conditions by exposing seedlings to 10 ectomycorrhizal fungi species, with different functional traits (exploration type and hydrophobicity), and to 3 natural soil inoculums. We measured the transpiration and water potential of the seedlings during a 10-day drought period and a 14-day recovery period. We then analyzed their root morphology, stem, needle, root biomass and needle chlorophyll fluorescence. We showed that exposing seedlings to ectomycorrhizal fungi or soil inoculum had a positive effect on their transpiration rate during the driest period and through the recovery phase, leading to 2- to 3-fold higher transpiration rates compared with the nonexposed control seedlings. Seedlings exposed to medium-distance ectomycorrhizal fungi performed better than other exploration types under drought conditions, but ectomycorrhizal fungi hydrophobicity did not seem to affect the seedlings response to drought. No significant differences were observed in biomass accumulation and root morphology between the seedlings exposed to different ectomycorrhizal fungi species and the control. Our results highlight the positive and species-specific effect of ectomycorrhizal fungi exposure on drought tolerance in nursery-raised Scots pine seedlings. The studied ectomycorrhizal fungi functional traits may not be sufficient to predict the seedling response to drought stress, thus physiological studies across multiple species are needed to draw the correct conclusion. Our findings have potential practical implications for enhancing seedling drought tolerance in nursery plant production.


Assuntos
Micorrizas , Pinus sylvestris , Pinus , Pinus sylvestris/fisiologia , Plântula/fisiologia , Biomassa , Raízes de Plantas/fisiologia , Secas , Transpiração Vegetal/fisiologia , Solo , Pinus/fisiologia
12.
Front Plant Sci ; 12: 786593, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34992621

RESUMO

Maintaining sufficient water transport via the xylem is crucial for tree survival under variable environmental conditions. Both efficiency and safety of the water transport are based on the anatomical structure of conduits and their connections, the pits. Yet, the plasticity of the xylem anatomy, particularly that of the pit structures, remains unclear. Also, trees adjust conduit dimensions to the water transport distance (i.e., tree size), but knowledge on respective adjustments in pit dimensions is scarce. We compared tracheid traits [mean tracheid diameter d, mean hydraulic diameter d h , cell wall reinforcement (t/b)2], pit dimensions (diameters of pit aperture D a , torus D t , margo D m , and pit border D p ), and pit functional properties (margo flexibility F, absolute overlap O a , torus overlap O, and valve effect V ef ) of two Scots pine (Pinus sylvestris L.) stands of similar tree heights but contrasting growth rates. Furthermore, we analyzed the trends of these xylem anatomical parameters across tree rings. Tracheid traits and pit dimensions were similar on both sites, whereas O a , O, and F were higher at the site with a lower growth rate. On the lower growth rate site, d h and pit dimensions increased across tree rings from pith to bark, and in trees from both sites, d h scaled with pit dimensions. Adjusted pit functional properties indicate slightly higher hydraulic safety in trees with a lower growth rate, although a lack of major differences in measured traits indicated overall low plasticity of the tracheid and pit architecture. Mean hydraulic diameter and pit dimension are well coordinated to increase the hydraulic efficiency toward the outer tree rings and thus with increasing tree height. Our results contribute to a better understanding of tree hydraulics under variable environmental conditions.

13.
Front Plant Sci ; 12: 732701, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34975934

RESUMO

Air seeded nanobubbles have recently been observed within tree sap under negative pressure. They are stabilized by an as yet unidentified process, although some embolize their vessels in extreme circumstances. Current literature suggests that a varying surface tension helps bubbles survive, but few direct measurements of this quantity have been made. Here, we present calculations of dynamic surface tension for two biologically relevant lipids using molecular dynamics simulations. We find that glycolipid monolayers resist expansion proportionally to the rate of expansion. Their surface tension increases with the tension applied, in a similar way to the viscosity of a non-Newtonian fluid. In contrast, a prototypical phospholipid was equally resistant to all applied tensions, suggesting that the fate of a given nanobubble is dependent on its surface composition. By incorporating our results into a Classical Nucleation Theory (CNT) framework, we predict nanobubble stability with respect to embolism. We find that the metastable radius of glycolipid coated nanobubbles is approximately 35 nm, and that embolism is in this case unlikely when the external pressure is less negative than -1.5 MPa.

14.
Front Plant Sci ; 12: 790684, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34987535

RESUMO

Drought can cause tree mortality through hydraulic failure and carbon starvation. To prevent excess water loss, plants typically close their stomata before massive embolism formation occurs. However, unregulated water loss through leaf cuticles and bark continues after stomatal closure. Here, we studied the diurnal and seasonal dynamics of bark transpiration and how it is affected by tree water availability. We measured continuously for six months water loss and CO2 efflux from branch segments and needle-bearing shoots in Pinus halepensis growing in a control and an irrigation plot in a semi-arid forest in Israel. Our aim was to find out how much passive bark transpiration is affected by tree water status in comparison with shoot transpiration and bark CO2 emission that involve active plant processes, and what is the role of bark transpiration in total tree water use during dry summer conditions. Maximum daily water loss rate per bark area was 0.03-0.14 mmol m-2 s-1, which was typically ~76% of the shoot transpiration rate (on leaf area basis) but could even surpass the shoot transpiration rate during the highest evaporative demand in the control plot. Irrigation did not affect bark transpiration rate. Bark transpiration was estimated to account for 64-78% of total water loss in drought-stressed trees, but only for 6-11% of the irrigated trees, due to differences in stomatal control between the treatments. Water uptake through bark was observed during most nights, but it was not high enough to replenish the lost water during the day. Unlike bark transpiration, branch CO2 efflux decreased during drought due to decreased metabolic activity. Our results demonstrate that although bark transpiration represents a small fraction of the total water loss through transpiration from foliage in non-stressed trees, it may have a large impact during drought.

15.
Tree Physiol ; 30(11): 1433-47, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21030407

RESUMO

We studied the effect of tree architecture on xylem anatomy in three Betula pendula Roth., three Picea abies (L.) H. Karst. and three Pinus sylvestris (L.) trees (mean age 35 years). First, the analysis of conduit anatomy in different tree parts showed that conduits tapered and their frequency increased from roots (≥ 2 mm) to stem, from stem to branches and further to leaf petioles in B. pendula. Conduit anatomy in lateral and main roots, as well as lateral and main branches, significantly differed from each other in all the studied species. The increase in conduit diameter and decrease in frequency from the pith to the bark were clear aboveground, but variable patterns were observed belowground. In the leaf petioles of B. pendula, conduit diameter increased and conduit frequency decreased with increasing individual leaf area. Second, the results concerning the scaling of conduit diameter were compared with the predictions of the general vascular scaling model (WBE model) and Murray's law. The scaling parameter values at the tree level corresponded with the predictions of the WBE model in all the studied trees except for one tree of both conifer species. However, the scaling parameter values changed from one tree compartment to another rather than remaining uniform inside a tree, as assumed by the WBE model. The assumptions of the WBE model of a constant conductivity ratio, constant tapering and an unchanged total number of conduits were not fulfilled. When the conductivity ratio and relative tapering were plotted together, the results aboveground corresponded quite well with Murray's law: the conductivity ratio increased when relative tapering decreased. Our results support the theory that trees adjust both their macro- and microstructure to maximize their water transport efficiency, but also to prevent embolism and ensure mechanical safety.


Assuntos
Betula/anatomia & histologia , Picea/anatomia & histologia , Pinus/anatomia & histologia , Componentes Aéreos da Planta/anatomia & histologia , Raízes de Plantas/anatomia & histologia , Xilema/anatomia & histologia , Adaptação Fisiológica , Betula/crescimento & desenvolvimento , Análise dos Mínimos Quadrados , Modelos Biológicos , Picea/crescimento & desenvolvimento , Pinus/crescimento & desenvolvimento , Componentes Aéreos da Planta/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento , Brotos de Planta/anatomia & histologia , Xilema/crescimento & desenvolvimento
16.
Tree Physiol ; 40(2): 170-182, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-31860711

RESUMO

Ice formation and propagation in the xylem of plants is a complex process. During freezing of xylem sap, gases dissolved in liquid sap are forced out of the ice lattice due to their low solubility in ice, and supersaturation of xylem sap as well as low water potential (Ñ°) are induced at the ice-liquid interface. Supersaturation of gases near the ice front may lead to bubble formation and potentially to cavitation and/or to burst of gases driven out from the branch. In this study, we investigated the origin and dynamics of freezing-related gas bursts and ultrasonic acoustic emissions (AEs), which are suggested to indicate cavitation. Picea abies (L.) H. Karst. and Salix caprea L. branch segments were exposed to frost cycles in a temperature test chamber, and CO2 efflux (indicating gas bursts) and AEs were recorded. On freezing, two-thirds of the observed gas bursts originated from the xylem and only one-third from the bark. Simultaneously with gas bursts, AEs were detected. Branch Ñ° affected both gas bursts and AEs, with high gas burst in saturated and dry samples but relevant AEs only in the latter. Repeated frost cycles led to decreasing gas burst volumes and AE activity. Experiments revealed that the expanding ice front in freezing xylem was responsible for observed gas bursts and AEs, and that branch Ñ° influenced both processes. Results also indicated that gas bursts and cavitation are independently induced by ice formation, though both may be relevant for bubble dynamics during freezing.


Assuntos
Gelo , Ultrassom , Acústica , Congelamento , Gases , Xilema
17.
Methods Mol Biol ; 2014: 135-142, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31197792

RESUMO

Sugar transport in the phloem is driven by turgor pressure gradients which are created by osmotic gradients resulting from sugars loaded to the phloem at the source tissue and unloaded at the sink tissue. Therefore, osmolality is a key parameter that can be used to evaluate sugar status and get an indication of the driving force for phloem transport. Here we describe how osmotic concentration measurements from inner bark (practically, the phloem) and needles of trees can be measured. This protocol presents the procedure used by Lintunen et al. (Front Plant Sci 7:726, 2016) and Paljakka et al. (Plant Cell Environ 40:2160-2173, 2017), extended by practical advice and discussion of potential errors and caveats. We describe how to implement this procedure for gymnosperm as well as angiosperm trees. This method uses mechanical sap extraction with a centrifuge from inner bark and leaf samples, which have gone through a deep freeze treatment and thawing. The osmotic potential of these samples is then analyzed with a freezing point or vapor pressure osmometer. The aim of these measurements is to study the spatial and temporal dynamics of phloem function.


Assuntos
Concentração Osmolar , Casca de Planta/fisiologia , Folhas de Planta/fisiologia , Osmose , Temperatura
18.
Ecol Evol ; 8(1): 333-343, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29321875

RESUMO

It is not well understood what determines the degree of supercooling of apoplastic sap in trees, although it determines the number and duration of annual freeze-thaw cycles in a given environment. We studied the linkage between apoplastic ice nucleation temperature, tree water status, and conduit size. We used branches of 10 gymnosperms and 16 angiosperms collected from an arboretum in Helsinki (Finland) in winter and spring. Branches with lower relative water content froze at lower temperatures, and branch water content was lower in winter than in spring. A bench drying experiment with Picea abies confirmed that decreasing branch water potential decreases apoplastic ice nucleation temperature. The studied angiosperms froze on average 2.0 and 1.8°C closer to zero Celsius than the studied gymnosperms during winter and spring, respectively. This was caused by higher relative water content in angiosperms; when branches were saturated with water, apoplastic ice nucleation temperature of gymnosperms increased to slightly higher temperature than that of angiosperms. Apoplastic ice nucleation temperature in sampled branches was positively correlated with xylem conduit diameter as shown before, but saturating the branches removed the correlation. Decrease in ice nucleation temperature decreased the duration of freezing, which could have an effect on winter embolism formation via the time available for gas escape during ice propagation. The apoplastic ice nucleation temperature varied not only between branches but also within a branch between consecutive freeze-thaw cycles demonstrating the stochastic nature of ice nucleation.

19.
Tree Physiol ; 37(4): 491-500, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-27998974

RESUMO

Trees experience low apoplastic water potential frequently in most environments. Low apoplastic water potential increases the risk of embolism formation in xylem conduits and creates dehydration stress for the living cells. We studied the magnitude and rate of xylem diameter change in response to decreasing apoplastic water potential and the role of living parenchyma cells in it to better understand xylem diameter changes in different environmental conditions. We compared responses of control and heat-injured xylem of Pinus sylvestris (L.) and Populus tremula (L.) branches to decreasing apoplastic water potential created by osmotic stress, desiccation and freezing. It was shown that xylem in control branches shrank more in response to decreasing apoplastic water potential in comparison with the samples that were preheated to damage living xylem parenchyma. By manipulating the osmotic pressure of the xylem sap, we observed xylem shrinkage due to decreasing apoplastic water potential even in the absence of water tension within the conduits. These results indicate that decreasing apoplastic water potential led to withdrawal of intracellular water from the xylem parenchyma, causing tissue shrinkage. The amount of xylem shrinkage per decrease in apoplastic water potential was higher during osmotic stress or desiccation compared with freezing. During desiccation, xylem diameter shrinkage involved both dehydration-related shrinkage of xylem parenchyma and water tension-induced shrinkage of conduits, whereas dehydration-related shrinkage of xylem parenchyma was accompanied by swelling of apoplastic ice during freezing. It was also shown that the exchange of water between symplast and apoplast within xylem is clearly faster than previously reported between the phloem and the xylem. Time constant of xylem shrinkage was 40 and 2 times higher during osmotic stress than during freezing stress in P. sylvestris and P. tremula, respectively. Finally, it was concluded that the amount of water stored in the xylem parenchyma is an important reservoir for trees to buffer daily fluctuations in water relations.


Assuntos
Dessecação , Congelamento , Pinus sylvestris/fisiologia , Populus/fisiologia , Estresse Fisiológico , Xilema/fisiologia , Pressão Osmótica , Água/fisiologia
20.
Tree Physiol ; 37(7): 851-868, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28338800

RESUMO

Trees must simultaneously balance their CO2 uptake rate via stomata, photosynthesis, the transport rate of sugars and rate of sugar utilization in sinks while maintaining a favourable water and carbon balance. We demonstrate using a numerical model that it is possible to understand stomatal functioning from the viewpoint of maximizing the simultaneous photosynthetic production, phloem transport and sink sugar utilization rate under the limitation that the transpiration-driven hydrostatic pressure gradient sets for those processes. A key feature in our model is that non-stomatal limitations to photosynthesis increase with decreasing leaf water potential and/or increasing leaf sugar concentration and are thus coupled to stomatal conductance. Maximizing the photosynthetic production rate using a numerical steady-state model leads to stomatal behaviour that is able to reproduce the well-known trends of stomatal behaviour in response to, e.g., light, vapour concentration difference, ambient CO2 concentration, soil water status, sink strength and xylem and phloem hydraulic conductance. We show that our results for stomatal behaviour are very similar to the solutions given by the earlier models of stomatal conductance derived solely from gas exchange considerations. Our modelling results also demonstrate how the 'marginal cost of water' in the unified stomatal conductance model and the optimal stomatal model could be related to plant structural and physiological traits, most importantly, the soil-to-leaf hydraulic conductance and soil moisture.


Assuntos
Modelos Teóricos , Fotossíntese , Estômatos de Plantas/fisiologia , Transpiração Vegetal , Dióxido de Carbono , Floema/fisiologia , Árvores/fisiologia , Água/fisiologia , Xilema/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA