Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 77(3): 475-487.e11, 2020 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-31759822

RESUMO

How repetitive elements, epigenetic modifications, and architectural proteins interact ensuring proper genome expression remains poorly understood. Here, we report regulatory mechanisms unveiling a central role of Alu elements (AEs) and RNA polymerase III transcription factor C (TFIIIC) in structurally and functionally modulating the genome via chromatin looping and histone acetylation. Upon serum deprivation, a subset of AEs pre-marked by the activity-dependent neuroprotector homeobox Protein (ADNP) and located near cell-cycle genes recruits TFIIIC, which alters their chromatin accessibility by direct acetylation of histone H3 lysine-18 (H3K18). This facilitates the contacts of AEs with distant CTCF sites near promoter of other cell-cycle genes, which also become hyperacetylated at H3K18. These changes ensure basal transcription of cell-cycle genes and are critical for their re-activation upon serum re-exposure. Our study reveals how direct manipulation of the epigenetic state of AEs by a general transcription factor regulates 3D genome folding and expression.


Assuntos
Elementos Alu/fisiologia , Histonas/metabolismo , Fatores de Transcrição TFIII/metabolismo , Acetilação , Elementos Alu/genética , Linhagem Celular , Cromatina/metabolismo , Cromatina/fisiologia , Epigênese Genética/genética , Regulação da Expressão Gênica/genética , Histonas/genética , Proteínas de Homeodomínio/genética , Humanos , Proteínas do Tecido Nervoso/genética , Regiões Promotoras Genéticas/genética , Processamento de Proteína Pós-Traducional , RNA Polimerase III/metabolismo , Fatores de Transcrição TFIII/genética , Transcrição Gênica/genética
2.
Mol Cell ; 73(1): 84-96.e7, 2019 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-30472187

RESUMO

The post-translational modification of key residues at the C-terminal domain of RNA polymerase II (RNAP2-CTD) coordinates transcription, splicing, and RNA processing by modulating its capacity to act as a landing platform for a variety of protein complexes. Here, we identify a new modification at the CTD, the deimination of arginine and its conversion to citrulline by peptidyl arginine deiminase 2 (PADI2), an enzyme that has been associated with several diseases, including cancer. We show that, among PADI family members, only PADI2 citrullinates R1810 (Cit1810) at repeat 31 of the CTD. Depletion of PADI2 or loss of R1810 results in accumulation of RNAP2 at transcription start sites, reduced gene expression, and inhibition of cell proliferation. Cit1810 is needed for interaction with the P-TEFb (positive transcription elongation factor b) kinase complex and for its recruitment to chromatin. In this way, CTD-Cit1810 favors RNAP2 pause release and efficient transcription in breast cancer cells.


Assuntos
Neoplasias da Mama/enzimologia , Processamento de Proteína Pós-Traducional , RNA Polimerase II/metabolismo , Transcrição Gênica , Arginina , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Proliferação de Células , Citrulinação , Feminino , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Células MCF-7 , Fator B de Elongação Transcricional Positiva/genética , Fator B de Elongação Transcricional Positiva/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Domínios Proteicos , Proteína-Arginina Desiminase do Tipo 2 , Desiminases de Arginina em Proteínas/genética , Desiminases de Arginina em Proteínas/metabolismo , RNA Polimerase II/química , RNA Polimerase II/genética , Transdução de Sinais
3.
Nat Methods ; 17(8): 822-832, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32719531

RESUMO

There is a need for methods that can image chromosomes with genome-wide coverage, as well as greater genomic and optical resolution. We introduce OligoFISSEQ, a suite of three methods that leverage fluorescence in situ sequencing (FISSEQ) of barcoded Oligopaint probes to enable the rapid visualization of many targeted genomic regions. Applying OligoFISSEQ to human diploid fibroblast cells, we show how four rounds of sequencing are sufficient to produce 3D maps of 36 genomic targets across six chromosomes in hundreds to thousands of cells, implying a potential to image thousands of targets in only five to eight rounds of sequencing. We also use OligoFISSEQ to trace chromosomes at finer resolution, following the path of the X chromosome through 46 regions, with separate studies showing compatibility of OligoFISSEQ with immunocytochemistry. Finally, we combined OligoFISSEQ with OligoSTORM, laying the foundation for accelerated single-molecule super-resolution imaging of large swaths of, if not entire, human genomes.


Assuntos
Coloração Cromossômica/métodos , Cromossomos/química , Cromossomos/genética , Genoma Humano , Humanos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Sondas de Oligonucleotídeos , Mapeamento Físico do Cromossomo
4.
Nucleic Acids Res ; 49(22): 12716-12731, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34850111

RESUMO

Here, we report that in T47D breast cancer cells 50 pM progestin is sufficient to activate cell cycle entry and the progesterone gene expression program. At this concentration, equivalent to the progesterone blood levels found around the menopause, progesterone receptor (PR) binds only to 2800 genomic sites, which are accessible to ATAC cleavage prior to hormone exposure. These highly accessible sites (HAs) are surrounded by well-organized nucleosomes and exhibit breast enhancer features, including estrogen receptor alpha (ERα), higher FOXA1 and BRD4 (bromodomain containing 4) occupancy. Although HAs are enriched in RAD21 and CTCF, PR binding is the driving force for the most robust interactions with hormone-regulated genes. HAs show higher frequency of 3D contacts among themselves than with other PR binding sites, indicating colocalization in similar compartments. Gene regulation via HAs is independent of classical coregulators and ATP-activated remodelers, relying mainly on MAP kinase activation that enables PR nuclear engagement. HAs are also preferentially occupied by PR and ERα in breast cancer xenografts derived from MCF-7 cells as well as from patients, indicating their potential usefulness as targets for therapeutic intervention.


Assuntos
Neoplasias da Mama/genética , Elementos Facilitadores Genéticos , Regulação Neoplásica da Expressão Gênica , Progestinas/fisiologia , Animais , Neoplasias da Mama/metabolismo , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células , Cromatina , Receptor alfa de Estrogênio/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Sistema de Sinalização das MAP Quinases , Células MCF-7 , Camundongos , Promegestona/farmacologia , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo
5.
EMBO Rep ; 14(9): 829-36, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23887685

RESUMO

Cell division entails a marked reorganization of the microtubule network to form the spindle, a molecular machine that ensures accurate chromosome segregation to the daughter cells. Spindle organization is highly dynamic throughout mitosis and requires the activity of several kinases and complex regulatory mechanisms. Aurora A (AurA) kinase is essential for the assembly of the metaphase bipolar spindle and, thus, it has been difficult to address its function during the last phases of mitosis. Here, we examine the consequences of inhibiting AurA in cells undergoing anaphase, and show that AurA kinase activity is necessary for the assembly of a robust central spindle during anaphase. We also identify TACC3 as an AurA substrate essential in central spindle formation.


Assuntos
Aurora Quinase A/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Fuso Acromático/metabolismo , Aurora Quinase A/antagonistas & inibidores , Aurora Quinase A/genética , Células HeLa , Humanos , Proteínas Associadas aos Microtúbulos/genética , Inibidores de Proteínas Quinases/farmacologia , Fuso Acromático/efeitos dos fármacos
6.
Plant Physiol ; 161(3): 1189-201, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23300168

RESUMO

The ordered arrangement of cortical microtubules in growing plant cells is essential for anisotropic cell expansion and, hence, for plant morphogenesis. These arrays are dismantled when the microtubule cytoskeleton is rearranged during mitosis and reassembled following completion of cytokinesis. The reassembly of the cortical array has often been considered as initiating from a state of randomness, from which order arises at least partly through self-organizing mechanisms. However, some studies have shown evidence for ordering at early stages of array assembly. To investigate how cortical arrays are initiated in higher plant cells, we performed live-cell imaging studies of cortical array assembly in tobacco (Nicotiana tabacum) Bright Yellow-2 cells after cytokinesis and drug-induced disassembly. We found that cortical arrays in both cases did not initiate randomly but with a significant overrepresentation of microtubules at diagonal angles with respect to the cell axis, which coincides with the predominant orientation of the microtubules before their disappearance from the cell cortex in preprophase. In Arabidopsis (Arabidopsis thaliana) root cells, recovery from drug-induced disassembly was also nonrandom and correlated with the organization of the previous array, although no diagonal bias was observed in these cells. Surprisingly, during initiation, only about one-half of the new microtubules were nucleated from locations marked by green fluorescent protein-γ-tubulin complex protein2-tagged γ-nucleation complexes (γ-tubulin ring complex), therefore indicating that a large proportion of early polymers was initiated by a noncanonical mechanism not involving γ-tubulin ring complex. Simulation studies indicate that the high rate of noncanonical initiation of new microtubules has the potential to accelerate the rate of array repopulation.


Assuntos
Arabidopsis/metabolismo , Microtúbulos/metabolismo , Nicotiana/metabolismo , Arabidopsis/citologia , Arabidopsis/efeitos dos fármacos , Linhagem Celular , Simulação por Computador , Citocinese/efeitos dos fármacos , Dinitrobenzenos/farmacologia , Proteínas de Fluorescência Verde/metabolismo , Microtúbulos/efeitos dos fármacos , Epiderme Vegetal/citologia , Epiderme Vegetal/efeitos dos fármacos , Raízes de Plantas/citologia , Raízes de Plantas/efeitos dos fármacos , Sulfanilamidas/farmacologia , Nicotiana/citologia , Nicotiana/efeitos dos fármacos , Tubulina (Proteína)/metabolismo
7.
Cancers (Basel) ; 11(9)2019 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-31510016

RESUMO

The growth of cancer cells as oncospheres in three-dimensional (3D) culture provides a robust cell model for understanding cancer progression, as well as for early drug discovery and validation. We have previously described a novel pathway in breast cancer cells, whereby ADP (Adenosine diphosphate)-ribose derived from hydrolysis of poly (ADP-Ribose) and pyrophosphate (PPi) are converted to ATP, catalysed by the enzyme NUDT5 (nucleotide diphosphate hydrolase type 5). Overexpression of the NUDT5 gene in breast and other cancer types is associated with poor prognosis, increased risk of recurrence and metastasis. In order to understand the role of NUDT5 in cancer cell growth, we performed phenotypic and global expression analysis in breast cancer cells grown as oncospheres. Comparison of two-dimensional (2D) versus 3D cancer cell cultures from different tissues of origin suggest that NUDT5 increases the aggressiveness of the disease via the modulation of several key driver genes, including ubiquitin specific peptidase 22 (USP22), RAB35B, focadhesin (FOCAD) and prostagladin E synthase (PTGES). NUDT5 functions as a master regulator of key oncogenic pathways and of genes involved in cell adhesion, cancer stem cell (CSC) maintenance and epithelial to mesenchyme transition (EMT). Inhibiting the enzymatic activities of NUDT5 prevents oncosphere formation and precludes the activation of cancer driver genes. These findings highlight NUDT5 as an upstream regulator of tumour drivers and may provide a biomarker for cancer stratification, as well as a novel target for drug discovery for combinatorial drug regimens for the treatment of aggressive cancer types and metastasis.

8.
Science ; 352(6290): 1221-5, 2016 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-27257257

RESUMO

Key nuclear processes in eukaryotes, including DNA replication, repair, and gene regulation, require extensive chromatin remodeling catalyzed by energy-consuming enzymes. It remains unclear how the ATP demands of such processes are met in response to rapid stimuli. We analyzed this question in the context of the massive gene regulation changes induced by progestins in breast cancer cells and found that ATP is generated in the cell nucleus via the hydrolysis of poly(ADP-ribose) to ADP-ribose. In the presence of pyrophosphate, ADP-ribose is used by the pyrophosphatase NUDIX5 to generate nuclear ATP. The nuclear source of ATP is essential for hormone-induced chromatin remodeling, transcriptional regulation, and cell proliferation.


Assuntos
Adenosina Difosfato Ribose/metabolismo , Trifosfato de Adenosina/biossíntese , Núcleo Celular/metabolismo , Montagem e Desmontagem da Cromatina , Progestinas/metabolismo , Pirofosfatases/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Núcleo Celular/efeitos dos fármacos , Proliferação de Células , Cristalografia por Raios X , Difosfatos/metabolismo , Metabolismo Energético , Feminino , Regulação da Expressão Gênica , Humanos , Hidrólise , Células MCF-7 , Poli(ADP-Ribose) Polimerase-1 , Poli Adenosina Difosfato Ribose/metabolismo , Poli(ADP-Ribose) Polimerases/genética , Poli(ADP-Ribose) Polimerases/metabolismo , Progestinas/farmacologia , Multimerização Proteica , Pirofosfatases/química , Pirofosfatases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA