RESUMO
Fuchs endothelial corneal dystrophy (FECD) is an age-related cause of vision loss, and the most common repeat expansion-mediated disease in humans characterised to date. Up to 80% of European FECD cases have been attributed to expansion of a non-coding CTG repeat element (termed CTG18.1) located within the ubiquitously expressed transcription factor encoding gene, TCF4. The non-coding nature of the repeat and the transcriptomic complexity of TCF4 have made it extremely challenging to experimentally decipher the molecular mechanisms underlying this disease. Here we comprehensively describe CTG18.1 expansion-driven molecular components of disease within primary patient-derived corneal endothelial cells (CECs), generated from a large cohort of individuals with CTG18.1-expanded (Exp+) and CTG 18.1-independent (Exp-) FECD. We employ long-read, short-read, and spatial transcriptomic techniques to interrogate expansion-specific transcriptomic biomarkers. Interrogation of long-read sequencing and alternative splicing analysis of short-read transcriptomic data together reveals the global extent of altered splicing occurring within Exp+ FECD, and unique transcripts associated with CTG18.1-expansions. Similarly, differential gene expression analysis highlights the total transcriptomic consequences of Exp+ FECD within CECs. Furthermore, differential exon usage, pathway enrichment and spatial transcriptomics reveal TCF4 isoform ratio skewing solely in Exp+ FECD with potential downstream functional consequences. Lastly, exome data from 134 Exp- FECD cases identified rare (minor allele frequency <0.005) and potentially deleterious (CADD>15) TCF4 variants in 7/134 FECD Exp- cases, suggesting that TCF4 variants independent of CTG18.1 may increase FECD risk. In summary, our study supports the hypothesis that at least two distinct pathogenic mechanisms, RNA toxicity and TCF4 isoform-specific dysregulation, both underpin the pathophysiology of FECD. We anticipate these data will inform and guide the development of translational interventions for this common triplet-repeat mediated disease.
Assuntos
Distrofia Endotelial de Fuchs , Fator de Transcrição 4 , Expansão das Repetições de Trinucleotídeos , Humanos , Masculino , Processamento Alternativo/genética , Células Endoteliais/metabolismo , Endotélio Corneano/metabolismo , Endotélio Corneano/patologia , Distrofia Endotelial de Fuchs/genética , Fator de Transcrição 4/genética , Fator de Transcrição 4/metabolismo , Transcriptoma/genética , Expansão das Repetições de Trinucleotídeos/genética , FemininoRESUMO
Pathogenic variants in the highly conserved OVOL2 promoter region cause posterior polymorphous corneal dystrophy (PPCD) 1 by inducing an ectopic expression of the endothelial OVOL2 mRNA. Here we produced an allelic series of Ovol2 promoter mutations in the mouse model including the heterozygous c.-307T>C variant (RefSeq NM_021220.4) causing PPCD1 in humans. Despite the high evolutionary conservation of the Ovol2 promoter, only some alterations of its sequence had phenotypic consequences in mice. Four independent sequence variants in the distal part of the Ovol2 promoter had no significant effect on endothelial Ovol2 mRNA level or caused any ocular phenotype. In contrast, the mutation c.-307T>C resulted in increased Ovol2 expression in the corneal endothelium. However, only a small fraction of adult mice c.-307T>C heterozygotes developed ocular phenotypes such as irido-corneal adhesions, and corneal opacity. Interestingly, phenotypic penetrance was increased at embryonic stages. Notably, c.-307T>C mutation is located next to the Ovol1/Ovol2 transcription factor binding site. Mice carrying an allele with a deletion encompassing the Ovol2 binding site c.-307_-320del showed significant Ovol2 gene upregulation in the cornea endothelium and exhibited phenotypes similar to the c.-307T>C mutation. In conclusion, although the mutations c.-307T>C and -307_-320del lead to a comparably strong increase in endothelial Ovol2 expression as seen in PPCD1 patients, endothelial dystrophy was not observed in the mouse model, implicating species-specific differences in endothelial cell biology. Nonetheless, the emergence of dominant ocular phenotypes associated with Ovol2 promoter variants in mice implies a potential role of this gene in eye development and disease.
Assuntos
Distrofias Hereditárias da Córnea , Adulto , Humanos , Animais , Camundongos , Fenótipo , Distrofias Hereditárias da Córnea/genética , Endotélio Corneano , Modelos Animais de Doenças , RNA Mensageiro , Fatores de Transcrição/genéticaRESUMO
North Carolina macular dystrophy (NCMD) is a rare autosomal-dominant disease affecting macular development. The disease is caused by non-coding single-nucleotide variants (SNVs) in two hotspot regions near PRDM13 and by duplications in two distinct chromosomal loci, overlapping DNase I hypersensitive sites near either PRDM13 or IRX1. To unravel the mechanisms by which these variants cause disease, we first established a genome-wide multi-omics retinal database, RegRet. Integration of UMI-4C profiles we generated on adult human retina then allowed fine-mapping of the interactions of the PRDM13 and IRX1 promoters and the identification of eighteen candidate cis-regulatory elements (cCREs), the activity of which was investigated by luciferase and Xenopus enhancer assays. Next, luciferase assays showed that the non-coding SNVs located in the two hotspot regions of PRDM13 affect cCRE activity, including two NCMD-associated non-coding SNVs that we identified herein. Interestingly, the cCRE containing one of these SNVs was shown to interact with the PRDM13 promoter, demonstrated in vivo activity in Xenopus, and is active at the developmental stage when progenitor cells of the central retina exit mitosis, suggesting that this region is a PRDM13 enhancer. Finally, mining of single-cell transcriptional data of embryonic and adult retina revealed the highest expression of PRDM13 and IRX1 when amacrine cells start to synapse with retinal ganglion cells, supporting the hypothesis that altered PRDM13 or IRX1 expression impairs interactions between these cells during retinogenesis. Overall, this study provides insight into the cis-regulatory mechanisms of NCMD and supports that this condition is a retinal enhanceropathy.
Assuntos
Distrofias Hereditárias da Córnea , Tomografia de Coerência Óptica , Adulto , Animais , Humanos , Linhagem , Retina/metabolismo , Xenopus laevis/genéticaRESUMO
BACKGROUND: Axenfeld-Rieger syndrome (ARS) is characterised by typical anterior segment anomalies, with or without systemic features. The discovery of causative genes identified ARS subtypes with distinct phenotypes, but our understanding is incomplete, complicated by the rarity of the condition. METHODS: Genetic and phenotypic characterisation of the largest reported ARS cohort through comprehensive genetic and clinical data analyses. RESULTS: 128 individuals with causative variants in PITX2 or FOXC1, including 81 new cases, were investigated. Ocular anomalies showed significant overlap but with broader variability and earlier onset of glaucoma for FOXC1-related ARS. Systemic anomalies were seen in all individuals with PITX2-related ARS and the majority of those with FOXC1-related ARS. PITX2-related ARS demonstrated typical umbilical anomalies and dental microdontia/hypodontia/oligodontia, along with a novel high rate of Meckel diverticulum. FOXC1-related ARS exhibited characteristic hearing loss and congenital heart defects as well as previously unrecognised phenotypes of dental enamel hypoplasia and/or crowding, a range of skeletal and joint anomalies, hypotonia/early delay and feeding disorders with structural oesophageal anomalies in some. Brain imaging revealed highly penetrant white matter hyperintensities, colpocephaly/ventriculomegaly and frequent arachnoid cysts. The expanded phenotype of FOXC1-related ARS identified here was found to fully overlap features of De Hauwere syndrome. The results were used to generate gene-specific management plans for the two types of ARS. CONCLUSION: Since clinical features of ARS vary significantly based on the affected gene, it is critical that families are provided with a gene-specific diagnosis, PITX2-related ARS or FOXC1-related ARS. De Hauwere syndrome is proposed to be a FOXC1opathy.
Assuntos
Anormalidades do Olho , Proteínas de Homeodomínio , Humanos , Proteínas de Homeodomínio/genética , Fatores de Transcrição/genética , Segmento Anterior do Olho/anormalidades , Anormalidades do Olho/genética , Anormalidades do Olho/diagnóstico , Fatores de Transcrição Forkhead/genética , MutaçãoRESUMO
This work reviews biofilm investigation techniques and highlights the benefits and drawbacks of each approach focusing especially on Pseudomonas syringae and may serve as a comprehensive guide for any early-career researchers starting with the topic of biofilm. Each approach with applications of individual microscopy and spectroscopy techniques is summarized together with characterization of Pseudomonas syringae and its role in pathogenesis.
Assuntos
Biofilmes , Pseudomonas syringae , Pseudomonas syringae/genética , Doenças das PlantasRESUMO
We aim to report the ocular phenotype and molecular genetic findings in two Czech families with Sorsby fundus dystrophy and to review all the reported TIMP3 pathogenic variants. Two probands with Sorsby fundus dystrophy and three first-degree relatives underwent ocular examination and retinal imaging, including optical coherence tomography angiography. The DNA of the first proband was screened using a targeted ocular gene panel, while, in the second proband, direct sequencing of the TIMP3 coding region was performed. Sanger sequencing was also used for segregation analysis within the families. All the previously reported TIMP3 variants were reviewed using the American College of Medical Genetics and the Association for Molecular Pathology interpretation framework. A novel heterozygous variant, c.455A>G p.(Tyr152Cys), in TIMP3 was identified in both families and potentially de novo in one. Optical coherence tomography angiography documented in one patient the development of a choroidal neovascular membrane at 54 years. Including this study, 23 heterozygous variants in TIMP3 have been reported as disease-causing. Application of gene-specific criteria denoted eleven variants as pathogenic, eleven as likely pathogenic, and one as a variant of unknown significance. Our study expands the spectrum of TIMP3 pathogenic variants and highlights the importance of optical coherence tomography angiography for early detection of choroidal neovascular membranes.
Assuntos
Neovascularização de Coroide , Degeneração Macular , Humanos , República Tcheca , Olho , Mutação , Inibidor Tecidual de Metaloproteinase-3/genéticaRESUMO
BACKGROUND: The oculo-facio-cardio-dental syndrome (OFCD) is an ultra-rare multiple congenital anomaly. This report describes clinical findings emphasising dental phenotype in five, molecularly confirmed, female cases from two Czech families. CASE PRESENTATION: Dental examinations were carried out. An orthopantomogram was taken in three patients, and all patients' intraoral cavities and teeth were photographed. Exome sequencing was performed in both probands. Results were validated by Sanger DNA sequencing which was also used to follow segregation of the variants in first-degree relatives. Dental abnormalities and congenital cataracts were present in all five cases, whilst other signs were variable and included facial dysmorphism, microphthalmia, and cardiac and skeletal abnormalities. Two individuals had cleft lip and/or cleft palate. Radiculomegaly occurred in three patients with permanent teeth and was diagnosed on orthopantomograms. Two patients had agenesis of permanent teeth. Malocclusion was also present in two patients due to crowding and a Class III malocclusion and mandibular overjet. De novo novel pathogenic variants in the BCOR gene were identified; c.2382del p.(Lys795Argfs*12) and c.3914dup p.(Gln1306Alafs*20) and co-segregated with the disease in each family. CONCLUSIONS: The OFCD syndrome has a unique dental phenotype and dentists should be aware of signs of this ultra-rare genetic disorder. All patients with congenital cataracts and dental abnormalities, including those without a family history, should be referred for genetic testing and indicated to specialised dental care.
Assuntos
Microftalmia , Proteínas Proto-Oncogênicas , Proteínas Repressoras , Anormalidades Dentárias , Humanos , Feminino , Anormalidades Dentárias/genética , República Tcheca , Microftalmia/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Repressoras/genética , Criança , Cardiopatias Congênitas/genética , Cardiopatias Congênitas/complicações , Linhagem , Adolescente , Catarata/genética , Catarata/congênito , Fenótipo , Anormalidades do Olho/genética , Anormalidades Múltiplas/genética , Radiografia Panorâmica , Adulto , Defeitos dos Septos Cardíacos , Doenças Genéticas Ligadas ao Cromossomo XRESUMO
The forkhead transcription factor FOXE3 is critical for vertebrate eye development. Recessive and dominant variants cause human ocular disease but the full range of phenotypes and mechanisms of action for the two classes of variants are unknown. We identified FOXE3 variants in individuals with congenital eye malformations and carried out in vitro functional analysis on selected alleles. Sixteen new recessive and dominant families, including six novel variants, were identified. Analysis of new and previously reported genetic and clinical data demonstrated a broad phenotypic range with an overlap between recessive and dominant disease. Most families with recessive alleles, composed of truncating and forkhead-domain missense variants, had severe corneal opacity (90%; sclerocornea in 47%), aphakia (83%) and microphthalmia (80%), but some had milder features including isolated cataract. The phenotype was most variable for recessive missense variants, suggesting that the functional consequences may be highly dependent on the type of amino acid substitution and its position. When assessed, aniridia or iris hypoplasia were noted in 89% and optic nerve anomalies in 60% of recessive cases, indicating that these defects are also common and may be underrecognized. In dominant pedigrees, caused by extension variants, normal eye size (96%), cataracts (99%) and variable anterior segment anomalies were seen in most, but some individuals had microphthalmia, aphakia or sclerocornea, more typical of recessive disease. Functional studies identified variable effects on the protein stability, DNA binding, nuclear localization and transcriptional activity for recessive FOXE3 variants, whereas dominant alleles showed severe impairment in all areas and dominant-negative characteristics.
Assuntos
Anormalidades do Olho/genética , Olho/embriologia , Fatores de Transcrição Forkhead/genética , Adolescente , Alelos , Catarata/genética , Criança , Opacidade da Córnea/genética , Deficiências do Desenvolvimento/genética , Olho/crescimento & desenvolvimento , Anormalidades do Olho/enzimologia , Feminino , Fatores de Transcrição Forkhead/metabolismo , Humanos , Masculino , Mutação , Linhagem , FenótipoRESUMO
Four members of a three-generation Czech family with early-onset chorioretinal dystrophy were shown to be heterozygous carriers of the n.37C>T in MIR204. The identification of this previously reported pathogenic variant confirms the existence of a distinct clinical entity caused by a sequence change in MIR204. Chorioretinal dystrophy was variably associated with iris coloboma, congenital glaucoma, and premature cataracts extending the phenotypic range of the condition. In silico analysis of the n.37C>T variant revealed 713 novel targets. Additionally, four family members were shown to be affected by albinism resulting from biallelic pathogenic OCA2 variants. Haplotype analysis excluded relatedness with the original family reported to harbour the n.37C>T variant in MIR204. Identification of a second independent family confirms the existence of a distinct MIR204-associated clinical entity and suggests that the phenotype may also involve congenital glaucoma.
Assuntos
Catarata , Coloboma , Glaucoma , MicroRNAs , Humanos , Coloboma/complicações , Coloboma/genética , Mutação , Linhagem , Iris/anormalidades , Glaucoma/complicações , Glaucoma/genética , Catarata/genética , Catarata/congênitoRESUMO
Achromatopsia (ACHM) is a congenital cone photoreceptor disorder characterized by impaired color discrimination, low visual acuity, photosensitivity, and nystagmus. To date, six genes have been associated with ACHM (CNGA3, CNGB3, GNAT2, PDE6C, PDE6H, and ATF6), the majority of these being implicated in the cone phototransduction cascade. CNGA3 encodes the CNGA3 subunit of the cyclic nucleotide-gated ion channel in cone photoreceptors and is one of the major disease-associated genes for ACHM. Herein, we provide a comprehensive overview of the CNGA3 variant spectrum in a cohort of 1060 genetically confirmed ACHM patients, 385 (36.3%) of these carrying "likely disease-causing" variants in CNGA3. Compiling our own genetic data with those reported in the literature and in public databases, we further extend the CNGA3 variant spectrum to a total of 316 variants, 244 of which we interpreted as "likely disease-causing" according to ACMG/AMP criteria. We report 48 novel "likely disease-causing" variants, 24 of which are missense substitutions underlining the predominant role of this mutation class in the CNGA3 variant spectrum. In addition, we provide extensive in silico analyses and summarize reported functional data of previously analyzed missense, nonsense and splicing variants to further advance the pathogenicity assessment of the identified variants.
Assuntos
Defeitos da Visão Cromática , Canais de Cátion Regulados por Nucleotídeos Cíclicos , Defeitos da Visão Cromática/genética , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Humanos , Mutação , Células Fotorreceptoras Retinianas ConesRESUMO
We studied the disinfection efficacy of boron-doped electrodes on Escherichia coli-contaminated water-based solutions in three different electrolytes, physiological solution (NaCl), phosphate buffer (PB), and phosphate buffer saline (PBS). The effect of the electrochemical oxidation treatment on the bacteria viability was studied by drop and spread plate cultivation methods, and supported by optical density measurements. We have found that bacterial suspensions in NaCl and PBS underwent a total inactivation of all viable bacteria within 10 min of the electrochemical treatment. By contrast, experiments performed in the PB showed a relatively minor decrease of viability by two orders of magnitude after 2 h of the treatment, which is almost comparable with the untreated control. The enhanced bacterial inactivation was assigned to reactive chlorine species, capable of penetrating the bacterial cytoplasmic membrane and killing bacteria from within.
Assuntos
Boro , Escherichia coli K12 , Boro/química , Boro/farmacologia , Eletrodos , Eletrólitos/farmacologia , Escherichia coli , Oxirredução , Fosfatos/farmacologia , Cloreto de Sódio/farmacologiaRESUMO
In a large family of Czech origin, we mapped a locus for an autosomal-dominant corneal endothelial dystrophy, posterior polymorphous corneal dystrophy 4 (PPCD4), to 8q22.3-q24.12. Whole-genome sequencing identified a unique variant (c.20+544G>T) in this locus, within an intronic regulatory region of GRHL2. Targeted sequencing identified the same variant in three additional previously unsolved PPCD-affected families, including a de novo occurrence that suggests this is a recurrent mutation. Two further unique variants were identified in intron 1 of GRHL2 (c.20+257delT and c.20+133delA) in unrelated PPCD-affected families. GRHL2 is a transcription factor that suppresses epithelial-to-mesenchymal transition (EMT) and is a direct transcriptional repressor of ZEB1. ZEB1 mutations leading to haploinsufficiency cause PPCD3. We previously identified promoter mutations in OVOL2, a gene not normally expressed in the corneal endothelium, as the cause of PPCD1. OVOL2 drives mesenchymal-to-epithelial transition (MET) by directly inhibiting EMT-inducing transcription factors, such as ZEB1. Here, we demonstrate that the GRHL2 regulatory variants identified in PPCD4-affected individuals induce increased transcriptional activity in vitro. Furthermore, although GRHL2 is not expressed in corneal endothelial cells in control tissue, we detected GRHL2 in the corneal "endothelium" in PPCD4 tissue. These cells were also positive for epithelial markers E-Cadherin and Cytokeratin 7, indicating they have transitioned to an epithelial-like cell type. We suggest that mutations inducing MET within the corneal endothelium are a convergent pathogenic mechanism leading to dysfunction of the endothelial barrier and disease.
Assuntos
Distrofias Hereditárias da Córnea/genética , Proteínas de Ligação a DNA/genética , Mutação/genética , Fatores de Transcrição/genética , Sequência de Bases , DNA Intergênico/genética , Endotélio Corneano/patologia , Família , Feminino , Loci Gênicos , Células HEK293 , Humanos , Íntrons/genética , Masculino , Modelos Genéticos , Linhagem , Regiões Promotoras Genéticas/genética , Transcrição Gênica , Sequenciamento Completo do GenomaRESUMO
Fuchs endothelial corneal dystrophy (FECD) is a common disease for which corneal transplantation is the only treatment option in advanced stages, and alternative treatment strategies are urgently required. Expansion (≥50 copies) of a non-coding trinucleotide repeat in TCF4 confers >76-fold risk for FECD in our large cohort of affected individuals. An FECD subject-derived corneal endothelial cell (CEC) model was developed to probe disease mechanism and investigate therapeutic approaches. The CEC model demonstrated that the repeat expansion leads to nuclear RNA foci, with the sequestration of splicing factor proteins (MBNL1 and MBNL2) to the foci and altered mRNA processing. Antisense oligonucleotide (ASO) treatment led to a significant reduction in the incidence of nuclear foci, MBNL1 recruitment to the foci, and downstream aberrant splicing events, suggesting functional rescue. This proof-of-concept study highlights the potential of a targeted ASO therapy to treat the accessible and tractable corneal tissue affected by this repeat expansion-mediated disease.
Assuntos
Distrofia Endotelial de Fuchs/genética , Predisposição Genética para Doença , Oligonucleotídeos Antissenso/farmacologia , Fator de Transcrição 4/genética , Expansão das Repetições de Trinucleotídeos/genética , Idoso , Animais , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Estudos de Coortes , Células Endoteliais/metabolismo , Endotélio Corneano/patologia , Feminino , Distrofia Endotelial de Fuchs/patologia , Humanos , Masculino , Camundongos Endogâmicos C57BL , Especificidade de Órgãos , Precursores de RNA/genética , Processamento Pós-Transcricional do RNA , Fatores de Processamento de RNA/metabolismo , RNA Mensageiro/metabolismo , Fatores de RiscoRESUMO
BACKGROUND: ALG3-CDG is a rare autosomal recessive disease. It is characterized by deficiency of alpha-1,3-mannosyltransferase caused by pathogenic variants in the ALG3 gene. Patients manifest with severe neurologic, cardiac, musculoskeletal and ophthalmic phenotype in combination with dysmorphic features, and almost half of them die before or during the neonatal period. CASE PRESENTATION: A 23 months-old girl presented with severe developmental delay, epilepsy, cortical atrophy, cerebellar vermis hypoplasia and ocular impairment. Facial dysmorphism, clubfeet and multiple joint contractures were observed already at birth. Transferrin isoelectric focusing revealed a type 1 pattern. Funduscopy showed hypopigmentation and optic disc pallor. Profound retinal ganglion cell loss and inner retinal layer thinning was documented on spectral-domain optical coherence tomography imaging. The presence of optic nerve hypoplasia was also supported by magnetic resonance imaging. A gene panel based next-generation sequencing and subsequent Sanger sequencing identified compound heterozygosity for two novel variants c.116del p.(Pro39Argfs*40) and c.1060 C > T p.(Arg354Cys) in ALG3. CONCLUSIONS: Our study expands the spectrum of pathogenic variants identified in ALG3. Thirty-three variants in 43 subjects with ALG3-CDG have been reported. Literature review shows that visual impairment in ALG3-CDG is most commonly linked to optic nerve hypoplasia.
Assuntos
Defeitos Congênitos da Glicosilação , Degeneração Retiniana , Pré-Escolar , Defeitos Congênitos da Glicosilação/genética , Olho , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lactente , Recém-Nascido , Manosiltransferases/genética , FenótipoRESUMO
We report the clinical findings of 26 individuals from 16 unrelated families carrying variants in the COL2A1 or COL11A1 genes. Using Sanger and next-generation sequencing, 11 different COL2A1 variants (seven novel), were identified in 13 families (19 affected individuals), all diagnosed with Stickler syndrome (STL) type 1. In nine families, the COL2A1 disease-causing variant arose de novo. Phenotypically, we observed myopia (95%) and retinal detachment (47%), joint hyperflexibility (92%), midface retrusion (84%), cleft palate (53%), and various degrees of hearing impairment (50%). One patient had a splenic artery aneurysm. One affected individual carrying pathogenic variant in COL2A1 showed no ocular signs including no evidence of membranous vitreous anomaly. In three families (seven affected individuals), three novel COL11A1 variants were found. The propositus with a de novo variant showed an ultrarare Marshall/STL overlap. In the second family, the only common clinical sign was postlingual progressive sensorineural hearing impairment (DFNA37). Affected individuals from the third family had typical STL2 signs. The spectrum of disease phenotypes associated with COL2A1 or COL11A1 variants continues to expand and includes typical STL and various bone dysplasias, but also nonsyndromic hearing impairment, isolated myopia with or without retinal detachment, and STL phenotype without clinically detectable ocular pathology.
Assuntos
Artrite/genética , Colágeno Tipo II/genética , Colágeno Tipo XI/genética , Doenças do Tecido Conjuntivo/genética , Perda Auditiva Neurossensorial/genética , Descolamento Retiniano/genética , Adolescente , Adulto , Criança , Pré-Escolar , República Tcheca , Análise Mutacional de DNA , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Linhagem , Fenótipo , Adulto JovemRESUMO
Cullin 4B (CUL4B), lysosomal-associated membrane protein Type 2 (LAMP2), ATP1B4, TMEM255A, and ZBTB33 are neighboring genes on Xq24. Mutations in CUL4B result in Cabezas syndrome (CS). Male CS patients present with dysmorphic, neuropsychiatric, genitourinary, and endocrine abnormalities. Heterozygous CS females are clinically asymptomatic. LAMP2 mutations cause Danon disease (DD). Cardiomyopathy is a dominant feature of DD present in both males and heterozygous females. No monogenic phenotypes have been associated with mutations in ATP1B4, TMEM255A, and ZBTB33 genes. To facilitate diagnostics and counseling in CS and DD families, we present a female DD patient with a de novo Alu-mediated Xq24 rearrangement causing a deletion encompassing CUL4B, LAMP2, and also the other three neighboring genes. Typical to females heterozygous for CUL4B mutations, the patient was CS asymptomatic, however, presented with extremely skewed X-chromosome inactivation (XCI) ratios in peripheral white blood cells. As a result of the likely selection against CUL4B deficient clones, only minimal populations (~3%) of LAMP2 deficient leukocytes were identified by flow cytometry. On the contrary, myocardial LAMP2 protein expression suggested random XCI. We demonstrate that contiguous CUL4B and LAMP2 loss-of-function copy number variations occur and speculate that male patients carrying similar defects could present with features of both CS and DD.
Assuntos
Proteínas Culina/genética , Doença de Depósito de Glicogênio Tipo IIb/genética , Proteína 2 de Membrana Associada ao Lisossomo/genética , Deficiência Intelectual Ligada ao Cromossomo X/genética , Adulto , Elementos Alu/genética , Cardiomiopatias/genética , Cardiomiopatias/fisiopatologia , Deleção Cromossômica , Variações do Número de Cópias de DNA/genética , Éxons/genética , Feminino , Doença de Depósito de Glicogênio Tipo IIb/diagnóstico , Doença de Depósito de Glicogênio Tipo IIb/fisiopatologia , Humanos , Mutação com Perda de Função/genética , Masculino , Deficiência Intelectual Ligada ao Cromossomo X/fisiopatologia , Miocárdio/metabolismo , ATPase Trocadora de Sódio-Potássio/genética , Fatores de Transcrição/genética , Inativação do Cromossomo X/genéticaRESUMO
Peripapillary hyperreflective ovoid mass-like structures (PHOMS) are a new retinal optical coherence tomography (OCT) finding. The Optic Disc Drusen Studies Consortium had made recommendations to distinguish PHOMS from true optic disc drusen (ODD) in 2018. While publications on PHOMS have increased since then, the accuracy of the definition of PHOMS and reliability of detection is unknown. In this multi-rater study, we demonstrate that the 2018 definition of PHOMS resulted in a poor multi-rater kappa of 0.356. We performed a Delphi consensus process to develop a consistent and refined definition of PHOMS with clear principles around the nature of PHOMS and how they differ from normal anatomy. Fifty explanatory teaching slides, provided as supplementary material, allowed our expert group of raters to achieve a good level of agreement (kappa 0.701, 50 OCT scans, 21 raters). We recommend adopting the refined definition for PHOMS.
RESUMO
Daptomycin is a calcium-dependent lipodepsipeptide antibiotic clinically used to treat serious infections caused by Gram-positive pathogens. Its precise mode of action is somewhat controversial; the biggest issue is daptomycin pore formation, which we directly investigated here. We first performed a screening experiment using propidium iodide (PI) entry to Bacillus subtilis cells and chose the optimum and therapeutically relevant conditions (10 µg/ml daptomycin and 1.25 mM CaCl2) for the subsequent analyses. Using conductance measurements on planar lipid bilayers, we show that daptomycin forms nonuniform oligomeric pores with conductance ranging from 120 pS to 14 nS. The smallest conductance unit is probably a dimer; however, tetramers and pentamers occur in the membrane most frequently. Moreover, daptomycin pore-forming activity is exponentially dependent on the applied membrane voltage. We further analyzed the membrane-permeabilizing activity in B. subtilis cells using fluorescence methods [PI and DiSC3(5)]. Daptomycin most rapidly permeabilizes cells with high initial membrane potential and dissipates it within a few minutes. Low initial membrane potential hinders daptomycin pore formation.
Assuntos
Antibacterianos/farmacologia , Bacillus subtilis/efeitos dos fármacos , Transporte Biológico/fisiologia , Permeabilidade da Membrana Celular/efeitos dos fármacos , Daptomicina/farmacologia , Proteínas Citotóxicas Formadoras de Poros/farmacologia , Bacillus subtilis/metabolismo , Potenciais da Membrana/efeitos dos fármacos , Testes de Sensibilidade MicrobianaRESUMO
Congenital hereditary endothelial dystrophy 1 (CHED1) and posterior polymorphous corneal dystrophy 1 (PPCD1) are autosomal-dominant corneal endothelial dystrophies that have been genetically mapped to overlapping loci on the short arm of chromosome 20. We combined genetic and genomic approaches to identify the cause of disease in extensive pedigrees comprising over 100 affected individuals. After exclusion of pathogenic coding, splice-site, and copy-number variations, a parallel approach using targeted and whole-genome sequencing facilitated the identification of pathogenic variants in a conserved region of the OVOL2 proximal promoter sequence in the index families (c.-339_361dup for CHED1 and c.-370T>C for PPCD1). Direct sequencing of the OVOL2 promoter in other unrelated affected individuals identified two additional mutations within the conserved proximal promoter sequence (c.-274T>G and c.-307T>C). OVOL2 encodes ovo-like zinc finger 2, a C2H2 zinc-finger transcription factor that regulates mesenchymal-to-epithelial transition and acts as a direct transcriptional repressor of the established PPCD-associated gene ZEB1. Interestingly, we did not detect OVOL2 expression in the normal corneal endothelium. Our in vitro data demonstrate that all four mutated OVOL2 promoters exhibited more transcriptional activity than the corresponding wild-type promoter, and we postulate that the mutations identified create cryptic cis-acting regulatory sequence binding sites that drive aberrant OVOL2 expression during endothelial cell development. Our data establish CHED1 and PPCD1 as allelic conditions and show that CHED1 represents the extreme of what can be considered a disease spectrum. They also implicate transcriptional dysregulation of OVOL2 as a common cause of dominantly inherited corneal endothelial dystrophies.
Assuntos
Alelos , Distrofias Hereditárias da Córnea/genética , Mutação , Regiões Promotoras Genéticas , Fatores de Transcrição/genética , Sequência de Bases , DNA , Feminino , Humanos , Masculino , Linhagem , Homologia de Sequência do Ácido NucleicoRESUMO
PURPOSE: To demonstrate the utility of an amplification-free long-read sequencing method to characterize the Fuchs endothelial corneal dystrophy (FECD)-associated intronic TCF4 triplet repeat (CTG18.1). METHODS: We applied an amplification-free method, utilizing the CRISPR/Cas9 system, in combination with PacBio single-molecule real-time (SMRT) long-read sequencing, to study CTG18.1. FECD patient samples displaying a diverse range of CTG18.1 allele lengths and zygosity status (n = 11) were analyzed. A robust data analysis pipeline was developed to effectively filter, align, and interrogate CTG18.1-specific reads. All results were compared with conventional polymerase chain reaction (PCR)-based fragment analysis. RESULTS: CRISPR-guided SMRT sequencing of CTG18.1 provided accurate genotyping information for all samples and phasing was possible for 18/22 alleles sequenced. Repeat length instability was observed for all expanded (≥50 repeats) phased CTG18.1 alleles analyzed. Furthermore, higher levels of repeat instability were associated with increased CTG18.1 allele length (mode length ≥91 repeats) indicating that expanded alleles behave dynamically. CONCLUSION: CRISPR-guided SMRT sequencing of CTG18.1 has revealed novel insights into CTG18.1 length instability. Furthermore, this study provides a framework to improve the molecular diagnostic accuracy for CTG18.1-mediated FECD, which we anticipate will become increasingly important as gene-directed therapies are developed for this common age-related and sight threatening disease.