Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 20636, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34667246

RESUMO

Current equipment and methods for preparation of radiopharmaceuticals for positron emission tomography (PET) are expensive and best suited for large-scale multi-doses batches. Microfluidic radiosynthesizers have been shown to provide an economic approach to synthesize these compounds in smaller quantities, but can also be scaled to clinically-relevant levels. Batch microfluidic approaches, in particular, offer significant reduction in system size and reagent consumption. Here we show a simple and rapid technique to concentrate the radioisotope, prior to synthesis in a droplet-based radiosynthesizer, enabling production of clinically-relevant batches of [18F]FET and [18F]FBB. The synthesis was carried out with an automated synthesizer platform based on a disposable Teflon-silicon surface-tension trap chip. Up to 0.1 mL (4 GBq) of radioactivity was used per synthesis by drying cyclotron-produced aqueous [18F]fluoride in small increments directly inside the reaction site. Precursor solution (10 µL) was added to the dried [18F]fluoride, the reaction chip was heated for 5 min to perform radiofluorination, and then a deprotection step was performed with addition of acid solution and heating. The product was recovered in 80 µL volume and transferred to analytical HPLC for purification. Purified product was formulated via evaporation and resuspension or a micro-SPE formulation system. Quality control testing was performed on 3 sequential batches of each tracer. The method afforded production of up to 0.8 GBq of [18F]FET and [18F]FBB. Each production was completed within an hour. All batches passed quality control testing, confirming suitability for human use. In summary, we present a simple and efficient synthesis of clinically-relevant batches of [18F]FET and [18F]FBB using a microfluidic radiosynthesizer. This work demonstrates that the droplet-based micro-radiosynthesizer has a potential for batch-on-demand synthesis of 18F-labeled radiopharmaceuticals for human use.


Assuntos
Radioisótopos de Flúor/química , Microfluídica/métodos , Compostos Radiofarmacêuticos/síntese química , Cromatografia Líquida de Alta Pressão , Fluoretos , Radioisótopos de Flúor/farmacologia , Humanos , Tomografia por Emissão de Pósitrons/métodos , Radioquímica/métodos , Radioisótopos/química , Tomografia Computadorizada por Raios X
2.
React Chem Eng ; 5(2): 320-329, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34164154

RESUMO

From an efficiency standpoint, microdroplet reactors enable significant improvements in the preparation of radiopharmaceuticals due to the vastly reduced reaction volume. To demonstrate these advantages, we adapt the conventional (macroscale) synthesis of the clinically-important positron-emission tomography tracer [18F]FDOPA, following the nucleophilic diaryliodonium salt approach, to a newly-developed ultra-compact microdroplet reaction platform. In this first microfluidic implementation of [18F]FDOPA synthesis, optimized via a high-throughput multi-reaction platform, the radiochemical yield (non-decay-corrected) was found to be comparable to macroscale reports, but the synthesis consumed significantly less precursor and organic solvents, and the synthesis process was much faster. In this initial report, we demonstrate the production of [18F]FDOPA in 15 MBq [400 µCi] amounts, sufficient for imaging of multiple mice, at high molar activity.

3.
EJNMMI Radiopharm Chem ; 5(1): 30, 2020 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-33275179

RESUMO

BACKGROUND: Current automated radiosynthesizers are generally optimized for producing large batches of PET tracers. Preclinical imaging studies, however, often require only a small portion of a regular batch, which cannot be economically produced on a conventional synthesizer. Alternative approaches are desired to produce small to moderate batches to reduce cost and the amount of reagents and radioisotope needed to produce PET tracers with high molar activity. In this work we describe the first reported microvolume method for production of [18F]Florbetaben for use in imaging of Alzheimer's disease. PROCEDURES: The microscale synthesis of [18F]Florbetaben was adapted from conventional-scale synthesis methods. Aqueous [18F]fluoride was azeotropically dried with K2CO3/K222 (275/383 nmol) complex prior to radiofluorination of the Boc-protected precursor (80 nmol) in 10 µL DMSO at 130 °C for 5 min. The resulting intermediate was deprotected with HCl at 90 °C for 3 min and recovered from the chip in aqueous acetonitrile solution. The crude product was purified via analytical scale HPLC and the collected fraction reformulated via solid-phase extraction using a miniature C18 cartridge. RESULTS: Starting with 270 ± 100 MBq (n = 3) of [18F]Fluoride, the method affords formulated product with 49 ± 3% (decay-corrected) yield,> 98% radiochemical purity and a molar activity of 338 ± 55 GBq/µmol. The miniature C18 cartridge enables efficient elution with only 150 µL of ethanol which is diluted to a final volume of 1.0 mL, thus providing a sufficient concentration for in vivo imaging. The whole procedure can be completed in 55 min. CONCLUSIONS: This work describes an efficient and reliable procedure to produce [18F]Florbetaben in quantities sufficient for large-scale preclinical applications. This method provides very high yields and molar activities compared to reported literature methods. This method can be applied to higher starting activities with special consideration given to automation and radiolysis prevention.

4.
Nucl Med Biol ; 82-83: 41-48, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31891883

RESUMO

INTRODUCTION: Radio thin layer chromatography (radio-TLC) is commonly used to analyze purity of radiopharmaceuticals or to determine the reaction conversion when optimizing radiosynthesis processes. In applications where there are few radioactive species, radio-TLC is preferred over radio-high-performance liquid chromatography due to its simplicity and relatively quick analysis time. However, with current radio-TLC methods, it remains cumbersome to analyze a large number of samples during reaction optimization. In a couple of studies, Cerenkov luminescence imaging (CLI) has been used for reading radio-TLC plates spotted with a variety of isotopes. We show that this approach can be extended to develop a high-throughput approach for radio-TLC analysis of many samples. METHODS: The high-throughput radio-TLC analysis was carried out by performing parallel development of multiple radioactive samples spotted on a single TLC plate, followed by simultaneous readout of the separated samples using Cerenkov imaging. Using custom-written MATLAB software, images were processed and regions of interest (ROIs) were drawn to enclose the radioactive regions/spots. For each sample, the proportion of integrated signal in each ROI was computed. Various crude samples of [18F]fallypride, [18F]FET and [177Lu]Lu-PSMA-617 were prepared for demonstration of this new method. RESULTS: Benefiting from a parallel developing process and high resolution of CLI-based readout, total analysis time for eight [18F]fallypride samples was 7.5 min (2.5 min for parallel developing, 5 min for parallel readout), which was significantly shorter than the 48 min needed using conventional approaches (24 min for sequential developing, 24 min for sequential readout on a radio-TLC scanner). The greater separation resolution of CLI enabled the discovery of a low-abundance side product from a crude [18F]FET sample that was not discernable using the radio-TLC scanner. Using the CLI-based readout method, we also observed that high labeling efficiency (99%) of [177Lu]Lu-PSMA-617 can be achieved in just 10 min, rather than the typical 30 min timeframe used. CONCLUSIONS: Cerenkov imaging in combination with parallel developing of multiple samples on a single TLC plate proved to be a practical method for rapid, high-throughput radio-TLC analysis.


Assuntos
Cromatografia em Camada Fina/métodos , Luminescência , Imagem Óptica
5.
EJNMMI Radiopharm Chem ; 5(1): 1, 2019 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-31893318

RESUMO

BACKGROUND: Conventional scale production of small batches of PET tracers (e.g. for preclinical imaging) is an inefficient use of resources. Using O-(2-[18F]fluoroethyl)-L-tyrosine ([18F]FET), we demonstrate that simple microvolume radiosynthesis techniques can improve the efficiency of production by consuming tiny amounts of precursor, and maintaining high molar activity of the tracers even with low starting activity. PROCEDURES: The synthesis was carried out in microvolume droplets manipulated on a disposable patterned silicon "chip" affixed to a heater. A droplet of [18F]fluoride containing TBAHCO3 was first deposited onto a chip and dried at 100 °C. Subsequently, a droplet containing 60 nmol of precursor was added to the chip and the fluorination reaction was performed at 90 °C for 5 min. Removal of protecting groups was accomplished with a droplet of HCl heated at 90 °C for 3 min. Finally, the crude product was collected in a methanol-water mixture, purified via analytical-scale radio-HPLC and formulated in saline. As a demonstration, using [18F]FET produced on the chip, we prepared aliquots with different molar activities to explore the impact on preclinical PET imaging of tumor-bearing mice. RESULTS: The microdroplet synthesis exhibited an overall decay-corrected radiochemical yield of 55 ± 7% (n = 4) after purification and formulation. When automated, the synthesis could be completed in 35 min. Starting with < 370 MBq of activity, ~ 150 MBq of [18F]FET could be produced, sufficient for multiple in vivo experiments, with high molar activities (48-119 GBq/µmol). The demonstration imaging study revealed the uptake of [18F]FET in subcutaneous tumors, but no significant differences in tumor uptake as a result of molar activity differences (ranging 0.37-48 GBq/µmol) were observed. CONCLUSIONS: A microdroplet synthesis of [18F]FET was developed demonstrating low reagent consumption, high yield, and high molar activity. The approach can be expanded to tracers other than [18F]FET, and adapted to produce higher quantities of the tracer sufficient for clinical PET imaging.

6.
Eur J Med Chem ; 148: 314-324, 2018 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-29471120

RESUMO

The coupling of gemcitabine with functionalized carboxylic acids using peptide coupling conditions afforded 4-N-alkanoyl analogues with a terminal alkyne or azido moiety. Reaction of 4-N-tosylgemcitabine with azidoalkyl amine provided 4-N-alkyl gemcitabine with a terminal azido group. Click reaction with silane building blocks afforded 4-N-alkanoyl or 4-N-alkyl gemcitabine analogues suitable for fluorination. RP-HPLC analysis indicated better chemical stability of 4-N-alkyl gemcitabine analogues versus 4-N-alkanoyl analogues in acidic aqueous conditions. The 4-N-alkanoyl gemcitabine analogues showed potent cytostatic activity against L1210 cell line, but cytotoxicity of the 4-N-alkylgemcitabine analogues was low. However, 4-N-alkanoyl and 4-N-alkyl analogues had comparable antiproliferative activities in the HEK293 cells. The 4-N-alkyl analogue with a terminal azide group was shown to be localized inside HEK293 cells by fluorescence microscopy after labelling with Fluor 488-alkyne. The [18F]4-N-alkyl or alkanoyl silane gemcitabine analogues were successfully synthesized using microscale and conventional silane-labeling radiochemical protocols. Preliminary positron-emission tomography (PET) imaging in mice showed the biodistribution of [18F]4-N-alkyl to have initial concentration in the liver, kidneys and GI tract followed by increasing signal in the bone.


Assuntos
Desoxicitidina/análogos & derivados , Fluoretos/química , Radioisótopos de Flúor , Compostos de Silício/química , Animais , Linhagem Celular Tumoral , Desoxicitidina/química , Desoxicitidina/farmacocinética , Trato Gastrointestinal/diagnóstico por imagem , Trato Gastrointestinal/metabolismo , Células HEK293 , Humanos , Rim/diagnóstico por imagem , Rim/metabolismo , Fígado/diagnóstico por imagem , Fígado/metabolismo , Camundongos , Tomografia por Emissão de Pósitrons , Distribuição Tecidual , Gencitabina
7.
Nucl Med Biol ; 61: 36-44, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29747035

RESUMO

BACKGROUND: Peptides labeled with positron-emitting isotopes are emerging as a versatile class of compounds for the development of highly specific, targeted imaging agents for diagnostic imaging via positron-emission tomography (PET) and for precision medicine via theranostic applications. Despite the success of peptides labeled with gallium-68 (for imaging) or lutetium-177 (for therapy) in the clinical management of patients with neuroendocrine tumors or prostate cancer, there are significant advantages of using fluorine-18 for imaging. Recent developments have greatly simplified such labeling: in particular, labeling of organotrifluoroborates via isotopic exchange can readily be performed in a single-step under aqueous conditions and without the need for HPLC purification. Though an automated synthesis has not yet been explored, microfluidic approaches have emerged for 18F-labeling with high speed, minimal reagents, and high molar activity compared to conventional approaches. As a proof-of-concept, we performed microfluidic labeling of an octreotate analog ([18F]AMBF3-TATE), a promising 18F-labeled analog that could compete with [68Ga]Ga-DOTATATE with the advantage of providing a greater number of patient doses per batch produced. METHODS: Both [18F]AMBF3-TATE and [68Ga]Ga-DOTATATE were labeled, the former by microscale methods adapted from manual labeling, and were imaged in mice bearing human SSTR2-overexpressing, rat SSTR2 wildtype, and SSTR2-negative xenografts. Furthermore, a dosimetry analysis was performed for [18F]AMBF3-TATE. RESULTS: The micro-synthesis exhibited highly-repeatable performance with radiochemical conversion of 50 ±â€¯6% (n = 15), overall decay-corrected radiochemical yield of 16 ±â€¯1% (n = 5) in ~40 min, radiochemical purity >99%, and high molar activity. Preclinical imaging with [18F]AMBF3-TATE in SSTR2 tumor models correlated well with [68Ga]Ga-DOTATATE. The favorable biodistribution, with the highest tracer accumulation in the bladder followed distantly by gastrointestinal tissues, resulted in 1.26 × 10-2 mSv/MBq maximal estimated effective dose in human, a value lower than that reported for current clinical 18F- and 68Ga-labeled compounds. CONCLUSIONS: The combination of novel chemical approaches to 18F-labeling and microdroplet radiochemistry have the potential to serve as a platform for greatly simplified development and production of 18F-labeled peptide tracers. Favorable preclinical imaging and dosimetry of [18F]AMBF3-TATE, combined with a convenient synthesis, validate this assertion and suggest strong potential for clinical translation.


Assuntos
Compostos de Boro/química , Radioisótopos de Flúor , Dispositivos Lab-On-A-Chip , Octreotida/análogos & derivados , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Radioquímica/instrumentação , Receptores de Somatostatina/metabolismo , Animais , Linhagem Celular Tumoral , Camundongos , Octreotida/química , Traçadores Radioativos , Radiometria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA