Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Infect Dis ; 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38526341

RESUMO

There is an urgent need for vaccines against Neisseria gonorrhoeae (Ng), the causative agent of gonorrhea. Vaccination with an outer-membrane vesicle (OMV)-based Neisseria meningitidis (Nm) vaccine provides some protection from Ng; however, the mechanisms underlying this cross-protection are unknown. To address this need, we developed multiplexed bead-based assays for the relative quantification of human and mouse IgG and IgA against Ng antigens. The assays were evaluated for analyte independence, dilutional linearity, specificity, sensitivity, intra- and inter-assay variability, and robustness to sample storage conditions. The assay was then used to test samples from mice and humans immunized with an Nm-OMV vaccine.

2.
PLoS Pathog ; 16(12): e1008602, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33290434

RESUMO

There is a pressing need for a gonorrhea vaccine due to the high disease burden associated with gonococcal infections globally and the rapid evolution of antibiotic resistance in Neisseria gonorrhoeae (Ng). Current gonorrhea vaccine research is in the stages of antigen discovery and the identification of protective immune responses, and no vaccine has been tested in clinical trials in over 30 years. Recently, however, it was reported in a retrospective case-control study that vaccination of humans with a serogroup B Neisseria meningitidis (Nm) outer membrane vesicle (OMV) vaccine (MeNZB) was associated with reduced rates of gonorrhea. Here we directly tested the hypothesis that Nm OMVs induce cross-protection against gonorrhea in a well-characterized female mouse model of Ng genital tract infection. We found that immunization with the licensed Nm OMV-based vaccine 4CMenB (Bexsero) significantly accelerated clearance and reduced the Ng bacterial burden compared to administration of alum or PBS. Serum IgG and vaginal IgA and IgG that cross-reacted with Ng OMVs were induced by 4CMenB vaccination by either the subcutaneous or intraperitoneal routes. Antibodies from vaccinated mice recognized several Ng surface proteins, including PilQ, BamA, MtrE, NHBA (known to be recognized by humans), PorB, and Opa. Immune sera from both mice and humans recognized Ng PilQ and several proteins of similar apparent molecular weight, but MtrE was only recognized by mouse serum. Pooled sera from 4CMenB-immunized mice showed a 4-fold increase in serum bactericidal50 titers against the challenge strain; in contrast, no significant difference in bactericidal activity was detected when sera from 4CMenB-immunized and unimmunized subjects were compared. Our findings directly support epidemiological evidence that Nm OMVs confer cross-species protection against gonorrhea, and implicate several Ng surface antigens as potentially protective targets. Additionally, this study further defines the usefulness of murine infection model as a relevant experimental system for gonorrhea vaccine development.


Assuntos
Proteção Cruzada/imunologia , Vacinas Meningocócicas/farmacologia , Neisseria gonorrhoeae/imunologia , Animais , Antígenos de Bactérias/imunologia , Proteínas da Membrana Bacteriana Externa/imunologia , Vacinas Bacterianas/imunologia , Estudos de Casos e Controles , Reações Cruzadas/imunologia , Feminino , Gonorreia/imunologia , Humanos , Soros Imunes/imunologia , Imunização/métodos , Masculino , Infecções Meningocócicas/microbiologia , Vacinas Meningocócicas/imunologia , Vacinas Meningocócicas/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Neisseria meningitidis/imunologia , Neisseria meningitidis Sorogrupo B/imunologia , Estudos Retrospectivos , Sorogrupo , Vacinação/métodos
3.
PLoS One ; 18(4): e0284062, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37027389

RESUMO

Neisseria gonorrhoeae is a highly adapted human sexually transmitted pathogen that can cause symptomatic infections associated with localized inflammation as well as asymptomatic and subclinical infections, particularly in females. Gonococcal infection in humans does not generate an effective immune response in most cases, which contributes to both transmission of the pathogen and reinfection after treatment. Neisseria gonorrhoeae is known to evade and suppress human immune responses through a variety of mechanisms. Commensal Neisseria species that are closely related to N. gonorrhoeae, such as N. cinerea, N. lactamica, N. elongata, and N. mucosa, rarely cause disease and instead asymptomatically colonize mucosal sites for prolonged periods of time without evoking clearing immunologic responses. We have shown previously that N. gonorrhoeae inhibits the capacity of antigen-pulsed dendritic cells to induce CD4+ T cell proliferation in vitro. Much of the suppressive effects of N. gonorrhoeae on dendritic cells can be recapitulated either by outer-membrane vesicles released from the bacteria or by purified PorB, the most abundant outer-membrane protein in Neisseria gonorrhoeae. We show here that three commensal Neisseria species, N. cinerea, N. lactamica and N. mucosa, show a comparable capacity to suppress dendritic cell-induced T cell proliferation in vitro through mechanisms similar to those demonstrated previously for N. gonorrhoeae, including inhibition by purified PorB. Our findings suggest that some immune-evasive properties of pathogenic N. gonorrhoeae are shared with commensal Neisseria species and may contribute to the ability of both pathogens and commensals to cause prolonged mucosal colonization in humans.


Assuntos
Gonorreia , Neisseria , Humanos , Neisseria gonorrhoeae , Gonorreia/microbiologia , Linfócitos T CD4-Positivos , Proteínas de Membrana/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA