Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 51(11): 5414-5431, 2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37021556

RESUMO

Cellular totipotency is critical for whole-organism generation, yet how totipotency is established remains poorly illustrated. Abundant transposable elements (TEs) are activated in totipotent cells, which is critical for embryonic totipotency. Here, we show that the histone chaperone RBBP4, but not its homolog RBBP7, is indispensable for maintaining the identity of mouse embryonic stem cells (mESCs). Auxin-induced degradation of RBBP4, but not RBBP7, reprograms mESCs to the totipotent 2C-like cells. Also, loss of RBBP4 enhances transition from mESCs to trophoblast cells. Mechanistically, RBBP4 binds to the endogenous retroviruses (ERVs) and functions as an upstream regulator by recruiting G9a to deposit H3K9me2 on ERVL elements, and recruiting KAP1 to deposit H3K9me3 on ERV1/ERVK elements, respectively. Moreover, RBBP4 facilitates the maintenance of nucleosome occupancy at the ERVK and ERVL sites within heterochromatin regions through the chromatin remodeler CHD4. RBBP4 depletion leads to the loss of the heterochromatin marks and activation of TEs and 2C genes. Together, our findings illustrate that RBBP4 is required for heterochromatin assembly and is a critical barrier for inducing cell fate transition from pluripotency to totipotency.


Assuntos
Heterocromatina , Células-Tronco Pluripotentes , Animais , Camundongos , Heterocromatina/genética , Heterocromatina/metabolismo , Fatores de Transcrição/metabolismo , Cromatina/metabolismo , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Embrionárias Murinas/metabolismo , Epigênese Genética
2.
BMC Microbiol ; 20(1): 272, 2020 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-32867674

RESUMO

BACKGROUND: Continuous monocropping can affect the physicochemical and biological characteristics of cultivated soil. Sophora flavescens is a valuable herbal medicine and sensitive to continuous monocropping. Currently, diversity patterns of soil microbial communities in soil continuous monocropping with S. flavescens have not been extensively elucidated. RESULTS: In this study, comparative 16S rDNA and internal transcribed spacer (ITS) MiSeq sequencing analyses were used to examine the taxonomic community structure and microbial diversity in nonrhizosphere soil (CK) and rhizosphere soils (SCC, TCC, and FCC) sampled from fields that had undergone two, three, and five years of continuous monocropping, respectively. Among the microbial communities, a decreased abundance of Acidobacteria and increased abundances of Proteobacteria and Bacteroidetes were found with the increase in monocropping years of S. flavescens. As the continuous monocropping time increased, the diversity of the bacterial community decreased, but that of fungi increased. Redundancy analysis also showed that among the properties of the rhizosphere soil, the available phosphorus, organic matter, total nitrogen, and sucrase had the greatest impacts on the diversity of the rhizosphere microbial community. Moreover, a biomarker for S. flavescens soil was also identified using the most differentially abundant bacteria and fungi in soil samples. CONCLUSIONS: Our study indicates that long-term monocropping exerted great impacts on microbial community distributions and soil physicochemical properties. The relationship between microbial community and physicochemical properties of rhizosphere soil would help clarify the side effects of continuous S. flavescens monocropping. Our study may aid in uncovering the theoretical basis underlying obstacles to continuous monocropping and provide better guidance for crop production.


Assuntos
Agricultura/métodos , Microbiota/genética , Rizosfera , Microbiologia do Solo , Sophora , Bactérias/genética , Biodiversidade , China , DNA Ribossômico , Fungos/genética , Concentração de Íons de Hidrogênio , Nitrogênio/análise , Plantas Medicinais , Solo/química
3.
Plant Dis ; 104(6): 1610-1620, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32271644

RESUMO

Volatile organic compounds (VOCs) play important roles in the regulation of plant growth and pathogen resistance. However, little is known about the influence of VOCs released from endophytic strains (Burkholderia pyrrocinia strain JK-SH007) on controlling pathogens or inducing systemic resistance in poplar. In this study, we found that VOCs produced by strain JK-SH007 inhibit three poplar canker pathogens (Cytospora chrysosperma, Phomopsis macrospora, and Fusicoccum aesculi) and promote defense enzyme activity and malondialdehyde (MDA) and total phenol (TP) accumulation. Thirteen kinds of VOC components were identified using the solid-phase microextraction combined with gas chromatography-mass spectrometry method. Dimethyl disulfide (DMDS) accounted for the largest proportion of these VOCs. Treatments of poplar seedlings with different volumes of VOC standards (DMDS, benzothiazole, dimethylthiomethane, and phenylacetone) showed that DMDS had the greatest effects on various defense enzyme activities and MDA and TP accumulation. We also found that the inhibitory effect of the VOCs on the three pathogens was gradually enhanced with increasing standard volume. Moreover, the treatment of samples with DMDS significantly reduced the severity and development of the disease caused by three poplar canker pathogens. Comparative transcriptomics analysis of poplar seedlings treated with DMDS showed that there were 1,586 differentially expressed genes in the leaves and stems, and quantitative PCR showed that the gene expression trends were highly consistent with the transcriptome sequencing results. The most significant transcriptomic changes induced by VOCs were related to hormone signal transduction, transcriptional regulation of plant-pathogen interactions, and energy metabolism. Moreover, 137 transcription factors, including members of the ethylene response factor, NAC, WRKY, G2-like, and basic helix-loop-helix protein families, were identified to be involved in the VOC-induced process. This study elucidates the resistance induced by Burkholderia pyrrocinia strain JK-SH007 to poplar canker at the molecular level and can make possible a new method for the comprehensive prevention and control of poplar disease.


Assuntos
Populus , Compostos Orgânicos Voláteis , Burkholderia , Resistência à Doença , Humanos , Plântula
4.
BMC Genomics ; 20(1): 977, 2019 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-31842731

RESUMO

BACKGROUND: Olfactory receptors (ORs) can bind odor molecules and play a crucial role in odor sensation. Due to the frequent gains and losses of genes during evolution, the number of OR members varies greatly among different species. However, whether the extent of gene gains/losses varies between marine mammals and related terrestrial mammals has not been clarified, and the factors that might underlie these variations are unknown. RESULTS: To address these questions, we identified more than 10,000 members of the OR family in 23 mammals and classified them into 830 orthologous gene groups (OGGs) and 281 singletons. Significant differences occurred in the number of OR repertoires and OGGs among different species. We found that all marine mammals had fewer OR genes than their related terrestrial lineages, with the fewest OR genes found in cetaceans, which may be closely related to olfactory degradation. ORs with more gene duplications or loss events tended to be under weaker purifying selection. The average gain and loss rates of OR genes in terrestrial mammals were higher than those of mammalian gene families, while the average gain and loss rates of OR genes in marine mammals were significantly lower and much higher than those of mammalian gene families, respectively. Additionally, we failed to detect any one-to-one orthologous genes in the focal species, suggesting that OR genes are not well conserved among marine mammals. CONCLUSIONS: Marine mammals have experienced large numbers of OR gene losses compared with their related terrestrial lineages, which may result from the frequent birth-and-death evolution under varied functional constrains. Due to their independent degeneration, OR genes present in each lineage are not well conserved among marine mammals. Our study provides a basis for future research on the olfactory receptor function in mammals from the perspective of evolutionary trajectories.


Assuntos
Organismos Aquáticos/genética , Mamíferos/genética , Receptores Odorantes/genética , Animais , Evolução Molecular , Deleção de Genes , Família Multigênica , Filogenia , Seleção Genética , Análise de Sequência de DNA
5.
Mol Genet Genomics ; 294(4): 875-885, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30915543

RESUMO

Olfactomedin domain-containing proteins appear to facilitate neurodevelopment, cell adhesion, intercellular interactions, and protein-protein interactions, and the disruption of their expression will lead to dramatic developmental perturbations and lethality. The aim of the present work was to study how these genes evolved in metazoans and diverged after their duplication as well as to characterize their expression profiles and detrimental mutations. We conducted an exhaustive survey of olfactomedin domain-containing genes in genomic databases, identifying 235 olfactomedin-like (OLF) proteins in 29 representative species covering all the main metazoan lineages. Phylogenetic analyses allowed us to define nine different subfamilies of OLF genes, and subfamily IX, which specifically includes two immunoglobulin domains, was identified for the first time in arthropods. Functional divergence analysis suggested that the function of this arthropod-specific OLF subfamily might have diverged from that of other subfamilies. Expression pattern analysis of OLF genes in humans and rats showed that human OLF genes tended to be highly expressed in the brain, while rat OLF genes were inclined to be expressed in the ovary and brain. We used the SIFT and PolyPhen servers in dbNSFP to distinguish deleterious mutations from neutral mutations for each member of the OLF gene family. The results showed that OLFML2B contains the most destructive SNPs (up to 61), while none of the mutations in OLFM2, OLFM4 and LPHN2 were predicted to be harmful. Taken together, these findings may not only enhance understanding of the phylogenetic relationships of the OLF family but also aid future studies on OLF protein regulation of nervous system development and immune function.


Assuntos
Encéfalo/metabolismo , Glicoproteínas/química , Glicoproteínas/genética , Ovário/metabolismo , Polimorfismo de Nucleotídeo Único , Animais , Evolução Molecular , Proteínas da Matriz Extracelular/química , Proteínas da Matriz Extracelular/genética , Feminino , Regulação da Expressão Gênica , Humanos , Família Multigênica , Mutação , Filogenia , Domínios Proteicos , Ratos
6.
Mol Genet Genomics ; 292(6): 1405-1418, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28819830

RESUMO

The tyrosine kinases (TKs) play principal roles in regulation of multicellular aspects of the organism and are implicated in many cancer types and congenital disorders. The anole lizard has recently been introduced as a model organism for laboratory-based studies of organismal function and field studies of ecology and evolution. However, the TK family of anole lizard has not been systematically identified and characterized yet. In this study, we identified 82 TK-encoding genes in the anole lizard genome and classified them into 28 subfamilies through phylogenetic analysis, with no member from ROS and STYK1 subfamilies identified. Although TK domain sequences and domain organization in each subfamily were conserved, the total number of TKs in different species was much variable. In addition, extensive evolutionary analysis in metazoans indicated that TK repertoire in vertebrates tends to be remarkably stable. Phylogenetic analysis of Eph subfamily indicated that the divergence of EphA and EphB occurred prior to the whole genome duplication (WGD) but after the split of Urochordates and vertebrates. Moreover, the expression pattern analysis of lizard TK genes among 9 different tissues showed that 14 TK genes exhibited tissue-specific expression and 6 TK genes were widely expressed. Comparative analysis of TK expression suggested that the tissue specifically expressed genes showed different expression pattern but the widely expressed genes showed similar pattern between anole lizard and human. These results may provide insights into the evolutionary diversification of animal TK genes and would aid future studies on TK protein regulation of key growth and developmental processes.


Assuntos
Lagartos/metabolismo , Proteínas Tirosina Quinases/genética , Sequência de Aminoácidos , Animais , Sequência Conservada , Lagartos/classificação , Lagartos/genética , Filogenia , Proteínas Tirosina Quinases/química
7.
Mol Genet Genomics ; 290(2): 633-48, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25403511

RESUMO

The basic helix-loop-helix (bHLH) domain is a highly conserved amino acid motif that defines a group of DNA-binding transcription factors. bHLH proteins play essential regulatory roles in a variety of biological processes in animal, plant, and fungus. The domestic dog, Canis lupus familiaris, is a good model organism for genetic, physiological, and behavioral studies. In this study, we identified 115 putative bHLH genes in the dog genome. Based on a phylogenetic analysis, 51, 26, 14, 4, 12, and 4 dog bHLH genes were assigned to six separate groups (A-F); four bHLH genes were categorized as ''orphans''. Within-group evolutionary relationships inferred from the phylogenetic analysis were consistent with positional conservation, other conserved domains flanking the bHLH motif, and highly conserved intron/exon patterns in other vertebrates. Our analytical results confirmed the GenBank annotations of 89 dog bHLH proteins and provided information that could be used to update the annotations of the remaining 26 dog bHLH proteins. These data will provide good references for further studies on the structures and regulatory functions of bHLH proteins in the growth and development of dogs, which may help in understanding the mechanisms that underlie the physical and behavioral differences between dogs and wolves.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Cães/genética , Sequência de Aminoácidos , Animais , Mapeamento Cromossômico , Sequência Conservada , Genoma , Sequências Hélice-Alça-Hélice/genética , Íntrons , Anotação de Sequência Molecular , Dados de Sequência Molecular , Filogenia , Estrutura Terciária de Proteína , Análise de Sequência de DNA
8.
J Insect Sci ; 14: 195, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25434030

RESUMO

Basic helix-loop-helix (bHLH) proteins comprise a large superfamily of transcription factors, which are involved in the regulation of various developmental processes. bHLH family members are widely distributed in various eukaryotes including yeast, fruit fly, zebrafish, mouse, and human. In this study, we identified 55 bHLH motifs encoded in genome sequence of the human body louse, Pediculus humanus corporis (Phthiraptera: Pediculidae). Phylogenetic analyses of the identified P. humanus corporis bHLH (PhcbHLH) motifs revealed that there are 23, 11, 9, 1, 10, and 1 member(s) in groups A, B, C, D, E, and F, respectively. Examination to GenBank annotations of the 55 PhcbHLH members indicated that 29 PhcbHLH proteins were annotated in consistence with our analytical result, 8 were annotated different with our analytical result, 12 were merely annotated as hypothetical protein, and the rest 6 were not deposited in GenBank. A comparison on insect bHLH gene composition revealed that human body louse possibly has more hairy and E(spl) genes than other insect species. Because hairy and E(spl) genes have been found to negatively regulate the differentiation of insect preneural cells, it is suggested that the existence of additional hairy and E(spl) genes in human body louse is probably the consequence of its long period adaptation to the relatively dark and stable environment. These data provide good references for further studies on regulatory functions of bHLH proteins in the growth and development of human body louse.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Sequências Hélice-Alça-Hélice , Proteínas de Insetos/genética , Pediculus/genética , Sequência de Aminoácidos , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/química , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Mapeamento Cromossômico , Estudo de Associação Genômica Ampla , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Dados de Sequência Molecular , Pediculus/metabolismo , Filogenia
9.
Front Plant Sci ; 15: 1393905, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38665368

RESUMO

Due to its high efficacy as a wide-spectrum disinfectant and its potential for the degradation of pollutants and pesticides, ozone has broad application prospects in agricultural production. In this study, micro/nano bubble technology was applied to achieve a saturation state of bubble nutrient solution, including micro-nano oxygen (O2 group) and micro-nano ozone (O3 group) bubble nutrient solutions. The effects of these solutions on lettuce physiological indices as well as changes in the microbial community within the rhizosphere substrate were studied. The application of micro/nano (O2 and O3) bubble nutrient solutions to substrate-cultured lettuce plants increased the amount of dissolved oxygen in the nutrient solution, increased the lettuce yield, and elevated the net photosynthetic rate, conductance of H2O and intercellular carbon dioxide concentration of lettuce plants. Diversity analysis of the rhizosphere microbial community revealed that both the abundance and diversity of bacterial and fungal communities in the substrate increased after plant cultivation and decreased following treatment with micro/nanobubble nutrient solutions. RDA results showed that the microbial community in the S group was positively associated with EC, that in the CK and O2 groups exhibited a positive correlation with SC, and that in the O3 group displayed a positive correlation with CAT and POD. Overall, the implementation of micro/nanobubble generation technology in soilless substrates can effectively increase the lettuce growth and yield, and O3 had a more pronounced effect on lettuce yield and quality and the microbial community structure in the substrate than O2. Our study would provide a reference and theoretical basis for developing sustainable and green technology for promoting lettuce production and can be a promising alternative to conventional methods for improving crop yields.

10.
Gene ; 910: 148336, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38447680

RESUMO

DNA binding with one finger (Dof), plant-specific zinc finger transcription factors, can participate in various physiological and biochemical processes during the life of plants. As one of the most important oil crops in the world, sunflower (Helianthus annuus L.) has significant economic and ornamental value. However, a systematic analysis of H. annuus Dof (HaDof) members and their functions has not been extensively conducted. In this study, we identified 50 HaDof genes that are unevenly distributed on 17 chromosomes of sunflower. We present a comprehensive overview of the HaDof genes, including their chromosome locations, phylogenetic analysis, and expression profile characterization. Phylogenetic analysis classified the 366 Dof members identified from 11 species into four groups (further subdivided into nine subfamilies). Segmental duplications are predominantly contributed to the expansion of sunflower Dof genes, and all segmental duplicate gene pairs are under purifying selection due to strong evolutionary constraints. Furthermore, we observed differential expression patterns for HaDof genes in normal tissues as well as under hormone treatment or abiotic stress conditions by analyzing RNA-seq data from previous studies and RT-qPCR data in our current study. The expression of HaDof04 and HaDof43 were not detected in any samples, which implied that they may be gradually undergoing pseudogenization process. Some HaDof genes, such as HaDof25 and HaDof30, showed responsiveness to exogenous plant hormones, such as kinetin, brassinosteroid, auxin or strigolactone, while others like HaDof15 and HaDof35 may participate in abiotic stress resistance of sunflower seedling. Our study represents the initial step towards understanding the phylogeny and expression characterization of sunflower Dof family genes, which may provide valuable reference information for functional studies on hormone response, abiotic stress resistance, and molecular breeding in sunflower and other species.


Assuntos
Helianthus , Helianthus/genética , Helianthus/metabolismo , Filogenia , Família Multigênica , Estresse Fisiológico/genética , Genoma de Planta , Hormônios , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
11.
Mol Genet Genomics ; 288(7-8): 365-80, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23756994

RESUMO

Helix-loop-helix (bHLH) proteins play essential regulatory roles in a variety of biological processes. These highly conserved proteins form a large transcription factor superfamily, and are commonly identified in large numbers within animal, plant, and fungal genomes. The bHLH domain has been well studied in many animal species, but has not yet been characterized in non-avian reptiles. In this study, we identified 102 putative bHLH genes in the genome of the green anole lizard, Anolis carolinensis. Based on phylogenetic analysis, these genes were classified into 43 families, with 43, 24, 16, 3, 10, and 3 members assigned into groups A, B, C, D, E, and F, respectively, and 3 members categorized as "orphans". Within-group evolutionary relationships inferred from the phylogenetic analysis were consistent with highly conserved patterns observed for introns and additional domains. Results from phylogenetic analysis of the H/E(spl) family suggest that genome and tandem gene duplications have contributed to this family's expansion. Our classification and evolutionary analysis has provided insights into the evolutionary diversification of animal bHLH genes, and should aid future studies on bHLH protein regulation of key growth and developmental processes.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/classificação , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Evolução Molecular , Lagartos/genética , Família Multigênica , Motivos de Aminoácidos , Animais , Biologia Computacional/métodos , Sequência Conservada , Éxons , Genoma , Sequências Hélice-Alça-Hélice , Íntrons , Camundongos , Fases de Leitura Aberta , Filogenia , Matrizes de Pontuação de Posição Específica
12.
iScience ; 26(11): 108112, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37860690

RESUMO

Drought can adversely influence the crop growth and production. Accordingly, sunflowers have strong adaptability to drought; hence, we conducted analyses for sunflower seedlings with drought stress and rehydration drought acclimation through physiological measurements and transcriptomics. It showed that drought can cause the accumulation of ROS and enhance the activity of antioxidant enzymes and the content of osmolytes. After rehydration, the contents of ROS and MDA were significantly reduced concomitant with increased antioxidant activity and osmotic adjustment. Totally, 2,589 DEGs were identified among treatments. Functional enrichment analysis showed that DEGs were mainly involved in plant hormone signal transduction, MAPK signaling, and biosynthesis of secondary metabolites. Comparison between differentially spliced genes and DEGs indicated that bHLH025, NAC53, and SINAT3 may be pivotal genes involved in sunflower drought resistance. Our results not only highlight the underlying mechanism of drought stress and rehydration in sunflower but also provide a theoretical basis for crop genetic breeding.

13.
BMC Evol Biol ; 12: 165, 2012 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-22938134

RESUMO

BACKGROUND: The basic helix-loop-helix (bHLH) transcription factors and their homologs form a superfamily that plays essential roles in transcriptional networks of multiple developmental processes. bHLH family members have been identified in over 20 organisms, including fruit fly, zebrafish, human and mouse. RESULT: In this study, we conducted a genome-wide survey for bHLH sequences, and identified 57 bHLH sequences encoded in complete genome sequence of the ponerine ant, Harpegnathos saltator. Phylogenetic analysis of the bHLH domain sequences classified these genes into 38 bHLH families with 23, 14, 10, 1, 8 and 1 members in group A, B, C, D, E and F, respectively. The number of PabHLHs (ponerine ant bHLHs) with introns is higher than many other insect species, and they are found to have introns with average lengths only inferior to those of pea aphid. In addition, two H. saltator bHLHs named PaCrp1 and PaSide locate on two separate contigs in the genome. CONCLUSIONS: A putative full set of PabHLH genes is comparable with other insect species and genes encoding Oligo, MyoRb and Figα were not found in genomes of all insect species of which bHLH family members have been identified. Moreover, in-family phylogenetic analyses indicate that the PabHLH genes are more closely related with Apis mellifera than others. The present study will serve as a solid foundation for further investigations into the structure and function of bHLH proteins in the regulation of H. saltator development.


Assuntos
Formigas/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Genoma de Inseto/genética , Sequência de Aminoácidos , Animais , Formigas/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/química , Drosophila melanogaster/genética , Estudo de Associação Genômica Ampla , Íntrons , Dados de Sequência Molecular , Filogenia , Alinhamento de Sequência
14.
Food Chem ; 370: 131018, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34507210

RESUMO

The thermal degradation behavior of cyanidin-3-O-gluoside (Cy3G) in nitrogen and air was studied using thermogravimetric analysis (TGA), thermogravimetry-Fourier transform infrared spectroscopy (TG-FTIR) and pyrolysis-gas chromatography/mass spectrometry (Py-GCMS). The results show that the thermal degradation of Cy3G in nitrogen and in air can be divided into three steps. The total degradation rate was 63.09% in nitrogen and 99.42% in air, and the total activation energy (Ea) was 65.85 and 80.98 kJ·mol-1, respectively. The TG-FTIR analysis showed that Cy3G is significantly decomposed at 200-300 °C. The Py-GCMS analysis shows that the first step in the thermal degradation of Cy3G in nitrogen is the cleavage of glycosidic bonds to give cyanidin and glucoside. The glucoside and cyanidin then degrade further to give mainly low molecular weight compounds, together with furan derivatives, pyran derivatives and aromatic compounds. The phenols and furans found in the pyrolysis products are known to have a degree of toxicity.


Assuntos
Antocianinas , Glucosídeos , Cromatografia Gasosa-Espectrometria de Massas , Glicosídeos , Fenóis/análise
15.
Food Chem ; 371: 131125, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34563971

RESUMO

Tartary buckwheat has higher health-promoting value than common buckwheat. However, the related metabolites information except flavonoids is largely deficient. Here, we compared the seed metabolomes of the two species using a UHPLC-QqQ-MS-based metabolomics approach. In total, 722 metabolites were obtained, of which 84 and 78 were identified as the key active ingredients of Traditional Chinese Medicines and the active pharmaceutical ingredients for six major diseases-resistance, respectively. Comparative analysis showed there were obviously difference in metabolic profiles between the two buckwheat species, and further found 61 flavonoids and 94 non-flavonoids metabolites displayed significantly higher contents (≥2 fold) in Tartary buckwheat than in common buckwheat. Our results suggest that Tartary and common buckwheat seeds are rich in metabolites beneficial to human health, and non-flavonoids metabolites also contributed to Tartary buckwheat's higher health-promoting value than common buckwheat. This study provides valuable information for the development of new functional foods of Tartary buckwheat.


Assuntos
Fagopyrum , Flavonoides , Humanos , Metabolômica , Sementes
16.
Artigo em Inglês | MEDLINE | ID: mdl-36470576

RESUMO

The white-blotched river stingray (Potamotrygon leopoldi) is a cartilaginous fish native to the Xingu River, a tributary of the Amazon River system. As a rare freshwater-dwelling cartilaginous fish in the Potamotrygonidae family in which no member has the genome sequencing information, P. leopoldi provides the evolutionary details in fish phylogeny, niche adaptation, and skeleton formation. In this study, we present its draft genome of 4.11 Gb comprised of 16,227 contigs and 13,238 scaffolds, with contig N50 of 3937 kb and scaffold N50 of 5675 kb in size. Our analysis shows that P. leopoldi is a slow-evolving fish that diverged from elephant sharks about 96 million years ago. Moreover, two gene families related to the immune system, immunoglobulin heavy constant delta genes and T-cell receptor alpha/delta variable genes, exhibit expantion in P. leopoldi only. We also identified the Hox gene clusters in P. leopoldi and discovered that seven Hox genes shared by five representative fish species are missing in P. leopoldi. The RNA sequencing data from P. leopoldi and other three fish species demonstrate that fishes have a more diversified tissue expression spectrum as compared with the corresponding mammalian data. Our functional studies suggest that the lack of the GC gene encoding vitamin D-binding protein in cartilaginous fishes (both P. leopoldi and Callorhinchus milii) could partly explain the absence of hard bone in their endoskeleton. Overall, this genome resource provides new insights into the niche adaptation, body plan, and skeleton formation of P. leopoldi as well as the genome evolution in cartilaginous fishes.

17.
Front Plant Sci ; 13: 1010404, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36275559

RESUMO

Jasmonate ZIM-domain (JAZ) proteins act as inhibitory factors of the jasmonic acid (JA) pathway, which is involved in regulating plant development and defense responses. However, there are no extensive studies available on JAZ genes in sunflower (Helianthus annuus L.). In this study, the phylogenetic analysis of 139 putative JAZ genes from eight plants demonstrated that these JAZs could be divided into five groups (Groups I-V), and the 27 sunflower JAZs (HaJAZs) were classified into these five groups. All groups contained genes from both monocotyledons and dicotyledons, indicating that the emergence of JAZ genes predates the differentiation of monocotyledons and dicotyledons. Both segmental and tandem duplications contributed greatly to this gene family's expansion in sunflower, especially in Group II. Moreover, the expression profiles of HaJAZ genes under normal conditions, hormone treatments or abiotic stresses were analyzed based on RNA-seq data. HaJAZ2 may be undergoing pseudogenization as a nonfunctional gene because it was not expressed in any tissue. Many HaJAZ genes in roots upregulated their expression when involved in responding to exogenous hormones, especially methyl-jasmonate. The abiotic stress treatments of sunflower showed that HaJAZ5, HaJAZ15, HaJAZ17, HaJAZ20, and HaJAZ21 tend to be sensitive to certain abiotic stresses. HaJAZs from different groups may share similar functions but also exercise their unique functions when responding to abiotic stresses. We speculated that this gene family was conserved in sequence but varied in its expression among duplicated HaJAZ genes, which implies that they may confer neofunctionalization in the adaptation to abiotic stresses; this work provides insight into the resistance of sunflowers and their adaptation to diverse environmental conditions.

18.
J Adv Res ; 42: 221-235, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36089521

RESUMO

INTRODUCTION: Salvia castanea, a wild plant species is adapted to extreme Qinghai-Tibetan plateau (QTP) environments. It is also used for medicinal purposes due to high ingredient of tanshinone IIA (T-IIA). Despite its importance to Chinese medicinal industry, the mechanisms associated with secondary metabolites accumulation (i.e. T-IIA and rosmarinic acid (RA)) in this species have not been characterized. Also, the role of special underground tissues in QTP adaptation of S. castanea is still unknown. OBJECTIVES: We explored the phenomenon of periderm-like structure in underground stem center of S. castanea with an aim to unravel the molecular evolutionary mechanisms of QTP adaptation in this species. METHODS: Morphologic observation and full-length transcriptome of S. castanea plants were conducted. Comparative genomic analyses of S. castanea with other 14 representative species were used to reveal its phylogenetic position and molecular evolutionary mechanisms. RNA-seq and WGCNA analyses were applied to understand the mechanisms of high accumulations of T-IIA and RA in S. castanea tissues. RESULTS: Based on anatomical observations, we proposed a "trunk-branches" developmental model to explain periderm-like structure in the center of underground stem of S. castanea. Our study suggested that S. castanea branched off from cultivated Danshen around 16 million years ago. During the evolutionary process, significantly expanded orthologous gene groups, 24 species-specific and 64 positively selected genes contributed to morphogenesis and QTP adaptation in S. castanea. RNA-seq and WGCNA analyses unraveled underlying mechanisms of high accumulations of T-IIA and RA in S. castanea and identified NAC29 and TGA22 as key transcription factors. CONCLUSION: We proposed a "trunk-branches" developmental model for the underground stem in S. castanea. Adaptations to extreme QTP environment in S. castanea are associated with accumulations of high secondary metabolites in this species.


Assuntos
Salvia , Salvia/genética , Salvia/metabolismo , Filogenia , Abietanos/metabolismo , Plantas/metabolismo , Genômica , Ácido Rosmarínico
19.
Int J Biol Macromol ; 189: 72-83, 2021 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-34411617

RESUMO

The basic helix-loop-helix (bHLH) transcription factors play important roles in many processes such as plant growth, metabolism and response to biotic/abiotic stresses. Sunflower (Helianthus annuus) is a major oil crop, cultivated throughout the world. However, no systematic characterization of bHLH gene members in sunflower (HabHLH) and their functions involved in drought, cadmium tolerance and Orobanche cumana resistance has been reported yet. In this study, 183 HabHLH genes were identified and named according to their chromosomal locations. We classified these proteins into 21 subfamilies by phylogenetic tree analysis. Subsequently, DNA-binding patterns, sequence analysis, duplication analysis and gene structures were analyzed. All of the HabHLH genes were randomly distributed on 17 chromosomes, and 10 pairs of tandem duplicated genes and one pair of segmental duplicated genes were detected in the HabHLH family. Among the duplicated gene pairs, eight pairs of HabHLH genes suffer from positive selection. Moreover, qRT-PCR results revealed significant up-regulated expression of HabHLH024 gene in response to both abiotic (cadmium, drought) and biotic (Orobanche cumana) stresses, suggesting its important functions in response to different stresses. Therefore, HabHLH024 would be the potential candidate gene for the sunflower tolerance breeding.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Helianthus/genética , Helianthus/fisiologia , Estresse Fisiológico/genética , Motivos de Aminoácidos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/química , Cádmio/toxicidade , DNA de Plantas/metabolismo , Secas , Perfilação da Expressão Gênica , Genes de Plantas , Variação Genética , Helianthus/efeitos dos fármacos , Helianthus/microbiologia , Família Multigênica , Especificidade de Órgãos/genética , Orobanche/fisiologia , Filogenia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Ligação Proteica , Duplicações Segmentares Genômicas
20.
Int J Biol Macromol ; 175: 188-198, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33549671

RESUMO

Membrane-bound fatty acid desaturase (FAD) gene family plays crucial roles in regulation of fatty acid (FA) compositions in plants. Sunflower (Helianthus annuus L.) is an important oilseed crop in the world; however, no comprehensive study on exploring the role of FAD family in relation to stress tolerance in sunflower has been performed yet. In this study, we identified 40 putative FAD genes in H. annuus (HaFAD), which were unevenly distributed across 13 of the total 17 chromosomes. Phylogenetic analysis indicated that HaFAD genes were divided into four subfamilies, as supported by highly conserved gene structures and motifs. Collinearity analysis showed that tandem duplication events played a crucial role in the expansion of HaFAD gene family. In addition, tissue-specific expression showed that 32 HaFAD genes were widely expressed in various tissues or organs of sunflower. Furthermore, qRT-PCR results revealed significant expression changes of HaFAD genes in response to abiotic (cadmium, drought) and biotic (Orobanche cumana) stresses, suggesting their important functions in response to different stresses. Therefore, our results provide insights into HaFAD gene family in response to different stresses, and some specific up-regulated genes such as HaFAD3.2, HaADS8, HaFAD2.1, and HaADS9 would be the potential candidate genes for the sunflower tolerance breeding.


Assuntos
Ácidos Graxos Dessaturases/genética , Helianthus/metabolismo , Cromossomos de Plantas/metabolismo , Ácidos Graxos Dessaturases/metabolismo , Expressão Gênica/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas/genética , Genoma de Planta/genética , Estudo de Associação Genômica Ampla , Helianthus/química , Família Multigênica , Filogenia , Melhoramento Vegetal , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Transcriptoma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA