Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.354
Filtrar
1.
Cell ; 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39305902

RESUMO

m6A modification is best known for its critical role in controlling multiple post-transcriptional processes of the mRNAs. Here, we discovered elevated levels of m6A modification on centromeric RNA (cenRNA) in cancerous cells compared with non-cancerous cells. We then identified CENPA, an H3 variant, as an m6A reader of cenRNA. CENPA is localized at centromeres and is essential in preserving centromere integrity and function during mitosis. The m6A-modified cenRNA stabilizes centromeric localization of CENPA in cancer cells during the S phase of the cell cycle. Mutations of CENPA at the Leu61 and the Arg63 or removal of cenRNA m6A modification lead to loss of centromere-bound CENPA during S phase. This in turn results in compromised centromere integrity and abnormal chromosome separation and hinders cancer cell proliferation and tumor growth. Our findings unveil an m6A reading mechanism by CENPA that epigenetically governs centromere integrity in cancer cells, providing potential targets for cancer therapy.

2.
Cell ; 187(16): 4355-4372.e22, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39121848

RESUMO

Overcoming immune-mediated resistance to PD-1 blockade remains a major clinical challenge. Enhanced efficacy has been demonstrated in melanoma patients with combined nivolumab (anti-PD-1) and relatlimab (anti-LAG-3) treatment, the first in its class to be FDA approved. However, how these two inhibitory receptors synergize to hinder anti-tumor immunity remains unknown. Here, we show that CD8+ T cells deficient in both PD-1 and LAG-3, in contrast to CD8+ T cells lacking either receptor, mediate enhanced tumor clearance and long-term survival in mouse models of melanoma. PD-1- and LAG-3-deficient CD8+ T cells were transcriptionally distinct, with broad TCR clonality and enrichment of effector-like and interferon-responsive genes, resulting in enhanced IFN-γ release indicative of functionality. LAG-3 and PD-1 combined to drive T cell exhaustion, playing a dominant role in modulating TOX expression. Mechanistically, autocrine, cell-intrinsic IFN-γ signaling was required for PD-1- and LAG-3-deficient CD8+ T cells to enhance anti-tumor immunity, providing insight into how combinatorial targeting of LAG-3 and PD-1 enhances efficacy.


Assuntos
Antígenos CD , Linfócitos T CD8-Positivos , Interferon gama , Proteína do Gene 3 de Ativação de Linfócitos , Camundongos Endogâmicos C57BL , Receptor de Morte Celular Programada 1 , Receptor de Morte Celular Programada 1/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Animais , Interferon gama/metabolismo , Camundongos , Antígenos CD/metabolismo , Comunicação Autócrina , Humanos , Melanoma/imunologia , Melanoma/tratamento farmacológico , Feminino , Linhagem Celular Tumoral , Melanoma Experimental/imunologia , Exaustão das Células T
3.
Cell ; 185(12): 2116-2131.e18, 2022 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-35662412

RESUMO

Highly transmissible Omicron variants of SARS-CoV-2 currently dominate globally. Here, we compare neutralization of Omicron BA.1, BA.1.1, and BA.2. BA.2 RBD has slightly higher ACE2 affinity than BA.1 and slightly reduced neutralization by vaccine serum, possibly associated with its increased transmissibility. Neutralization differences between sub-lineages for mAbs (including therapeutics) mostly arise from variation in residues bordering the ACE2 binding site; however, more distant mutations S371F (BA.2) and R346K (BA.1.1) markedly reduce neutralization by therapeutic antibody Vir-S309. In-depth structure-and-function analyses of 27 potent RBD-binding mAbs isolated from vaccinated volunteers following breakthrough Omicron-BA.1 infection reveals that they are focused in two main clusters within the RBD, with potent right-shoulder antibodies showing increased prevalence. Selection and somatic maturation have optimized antibody potency in less-mutated epitopes and recovered potency in highly mutated epitopes. All 27 mAbs potently neutralize early pandemic strains, and many show broad reactivity with variants of concern.


Assuntos
Anticorpos Monoclonais , Vacinas contra COVID-19/imunologia , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Enzima de Conversão de Angiotensina 2 , Anticorpos Monoclonais/química , Anticorpos Monoclonais/genética , Anticorpos Antivirais , COVID-19 , Vacinas contra COVID-19/administração & dosagem , Epitopos , Humanos , Testes de Neutralização , SARS-CoV-2/classificação , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/química
4.
Cell ; 185(14): 2422-2433.e13, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35772405

RESUMO

The Omicron lineage of SARS-CoV-2, which was first described in November 2021, spread rapidly to become globally dominant and has split into a number of sublineages. BA.1 dominated the initial wave but has been replaced by BA.2 in many countries. Recent sequencing from South Africa's Gauteng region uncovered two new sublineages, BA.4 and BA.5, which are taking over locally, driving a new wave. BA.4 and BA.5 contain identical spike sequences, and although closely related to BA.2, they contain further mutations in the receptor-binding domain of their spikes. Here, we study the neutralization of BA.4/5 using a range of vaccine and naturally immune serum and panels of monoclonal antibodies. BA.4/5 shows reduced neutralization by the serum from individuals vaccinated with triple doses of AstraZeneca or Pfizer vaccine compared with BA.1 and BA.2. Furthermore, using the serum from BA.1 vaccine breakthrough infections, there are, likewise, significant reductions in the neutralization of BA.4/5, raising the possibility of repeat Omicron infections.


Assuntos
COVID-19 , Vacinas Virais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Humanos , Testes de Neutralização , SARS-CoV-2/genética , África do Sul
5.
Cell ; 185(3): 467-484.e15, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35081335

RESUMO

On 24th November 2021, the sequence of a new SARS-CoV-2 viral isolate Omicron-B.1.1.529 was announced, containing far more mutations in Spike (S) than previously reported variants. Neutralization titers of Omicron by sera from vaccinees and convalescent subjects infected with early pandemic Alpha, Beta, Gamma, or Delta are substantially reduced, or the sera failed to neutralize. Titers against Omicron are boosted by third vaccine doses and are high in both vaccinated individuals and those infected by Delta. Mutations in Omicron knock out or substantially reduce neutralization by most of the large panel of potent monoclonal antibodies and antibodies under commercial development. Omicron S has structural changes from earlier viruses and uses mutations that confer tight binding to ACE2 to unleash evolution driven by immune escape. This leads to a large number of mutations in the ACE2 binding site and rebalances receptor affinity to that of earlier pandemic viruses.

6.
Nat Immunol ; 25(9): 1731-1741, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39164479

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and mRNA vaccination induce robust CD4+ T cell responses. Using single-cell transcriptomics, here, we evaluated CD4+ T cells specific for the SARS-CoV-2 spike protein in the blood and draining lymph nodes (dLNs) of individuals 3 months and 6 months after vaccination with the BNT162b2 mRNA vaccine. We analyzed 1,277 spike-specific CD4+ T cells, including 238 defined using Trex, a deep learning-based reverse epitope mapping method to predict antigen specificity. Human dLN spike-specific CD4+ follicular helper T (TFH) cells exhibited heterogeneous phenotypes, including germinal center CD4+ TFH cells and CD4+IL-10+ TFH cells. Analysis of an independent cohort of SARS-CoV-2-infected individuals 3 months and 6 months after infection found spike-specific CD4+ T cell profiles in blood that were distinct from those detected in blood 3 months and 6 months after BNT162b2 vaccination. Our findings provide an atlas of human spike-specific CD4+ T cell transcriptional phenotypes in the dLNs and blood following SARS-CoV-2 vaccination or infection.


Assuntos
Vacina BNT162 , Linfócitos T CD4-Positivos , COVID-19 , Linfonodos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Humanos , COVID-19/imunologia , COVID-19/prevenção & controle , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Vacina BNT162/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfonodos/imunologia , Vacinas contra COVID-19/imunologia , Vacinação , Fenótipo , Feminino , Masculino , Adulto , Pessoa de Meia-Idade , Vacinas de mRNA/imunologia
7.
Cell ; 184(9): 2348-2361.e6, 2021 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-33730597

RESUMO

The race to produce vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) began when the first sequence was published, and this forms the basis for vaccines currently deployed globally. Independent lineages of SARS-CoV-2 have recently been reported: UK, B.1.1.7; South Africa, B.1.351; and Brazil, P.1. These variants have multiple changes in the immunodominant spike protein that facilitates viral cell entry via the angiotensin-converting enzyme-2 (ACE2) receptor. Mutations in the receptor recognition site on the spike are of great concern for their potential for immune escape. Here, we describe a structure-function analysis of B.1.351 using a large cohort of convalescent and vaccinee serum samples. The receptor-binding domain mutations provide tighter ACE2 binding and widespread escape from monoclonal antibody neutralization largely driven by E484K, although K417N and N501Y act together against some important antibody classes. In a number of cases, it would appear that convalescent and some vaccine serum offers limited protection against this variant.


Assuntos
Vacinas contra COVID-19/sangue , Vacinas contra COVID-19/imunologia , SARS-CoV-2/imunologia , Animais , Anticorpos Monoclonais/imunologia , COVID-19/imunologia , COVID-19/terapia , COVID-19/virologia , Chlorocebus aethiops , Ensaios Clínicos como Assunto , Células HEK293 , Humanos , Imunização Passiva , Modelos Moleculares , Mutação/genética , Testes de Neutralização , Ligação Proteica , SARS-CoV-2/química , SARS-CoV-2/genética , Células Vero , Soroterapia para COVID-19
8.
Cell ; 184(11): 2939-2954.e9, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-33852911

RESUMO

Terminating the SARS-CoV-2 pandemic relies upon pan-global vaccination. Current vaccines elicit neutralizing antibody responses to the virus spike derived from early isolates. However, new strains have emerged with multiple mutations, including P.1 from Brazil, B.1.351 from South Africa, and B.1.1.7 from the UK (12, 10, and 9 changes in the spike, respectively). All have mutations in the ACE2 binding site, with P.1 and B.1.351 having a virtually identical triplet (E484K, K417N/T, and N501Y), which we show confer similar increased affinity for ACE2. We show that, surprisingly, P.1 is significantly less resistant to naturally acquired or vaccine-induced antibody responses than B.1.351, suggesting that changes outside the receptor-binding domain (RBD) impact neutralization. Monoclonal antibody (mAb) 222 neutralizes all three variants despite interacting with two of the ACE2-binding site mutations. We explain this through structural analysis and use the 222 light chain to largely restore neutralization potency to a major class of public antibodies.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Sítios de Ligação , COVID-19/terapia , COVID-19/virologia , Linhagem Celular , Humanos , Evasão da Resposta Imune , Imunização Passiva , Mutação , Ligação Proteica , Domínios Proteicos , SARS-CoV-2/genética , Deleção de Sequência , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Vacinação , Vacinas/imunologia , Soroterapia para COVID-19
9.
Cell ; 184(8): 2201-2211.e7, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33743891

RESUMO

SARS-CoV-2 has caused over 2 million deaths in little over a year. Vaccines are being deployed at scale, aiming to generate responses against the virus spike. The scale of the pandemic and error-prone virus replication is leading to the appearance of mutant viruses and potentially escape from antibody responses. Variant B.1.1.7, now dominant in the UK, with increased transmission, harbors 9 amino acid changes in the spike, including N501Y in the ACE2 interacting surface. We examine the ability of B.1.1.7 to evade antibody responses elicited by natural SARS-CoV-2 infection or vaccination. We map the impact of N501Y by structure/function analysis of a large panel of well-characterized monoclonal antibodies. B.1.1.7 is harder to neutralize than parental virus, compromising neutralization by some members of a major class of public antibodies through light-chain contacts with residue 501. However, widespread escape from monoclonal antibodies or antibody responses generated by natural infection or vaccination was not observed.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Células CHO , COVID-19/epidemiologia , Chlorocebus aethiops , Cricetulus , Células HEK293 , Humanos , Pandemias , Ligação Proteica , Relação Estrutura-Atividade , Células Vero
10.
Cell ; 184(16): 4220-4236.e13, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34242578

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has undergone progressive change, with variants conferring advantage rapidly becoming dominant lineages, e.g., B.1.617. With apparent increased transmissibility, variant B.1.617.2 has contributed to the current wave of infection ravaging the Indian subcontinent and has been designated a variant of concern in the United Kingdom. Here we study the ability of monoclonal antibodies and convalescent and vaccine sera to neutralize B.1.617.1 and B.1.617.2, complement this with structural analyses of Fab/receptor binding domain (RBD) complexes, and map the antigenic space of current variants. Neutralization of both viruses is reduced compared with ancestral Wuhan-related strains, but there is no evidence of widespread antibody escape as seen with B.1.351. However, B.1.351 and P.1 sera showed markedly more reduction in neutralization of B.1.617.2, suggesting that individuals infected previously by these variants may be more susceptible to reinfection by B.1.617.2. This observation provides important new insights for immunization policy with future variant vaccines in non-immune populations.


Assuntos
Anticorpos Antivirais/imunologia , Vacinas contra COVID-19/imunologia , SARS-CoV-2/imunologia , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Complexo Antígeno-Anticorpo/química , COVID-19/patologia , COVID-19/terapia , COVID-19/virologia , Vacinas contra COVID-19/administração & dosagem , Chlorocebus aethiops , Cristalografia por Raios X , Humanos , Imunização Passiva , Testes de Neutralização , Domínios Proteicos/imunologia , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/imunologia , Células Vero , Soroterapia para COVID-19
11.
Cell ; 184(8): 2183-2200.e22, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33756110

RESUMO

Antibodies are crucial to immune protection against SARS-CoV-2, with some in emergency use as therapeutics. Here, we identify 377 human monoclonal antibodies (mAbs) recognizing the virus spike and focus mainly on 80 that bind the receptor binding domain (RBD). We devise a competition data-driven method to map RBD binding sites. We find that although antibody binding sites are widely dispersed, neutralizing antibody binding is focused, with nearly all highly inhibitory mAbs (IC50 < 0.1 µg/mL) blocking receptor interaction, except for one that binds a unique epitope in the N-terminal domain. Many of these neutralizing mAbs use public V-genes and are close to germline. We dissect the structural basis of recognition for this large panel of antibodies through X-ray crystallography and cryoelectron microscopy of 19 Fab-antigen structures. We find novel binding modes for some potently inhibitory antibodies and demonstrate that strongly neutralizing mAbs protect, prophylactically or therapeutically, in animal models.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Animais , Sítios de Ligação de Anticorpos , Células CHO , Chlorocebus aethiops , Cricetulus , Epitopos , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Modelos Moleculares , Ligação Proteica , Estrutura Terciária de Proteína , SARS-CoV-2/imunologia , Células Vero
12.
Nat Immunol ; 23(1): 50-61, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34853448

RESUMO

NP105-113-B*07:02-specific CD8+ T cell responses are considered among the most dominant in SARS-CoV-2-infected individuals. We found strong association of this response with mild disease. Analysis of NP105-113-B*07:02-specific T cell clones and single-cell sequencing were performed concurrently, with functional avidity and antiviral efficacy assessed using an in vitro SARS-CoV-2 infection system, and were correlated with T cell receptor usage, transcriptome signature and disease severity (acute n = 77, convalescent n = 52). We demonstrated a beneficial association of NP105-113-B*07:02-specific T cells in COVID-19 disease progression, linked with expansion of T cell precursors, high functional avidity and antiviral effector function. Broad immune memory pools were narrowed postinfection but NP105-113-B*07:02-specific T cells were maintained 6 months after infection with preserved antiviral efficacy to the SARS-CoV-2 Victoria strain, as well as Alpha, Beta, Gamma and Delta variants. Our data show that NP105-113-B*07:02-specific T cell responses associate with mild disease and high antiviral efficacy, pointing to inclusion for future vaccine design.


Assuntos
Antígeno HLA-B7/imunologia , Epitopos Imunodominantes/imunologia , Proteínas do Nucleocapsídeo/imunologia , SARS-CoV-2/imunologia , Linfócitos T Citotóxicos/imunologia , Idoso , Sequência de Aminoácidos , Anticorpos Antivirais/imunologia , Afinidade de Anticorpos/imunologia , COVID-19/imunologia , COVID-19/patologia , Linhagem Celular Transformada , Feminino , Perfilação da Expressão Gênica , Humanos , Memória Imunológica/imunologia , Masculino , Pessoa de Meia-Idade , Receptores de Antígenos de Linfócitos T/imunologia , Índice de Gravidade de Doença , Vaccinia virus/genética , Vaccinia virus/imunologia , Vaccinia virus/metabolismo
13.
Cell ; 175(7): 1946-1957.e13, 2018 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-30415839

RESUMO

Directed evolution is a powerful approach for engineering biomolecules and understanding adaptation. However, experimental strategies for directed evolution are notoriously labor intensive and low throughput, limiting access to demanding functions, multiple functions in parallel, and the study of molecular evolution in replicate. We report OrthoRep, an orthogonal DNA polymerase-plasmid pair in yeast that stably mutates ∼100,000-fold faster than the host genome in vivo, exceeding the error threshold of genomic replication that causes single-generation extinction. User-defined genes in OrthoRep continuously and rapidly evolve through serial passaging, a highly straightforward and scalable process. Using OrthoRep, we evolved drug-resistant malarial dihydrofolate reductases (DHFRs) in 90 independent replicates. We uncovered a more complex fitness landscape than previously realized, including common adaptive trajectories constrained by epistasis, rare outcomes that avoid a frequent early adaptive mutation, and a suboptimal fitness peak that occasionally traps evolving populations. OrthoRep enables a new paradigm of routine, high-throughput evolution of biomolecular and cellular function.


Assuntos
Adaptação Fisiológica/genética , Genoma Fúngico , Modelos Genéticos , Taxa de Mutação , Saccharomyces cerevisiae/genética , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
14.
Nat Immunol ; 21(9): 1010-1021, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32661362

RESUMO

Robust CD8+ T cell memory is essential for long-term protective immunity but is often compromised in cancer, where T cell exhaustion leads to loss of memory precursors. Immunotherapy via checkpoint blockade may not effectively reverse this defect, potentially underlying disease relapse. Here we report that mice with a CD8+ T cell-restricted neuropilin-1 (NRP1) deletion exhibited substantially enhanced protection from tumor rechallenge and sensitivity to anti-PD1 immunotherapy, despite unchanged primary tumor growth. Mechanistically, NRP1 cell-intrinsically limited the self-renewal of the CD44+PD1+TCF1+TIM3- progenitor exhausted T cells, which was associated with their reduced ability to induce c-Jun/AP-1 expression on T cell receptor restimulation, a mechanism that may contribute to terminal T cell exhaustion at the cost of memory differentiation in wild-type tumor-bearing hosts. These data indicate that blockade of NRP1, a unique 'immune memory checkpoint', may promote the development of long-lived tumor-specific Tmem that are essential for durable antitumor immunity.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Proteínas de Checkpoint Imunológico/metabolismo , Melanoma Experimental/imunologia , Neuropilina-1/metabolismo , Células Precursoras de Linfócitos T/imunologia , Animais , Linhagem Celular Tumoral , Humanos , Proteínas de Checkpoint Imunológico/genética , Tolerância Imunológica , Imunidade , Memória Imunológica , Camundongos , Camundongos Knockout , Neuropilina-1/genética , Receptor de Morte Celular Programada 1/metabolismo , Transdução de Sinais
15.
Nat Immunol ; 21(11): 1336-1345, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32887977

RESUMO

The development of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines and therapeutics will depend on understanding viral immunity. We studied T cell memory in 42 patients following recovery from COVID-19 (28 with mild disease and 14 with severe disease) and 16 unexposed donors, using interferon-γ-based assays with peptides spanning SARS-CoV-2 except ORF1. The breadth and magnitude of T cell responses were significantly higher in severe as compared with mild cases. Total and spike-specific T cell responses correlated with spike-specific antibody responses. We identified 41 peptides containing CD4+ and/or CD8+ epitopes, including six immunodominant regions. Six optimized CD8+ epitopes were defined, with peptide-MHC pentamer-positive cells displaying the central and effector memory phenotype. In mild cases, higher proportions of SARS-CoV-2-specific CD8+ T cells were observed. The identification of T cell responses associated with milder disease will support an understanding of protective immunity and highlights the potential of including non-spike proteins within future COVID-19 vaccine design.


Assuntos
Antígenos Virais/imunologia , Betacoronavirus/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Memória Imunológica/imunologia , COVID-19 , Vacinas contra COVID-19 , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/patologia , Infecções por Coronavirus/prevenção & controle , Epitopos de Linfócito T/imunologia , Humanos , Epitopos Imunodominantes/imunologia , Pandemias , Pneumonia Viral/imunologia , Pneumonia Viral/patologia , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/imunologia , Reino Unido , Vacinas Virais/imunologia
16.
Nat Immunol ; 20(6): 724-735, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30936494

RESUMO

Regulatory T cells (Treg cells) maintain host self-tolerance but are a major barrier to effective cancer immunotherapy. Treg cells subvert beneficial anti-tumor immunity by modulating inhibitory receptor expression on tumor-infiltrating lymphocytes (TILs); however, the underlying mediators and mechanisms have remained elusive. Here, we found that the cytokines IL-10 and IL-35 (Ebi3-IL-12α heterodimer) were divergently expressed by Treg cell subpopulations in the tumor microenvironment (TME) and cooperatively promoted intratumoral T cell exhaustion by modulating several inhibitory receptor expression and exhaustion-associated transcriptomic signature of CD8+ TILs. While expression of BLIMP1 (encoded by Prdm1) was a common target, IL-10 and IL-35 differentially affected effector T cell versus memory T cell fates, respectively, highlighting their differential, partially overlapping but non-redundant regulation of anti-tumor immunity. Our results reveal previously unappreciated cooperative roles for Treg cell-derived IL-10 and IL-35 in promoting BLIMP1-dependent exhaustion of CD8+ TILs that limits effective anti-tumor immunity.


Assuntos
Imunidade Celular , Interleucina-10/metabolismo , Interleucinas/metabolismo , Neoplasias/imunologia , Neoplasias/metabolismo , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Transferência Adotiva , Animais , Citocinas/genética , Citocinas/metabolismo , Perfilação da Expressão Gênica , Humanos , Melanoma Experimental , Camundongos , Neoplasias/patologia , Transdução de Sinais , Transcriptoma
18.
Mol Cell ; 83(23): 4386-4397.e9, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-37995686

RESUMO

The multi-pass transmembrane protein ACCELERATED CELL DEATH 6 (ACD6) is an immune regulator in Arabidopsis thaliana with an unclear biochemical mode of action. We have identified two loci, MODULATOR OF HYPERACTIVE ACD6 1 (MHA1) and its paralog MHA1-LIKE (MHA1L), that code for ∼7 kDa proteins, which differentially interact with specific ACD6 variants. MHA1L enhances the accumulation of an ACD6 complex, thereby increasing the activity of the ACD6 standard allele for regulating plant growth and defenses. The intracellular ankyrin repeats of ACD6 are structurally similar to those found in mammalian ion channels. Several lines of evidence link increased ACD6 activity to enhanced calcium influx, with MHA1L as a direct regulator of ACD6, indicating that peptide-regulated ion channels are not restricted to animals.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Anquirinas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Morte Celular , Canais Iônicos/genética , Canais Iônicos/metabolismo , Imunidade Vegetal/genética
19.
Immunity ; 54(9): 2042-2056.e8, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34407391

RESUMO

Recruitment of immune cells to the site of inflammation by the chemokine CCL1 is important in the pathology of inflammatory diseases. Here, we examined the role of CCL1 in pulmonary fibrosis (PF). Bronchoalveolar lavage fluid from PF mouse models contained high amounts of CCL1, as did lung biopsies from PF patients. Immunofluorescence analyses revealed that alveolar macrophages and CD4+ T cells were major producers of CCL1 and targeted deletion of Ccl1 in these cells blunted pathology. Deletion of the CCL1 receptor Ccr8 in fibroblasts limited migration, but not activation, in response to CCL1. Mass spectrometry analyses of CCL1 complexes identified AMFR as a CCL1 receptor, and deletion of Amfr impaired fibroblast activation. Mechanistically, CCL1 binding triggered ubiquitination of the ERK inhibitor Spry1 by AMFR, thus activating Ras-mediated profibrotic protein synthesis. Antibody blockade of CCL1 ameliorated PF pathology, supporting the therapeutic potential of targeting this pathway for treating fibroproliferative lung diseases.


Assuntos
Quimiocina CCL1/metabolismo , Fibroblastos/metabolismo , Proteínas de Membrana/metabolismo , Miofibroblastos/metabolismo , Fosfoproteínas/metabolismo , Fibrose Pulmonar/metabolismo , Receptores do Fator Autócrino de Motilidade/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Diferenciação Celular/fisiologia , Fibroblastos/patologia , Humanos , Camundongos , Miofibroblastos/patologia , Fibrose Pulmonar/patologia , Transdução de Sinais/fisiologia
20.
Nature ; 633(8030): 575-581, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39232169

RESUMO

Futuristic technologies such as morphing aircrafts and super-strong artificial muscles depend on metal alloys being as strong as ultrahigh-strength steel yet as flexible as a polymer1-3. However, achieving such 'strong yet flexible' alloys has proven challenging4-9 because of the inevitable trade-off between strength and flexibility5,8,10. Here we report a Ti-50.8 at.% Ni strain glass alloy showing a combination of ultrahigh yield strength of σy ≈ 1.8 GPa and polymer-like ultralow elastic modulus of E ≈ 10.5 GPa, together with super-large rubber-like elastic strain of approximately 8%. As a result, it possesses a high flexibility figure of merit of σy/E ≈ 0.17 compared with existing structural materials. In addition, it can maintain such properties over a wide temperature range of -80 °C to +80 °C and demonstrates excellent fatigue resistance at high strain. The alloy was fabricated by a simple three-step thermomechanical treatment that is scalable to industrial lines, which leads not only to ultrahigh strength because of deformation strengthening, but also to ultralow modulus by the formation of a unique 'dual-seed strain glass' microstructure, composed of a strain glass matrix embedded with a small number of aligned R and B19' martensite 'seeds'. In situ X-ray diffractometry shows that the polymer-like deformation behaviour of the alloy originates from a nucleation-free reversible transition between strain glass and R and B19' martensite during loading and unloading. This exotic alloy with the potential for mass producibility may open a new horizon for many futuristic technologies, such as morphing aerospace vehicles, superman-type artificial muscles and artificial organs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA