Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biochem Mol Toxicol ; 38(1): e23623, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38229322

RESUMO

Ischemia/reperfusion (I/R)-induced neural damage and neuroinflammation have been associated with pathological progression during stroke. Netrin-1 is an important member of the family of laminin-related secreted proteins, which plays an important role in governing axon elongation. However, it is unknown whether Netrin-1 possesses a beneficial role in stroke. Here, we employed the middle cerebral artery occlusion (MCAO) model to study the function of Netrin-1 in alleviating brain injuries. Our results demonstrate that Netrin-1 rescued poststroke neurological deficits and inhibited production of the inflammatory cytokines such as interleukin 6 (IL-6) and endothelial chemokine (C-X-C motif) ligand 1 (Cxcl1). Importantly, Netrin-1 protected against MCAO-induced dysfunction of the blood-brain barrier (BBB) in mice and a reduction in the expression of the tight junction (TJ) protein occludin. Additionally, we report that Netrin-1 could ameliorate oxygen-glucose deprivation/reoxygenation (OGD/R)-induced injury and prevent aggravation in endothelial monolayer permeability in bEnd.3 human brain microvascular endothelial cells (HBMVECs). Mechanistically, Netrin-1 ameliorated OGD/R-induced decrease in occludin and Kruppel-like factor 2 (KLF2) in HBMVECs. Notably, silencing of KLF2 abolished the beneficial effects of Netrin-1 in protecting endothelial permeability and occludin expression, suggesting that these effects are mediated by KLF2. In conclusion, our findings suggest that Netrin-1 could constitute a novel therapeutic strategy for ischemic stroke.


Assuntos
Barreira Hematoencefálica , Isquemia Encefálica , Netrina-1 , Traumatismo por Reperfusão , Acidente Vascular Cerebral , Animais , Humanos , Camundongos , Barreira Hematoencefálica/metabolismo , Células Endoteliais/metabolismo , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/patologia , Fatores de Transcrição Kruppel-Like/metabolismo , Netrina-1/metabolismo , Ocludina/metabolismo , Reperfusão , Traumatismo por Reperfusão/metabolismo , Fatores de Transcrição/metabolismo
2.
Pestic Biochem Physiol ; 202: 105959, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38879341

RESUMO

ε-Poly-l-lysine (ε-PL) is an effective antimicrobial peptide for controlling fungal plant diseases, exhibiting significant antifungal activity and safety. Despite its known efficacy, the potential of ε-PL in combating plant bacterial diseases remains underexplored. This study evaluated the effectiveness of ε-PL and its nanomaterial derivative in managing tomato bacterial spot disease caused by Pseudomonas syringae pv. tomato. Results indicated that ε-PL substantially inhibited the growth of Pseudomonas syringae pv. tomato. Additionally, when ε-PL was loaded onto attapulgite (encoded as ATT@PL), its antibacterial effect was significantly enhanced. Notably, the antibacterial efficiency of ATT@PL containing 18.80 µg/mL ε-PL was even close to that of 100 µg/mL pure ε-PL. Further molecular study results showed that, ATT@PL stimulated the antioxidant system and the salicylic acid signaling pathway in tomatoes, bolstering the plants disease resistance. Importantly, the nanocomposite demonstrated no negative effects on both seed germination and plant growth, indicating its safety and aligning with sustainable agricultural practices. This study not only confirmed the effectiveness of ε-PL in controlling tomato bacterial spot disease, but also introduced an innovative high antibacterial efficiency ε-PL composite with good bio-safety. This strategy we believe can also be used in improving other bio-pesticides, and has high applicability in agriculture practice.


Assuntos
Antibacterianos , Doenças das Plantas , Polilisina , Pseudomonas syringae , Compostos de Silício , Solanum lycopersicum , Pseudomonas syringae/efeitos dos fármacos , Solanum lycopersicum/microbiologia , Polilisina/farmacologia , Polilisina/química , Antibacterianos/farmacologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Compostos de Silício/farmacologia , Compostos de Silício/química , Compostos de Magnésio
3.
J Sci Food Agric ; 104(12): 7514-7523, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38785324

RESUMO

BACKGROUND: Peach brown rot, caused by the pathogen Monilinia fructicola, represents a significant postharvest infectious disease affecting peach fruit. This disease is responsible for a substantial increase in fruit decay rates, leading to significant economic losses, often exceeding 50%. Currently, there is a growing interest in identifying biocontrol agents to mitigate peach brown rot, with a predominant interest in Bacillus species. RESULTS: In this investigation, we isolated 410 isolates of actinomycetes from non-farmland ecosystem soil samples. Subsequently, 27 isolates exhibiting superior inhibitory capabilities were selected. Among these, strain XDS1-5 demonstrated the most robust fungistatic effect against brown rot disease, achieving an 80% inhibition rate in vitro and a 66% inhibition rate in vivo. XDS1-5 was identified as belonging to the Streptomyces virginiae species. Furthermore, a fermentation filtrate of XDS1-5 exhibited the ability to metabolize 34.21% of the tested carbon sources and 7.37% of the tested nitrogen sources. Particularly noteworthy was its capacity to disrupt the cell membrane structure directly, leading to increased cell membrane permeability and cytoplasmic leakage. Additionally, our investigation indicated that indoline, a metabolite produced by XDS1-5, played a pivotal role in inhibiting the growth of M. fructicola. CONCLUSION: In summary, our study has identified a biocontrol actinomycete, XDS1-5, with the potential to effectively inhibit postharvest brown rot disease in peaches. This finding holds great significance for the biological control of peach brown rot, offering promising prospects for mitigating the economic losses associated with this devastating disease. © 2024 Society of Chemical Industry.


Assuntos
Antibiose , Frutas , Doenças das Plantas , Prunus persica , Streptomyces , Prunus persica/microbiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Streptomyces/isolamento & purificação , Streptomyces/fisiologia , Streptomyces/metabolismo , Frutas/microbiologia , Microbiologia do Solo , Agentes de Controle Biológico , Micrococcaceae/isolamento & purificação , Micrococcaceae/fisiologia , Micrococcaceae/metabolismo
4.
Plant J ; 112(3): 677-693, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36087000

RESUMO

Calcium is an important plant immune signal that is essential for activating host resistance, but how RNA viruses manipulate calcium signals to promote their infections remains largely unknown. Here, we demonstrated that tobacco mosaic virus (TMV) coat protein (CP)-interacting protein L (IP-L) associates with calmodulin-like protein 30 (NbCML30) in the cytoplasm and nucleus, and can suppress its expression at the nucleic acid and protein levels. NbCML30, which lacks the EF-hand conserved domain and cannot bind to Ca2+ , was located in the cytoplasm and nucleus and was downregulated by TMV infection. NbCML30 silencing promoted TMV infection, while its overexpression inhibited TMV infection by activating Ca2+ -dependent oxidative stress in plants. NbCML30-mediated resistance to TMV mainly depends on IP-L regulation as the facilitation of TMV infection by silencing NbCML30 was canceled by co-silencing NbCML30 and IP-L. Overall, these findings indicate that in the absence of any reported silencing suppressor activity, TMV CP manipulates IP-L to inhibit NbCML30, influencing its Ca2+ -dependent role in the oxidative stress response. These results lay a theoretical foundation that will enable us to engineer tobacco (Nicotiana spp.) with improved TMV resistance in the future.


Assuntos
Vírus do Mosaico do Tabaco , Vírus do Mosaico do Tabaco/fisiologia , Calmodulina/genética , Calmodulina/metabolismo , Cálcio/metabolismo , Nicotiana/metabolismo , Doenças das Plantas/genética
5.
Pestic Biochem Physiol ; 191: 105373, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36963942

RESUMO

Tobacco mosaic disease is a worldwide viral disease that can cause huge economic losses. Plant immune inducers have become the main force in the prevention and treatment of viral disease own to their high efficiency and rapid effect. However, since tobacco mosaic disease can occur at any point in the plant growth cycle, a single application period cannot guarantee the completely management. In this study, an extract from Paecilomyces variotii named ZhiNengCong (ZNC), which can fight against tobacco mosaic disease with 65% control effect, and improve the promotion of tobacco stem girth, was selected from five commercial antiviral medicines, and a sustained release sodium alginate (Alg)-based ZNC (ZNC@Alg) was prepared by physical absorption. ZNC@Alg, who contains only 5 mg/mL ZNC, can release ZNC for 7 consecutive days, and displayed an enhanced effect in inducing the PAL-mediated salicylic acid signaling pathway activation to participate in the inhibition of green fluorescent protein (GFP)-tagged tobacco mosaic virus (TMV-GFP) infection, even after 7 days of the application. Notably, field experiments showed that the control effect of ZNC@Alg was up to 88%, which was significantly better than that of ZNC with the same concentration (10 µg per plant). In addition, ZNC@Alg exhibited a stronger growth-promoting effect than ZNC, which significantly increased the wet weight of tobacco. Taken together, we screened out a plant immune inducer ZNC that can effectively inhibit tobacco virus disease, and created ZNC@Alg with higher control effect and growth promotion effect, laying a foundation for effective field management of tobacco mosaic disease.


Assuntos
Vírus do Mosaico do Tabaco , Viroses , Antivirais/farmacologia , Alginatos/farmacologia , Doenças das Plantas/prevenção & controle , Nicotiana
6.
Pestic Biochem Physiol ; 184: 105100, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35715039

RESUMO

Zinc ions (Zn2+) are used to promote plant growth and treat multiple diseases. However, it is still unclear which pathways in plants respond to Zn2+. In this study, we found that supplying (CH3COO)2Zn can effectively delay tobacco mosaic virus (TMV) replication and movement in Nicotiana benthamiana. To further understand the regulatory mechanism of antiviral activity mediated by Zn2+, we examined the transcriptomic changes of leaves treated with Zn2+. Three days after treatment, 7575 differential expression genes (DEGs) were enriched in the Zn2+ treatment group compared with the control group. Through GO and KEGG analysis, the pathway of phosphatidylinositol signaling system and inositol phosphate metabolism were significantly enriched after treated with Zn2+, and a large number of ethylene-responsive transcription factors (ERFs) involved in inositol phosphate metabolism were found to be enriched. We identified ERF5 performed a positive effect on plant immunity. Our findings demonstrated that Zn2+-mediated resistance in N. benthamiana activated signal transduction and regulated the expression of resistance-related genes. The results of the study uncover a global view of mRNA changes in Zn2+-mediated cellular processes involved in the competition between plants and viruses.


Assuntos
Vírus do Mosaico do Tabaco , Perfilação da Expressão Gênica , Fosfatos de Inositol/metabolismo , Íons/metabolismo , Doenças das Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nicotiana , Zinco/metabolismo , Zinco/farmacologia
7.
Appl Intell (Dordr) ; 52(10): 11606-11637, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35106027

RESUMO

Clustering analysis is essential for obtaining valuable information from a predetermined dataset. However, traditional clustering methods suffer from falling into local optima and an overdependence on the quality of the initial solution. Given these defects, a novel clustering method called gradient-based elephant herding optimization for cluster analysis (GBEHO) is proposed. A well-defined set of heuristics is introduced to select the initial centroids instead of selecting random initial points. Specifically, the elephant optimization algorithm (EHO) is combined with the gradient-based algorithm GBO for assigning initial cluster centers across the search space. Second, to overcome the imbalance between the original EHO exploration and exploitation, the initialized population is improved by introducing Gaussian chaos mapping. In addition, two operators, i.e., random wandering and variation operators, are set to adjust the location update strategy of the agents. Nine datasets from synthetic and real-world datasets are adopted to evaluate the effectiveness of the proposed algorithm and the other metaheuristic algorithms. The results show that the proposed algorithm ranks first among the 10 algorithms. It is also extensively compared with state-of-the-art techniques, and four evaluation criteria of accuracy rate, specificity, detection rate, and F-measure are used. The obtained results clearly indicate the excellent performance of GBEHO, while the stability is also more prominent.

8.
BMC Health Serv Res ; 21(1): 288, 2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33789627

RESUMO

BACKGROUND: Since the onset of the coronavirus disease 2019 (COVID-19) pandemic, the stroke care systems have been seriously affected because of social restrictions and other reasons. As the pandemic continues to spread globally, it is of great significance to understand how COVID-19 affects the stroke care systems in mainland China. METHODS: We retrospectively studied the real-world data of one comprehensive stroke center in mainland China from January to February 2020 and compared it with the data collected during the same period in 2019. We analyzed DTN time, onset-to-door time, severity, effects after treatment, the hospital length of stays, costs of hospitalization, etc., and the correlation between medical burden and prognosis of acute ischemic stroke (AIS) patients. RESULTS: The COVID-19 pandemic was most severe in mainland China in January and February 2020. During the pandemic, there were no differences in pre-hospital or in-hospital workflow metrics (all p>0.05), while the degree of neurological deficit on admission and at discharge, the effects after treatment, and the long-term prognosis were all worse (all p<0.05). The severity and prognosis of AIS patients were positively correlated with the hospital length of stays and total costs of hospitalization (all p<0.05). CONCLUSIONS: COVID-19 pandemic is threatening the stroke care systems. Measures must be taken to minimize the collateral damage caused by COVID-19.


Assuntos
Isquemia Encefálica , COVID-19 , Atenção à Saúde/estatística & dados numéricos , Serviço Hospitalar de Emergência/estatística & dados numéricos , Acidente Vascular Cerebral , Tempo para o Tratamento , Isquemia Encefálica/diagnóstico , Isquemia Encefálica/epidemiologia , Isquemia Encefálica/terapia , COVID-19/epidemiologia , China/epidemiologia , Serviços Médicos de Emergência , Humanos , Pandemias , Estudos Retrospectivos , SARS-CoV-2 , Acidente Vascular Cerebral/diagnóstico , Acidente Vascular Cerebral/epidemiologia , Acidente Vascular Cerebral/terapia
9.
Hum Mutat ; 40(4): 392-403, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30609140

RESUMO

Primary familial brain calcification (PFBC) is a rare neurodegenerative disorder with four causative genes (SLC20A2, PDGFRB, PDGFB, and XPR1) that have been identified. Here, we aim to describe the mutational spectrum of four causative genes in a series of 226 unrelated Chinese PFBC patients. Mutations in four causative genes were detected in 16.8% (38/226) of PFBC patients. SLC20A2 mutations accounted for 14.2% (32/226) of all patients. Mutations in the other three genes were relatively rare, accounting for 0.9% (2/226) of all patients, respectively. Clinically, 44.8% of genetically confirmed patients (probands and relatives) were considered symptomatic. The most frequent symptoms were chronic headache, followed by movement disorders and vertigo. Moreover, the total calcification score was significantly higher in the symptomatic group compared to the asymptomatic group. Functionally, we observed impaired phosphate transport induced by seven novel missense mutations in SLC20A2 and two novel mutations in XPR1. The mutation p.D164Y in XPR1 might result in low protein expression through an enhanced proteasome pathway. In conclusion, our study further confirms that mutations in SLC20A2 are the major cause of PFBC and provides additional evidence for the crucial roles of phosphate transport impairment in the pathogenies of PFBC.


Assuntos
Encefalopatias/genética , Calcinose/genética , Predisposição Genética para Doença , Mutação , Doenças Neurodegenerativas/genética , Adulto , Idoso , Alelos , Transporte Biológico , Biomarcadores , Encefalopatias/diagnóstico , Encefalopatias/metabolismo , Calcinose/diagnóstico , Calcinose/metabolismo , Linhagem Celular Tumoral , China , Feminino , Genes sis , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Doenças Neurodegenerativas/diagnóstico , Doenças Neurodegenerativas/metabolismo , Neuroimagem , Fenótipo , Receptor beta de Fator de Crescimento Derivado de Plaquetas/genética , Receptores Acoplados a Proteínas G/genética , Receptores Virais/genética , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/genética , Tomografia Computadorizada por Raios X , Receptor do Retrovírus Politrópico e Xenotrópico
10.
Molecules ; 24(13)2019 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-31277526

RESUMO

At present, the management of Phytophthora capsici (P. capsici) mainly relies on chemical pesticides. However, along with the resistance generated by P. capsici to these chemical pesticides, the toxicity and non-degradability of this chemical molecule may also cause serious environmental problems. Herein, a new bio-based nano-antifungal material (CNC@CTAB) was made with coating hexadecyl trimethyl ammonium bromide (CTAB) on the surface of a cellulose nanocrystal (CNC). This material was then applied to the prevention of P. capcisi. This particle was facilely fabricated by mixing CTAB and sulfuric group modified CNC in an aqueous solvent. Compared to pure CTAB, the enrichment of CTAB on the CNC surface showed a better anti-oomycete activity both in vitro and in vivo. When CNC@CTAB was applied on P. capsici in vitro, the inhibition rate reached as high as 100%, while on the pepper leaf, the particle could also efficiently prevent the infection of P. capsici, and achieve a disease index as low as zero Thus, considering the high safety of CNC@CTAB in agricultural applications, and its high anti-oomycete activity against P. capsici, we believe that this CNC@CTAB has great application potential as a new green nano-fungicide in P. capsici management during the production of peppers or other vegetables.


Assuntos
Celulose/farmacologia , Fungos/efeitos dos fármacos , Fungicidas Industriais/farmacologia , Nanopartículas/química , Capsicum/efeitos dos fármacos , Capsicum/microbiologia , Cátions , Permeabilidade da Membrana Celular/efeitos dos fármacos , Cetrimônio/química , Condutividade Elétrica , Líquido Extracelular/química , Nanopartículas/ultraestrutura , Phytophthora , Doenças das Plantas/microbiologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/microbiologia , Eletricidade Estática , Propriedades de Superfície
11.
J Neurol Neurosurg Psychiatry ; 88(7): 540-549, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28057713

RESUMO

BACKGROUND: Genetic studies have shown that C9orf72, SOD1, TARDBP and FUS are the most common mutated genes in amyotrophic lateral sclerosis (ALS). Here, we performed a meta-analysis to determine the mutation frequencies of these major ALS-related genes in patients with ALS. METHODS: We performed an extensive literature research to identify all original articles reporting frequencies of C9orf72, SOD1, TARDBP and FUS mutations in ALS. The mutation frequency and effect size of each study were combined. Possible sources of heterogeneity across studies were determined by meta-regression, sensitivity analysis and subgroup analysis. RESULTS: 111 studies were included in the meta-analysis. The overall pooled mutation frequencies of these major ALS-related genes were 47.7% in familial amyotrophic lateral sclerosis (FALS) and 5.2% in sporadic ALS (SALS). A significant difference was identified regarding the frequencies of mutations in major ALS genes between European and Asian patients. In European populations, the most common mutations were the C9orf72 repeat expansions (FALS 33.7%, SALS 5.1%), followed by SOD1 (FALS 14.8%, SALS 1.2%), TARDBP (FALS 4.2%, SALS 0.8%) and FUS mutations (FALS 2.8%, SALS 0.3%), while in Asian populations the most common mutations were SOD1 mutations (FALS 30.0%, SALS 1.5%), followed by FUS (FALS 6.4%, SALS 0.9%), C9orf72 (FALS 2.3%, SALS 0.3%) and TARDBP (FALS 1.5%, SALS 0.2%) mutations. CONCLUSIONS: These findings demonstrated that the genetic architecture of ALS in Asian populations is distinct from that in European populations, which need to be given appropriate consideration when performing genetic testing of patients with ALS.


Assuntos
Esclerose Lateral Amiotrófica/genética , Epidemiologia Molecular , Mutação/genética , Povo Asiático/genética , Proteínas de Ligação a DNA/genética , Predisposição Genética para Doença , Humanos , População Branca/genética
13.
Clin Exp Hypertens ; 36(5): 321-5, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24047449

RESUMO

OBJECTIVES: This study documented the prevalence and clinical features of white coat hypertension (WCH) among Chinese Han patients with type 2 diabetes mellitus (T2DM). METHODS: Clinic and ambulatory blood pressure (BP) measurements were compared in 856 patients with T2DM to determine the frequency of WCH (WCH was defined as clinical blood pressure ≥140/90 mmHg and daytime blood pressure <135/85 mmHg and/or 24-h ambulatory BP (ABP) mean value of <130/80 mmHg on ambulatory BP monitoring (ABPM). Weight, waist circumference (WC), body mass index (BMI), waist to height ratio (WHtR), fasting blood glucose, glycosylated hemoglobin level and circadian BP patterns were also measured to find clinical features predictive of WCH in T2DM. RESULTS: The prevalence of WCH was 7.36% (63/856) in the overall population, 6.13% (29/473) in male and 8.88% (34/383) in female (p < 0.05). WCH accounted for 14.03% (63/449) of diagnosed hypertension. Age, course of T2DM, male WC were independent protective factors, whereas female sex, smoking and alcohol consumption were independent risk factors for WCH in T2DM. Non-dippers and reverse dippers made up larger proportion of the WCH group (p < 0.01). CONCLUSION: WCH is relatively common among T2DM patients, it is a unique condition distinct from essential hypertension (EH), and WCH patients also exhibit significant differences in clinical parameters.


Assuntos
Diabetes Mellitus Tipo 2/epidemiologia , Hipertensão do Jaleco Branco/epidemiologia , Adulto , Povo Asiático , Determinação da Pressão Arterial/métodos , Monitorização Ambulatorial da Pressão Arterial , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/diagnóstico , Hipertensão Essencial , Feminino , Humanos , Hipertensão/complicações , Hipertensão/diagnóstico , Hipertensão/epidemiologia , Masculino , Pessoa de Meia-Idade , Prevalência , Fatores de Risco , Hipertensão do Jaleco Branco/complicações , Hipertensão do Jaleco Branco/diagnóstico
14.
Zhonghua Yi Xue Za Zhi ; 94(47): 3712-6, 2014 Dec 23.
Artigo em Zh | MEDLINE | ID: mdl-25623091

RESUMO

OBJECTIVE: To explore the independent predictors of internal borderzone (IBZ) infarcts in patients with atherosclerotic middle cerebral artery stenosis/occlusion (MCAS). METHODS: A total of 167 hospitalized patients with atherosclerotic MCAS during January 2008 and March 2014 were retrospectively analyzed. They were divided into "with IBZ group" (n = 55) and "without IBZ group" (n = 112) according to the findings of magnetic resonance images (MRI). Their clinical data were collected including demographics, traditional vascular risk factors, stenotic degree of MCA and other cerebral supply arteries, TICI grading for antegrade blood flow, ASITN/SIR grading for collateral circulation and other variables. The intra-group data were compared by univariate analysis. Variables with P < 0.1 were included into multivariate Logistic regression model for obtaining the independent predictors of IBZ. Two models were established including either TICI-grading or stenotic degree of MCAS due to close correlations between two variables. RESULTS: There were 45 females and 122 males with a mean age of 54 ± 12 years. Variables with a P value <0.1 in univariate analysis included relatively low blood pressure (P = 0.006), stenotic degree of MCAS (P = 0.012), TICI-grading (P = 0.003), history of hypertension (P = 0.055) and ASITN-grading (P = 0.067). In multivariate model I, independent predictors of IBZ included TICI-grading (OR 4.310, 95%CI 1.698-10.869, P = 0.002), history of hypertension (OR 0.458, 95%CI 0.224-0.936, P = 0.032), relatively low blood pressure (OR 3.848; 95%CI 1.345-7.983, P = 0.039). In multivariate model II, independent predictors of IBZ included stenotic degree of MCAS (P = 0.006; severe vs moderate: OR 4.796, 95%CI 1.676-13.729, P = 0.003; occlusion vs moderate: OR 5.537, 95%CI 1.846-16.603, P = 0.002). The two models had a similar area under the curve (AUC) of receiver operating curve (ROC) of 0.702 (95%CI 0.618~0.787, P < 0.001) and 0.709 (95%CI 0.626-0.792, P < 0.001). CONCLUSION: Severe stenosis or total occlusion of MCA, impairment of antegrade blood flow and relatively low blood pressure are the independent risk factors of IBZ. And history of hypertension is a protective fact or of IBZ in patients with MCAS.


Assuntos
Infarto da Artéria Cerebral Média , Arteriosclerose Intracraniana , Artérias Cerebrais , Circulação Colateral , Constrição Patológica , Feminino , Humanos , Hipertensão , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Fatores de Risco
15.
CNS Neurosci Ther ; 30(3): e14475, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-37736829

RESUMO

BACKGROUND: Recent studies have shown that mTOR signaling plays an important role in synaptic plasticity. However, the function of S6K1, the mechanistic target of rapamycin kinase complex 1 (mTORC1) substrate, in epilepsy remains unknown. AIMS: Our present study aimed to explore the mechanism by which S6K1 is involved in chronic epilepsy. METHODS: First, immunostaining was used to measure neurite length and complexity in kainic acid (KA)-treated primary cultured neurons treated with PF-4708671, a highly selective S6K1 inhibitor. We obtained evidence for the role of S6K1 in protecting and promoting neuronal growth and development in vitro. Next, to explore the function and mechanism of the S6K1 inhibitor in epilepsy, a pilocarpine-induced chronic epileptic rat model was established. In vivo electrophysiology (including local field potentiation in CA1 and long-term potentiation), depression/anxiety-like behavior tests, and Golgi staining were performed to assess seizure behavior, power spectral density, depression/anxiety-like behavior, and synaptic plasticity. Furthermore, western blotting was applied to explore the potential molecular mechanisms. RESULTS: We found that inhibition of S6K1 expression significantly decreased seizures and depression-like behavior and restored power at low frequencies (1-80 Hz), especially in the delta, theta, and alpha bands, in chronic epileptic rats. In addition, PF-4708671 reversed the LTP defect in hippocampal CA3-CA1 and corrected spine loss and dendritic pathology. CONCLUSION: In conclusion, our data suggest that inhibition of S6K1 attenuates seizures and depression in chronic epileptic rats via the rescue of synaptic structural and functional deficits. Given the wide range of physiological functions of mTOR, inhibition of its effective but relatively simple functional downstream molecules is a promising target for the development of drugs for epilepsy.


Assuntos
Depressão , Epilepsia , Ratos , Animais , Depressão/tratamento farmacológico , Depressão/etiologia , Convulsões , Epilepsia/patologia , Potenciação de Longa Duração/fisiologia , Serina-Treonina Quinases TOR/metabolismo , Hipocampo
16.
Mol Plant Pathol ; 25(7): e13484, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38973095

RESUMO

Peach brown rot, attributed to Monilinia fructicola, presents a significant threat to postharvest peach cultivation, causing losses of up to 80%. With an increasing number of countries, spearheaded by the European Union, imposing bans on chemical agents in fruit production, there is a growing interest in mining highly active antibacterial compounds from biological control strains for postharvest disease management. In this study, we highlight the unique ability of Streptomyces lincolnensis strain JCP1-7 to inhibit M. fructicola sporulation, despite its limited antimicrobial efficacy. Through GC-MS analysis, eucalyptol was identified as the key compound. Fumigation of diseased fruits with eucalyptol at a concentration of 0.0335 µg cm-3 demonstrated an in vivo inhibition rate against M. fructicola of 93.13%, completely suppressing spore formation. Transcriptome analysis revealed the impact of eucalyptol on multiple pathogenesis-related pathways, particularly through the inhibition of catalase 2 (Cat2) expression. Experiments with a MfCat2 knockout strain (ΔMfCat2) showed reduced pathogenicity and sensitivity to JCP1-7 and eucalyptol, suggesting MfCat2 as a potential target of JCP1-7 and eucalyptol against M. fructicola. Our findings elucidate that eucalyptol produced by S. lincolnensis JCP1-7 inhibits M. fructicola sporulation by regulating MfCat2, thereby effectively reducing postharvest peach brown rot occurrence. The use of fumigation of eucalyptol offers insights into peach brown rot management on a large scale, thus making a significant contribution to agricultural research.


Assuntos
Eucaliptol , Doenças das Plantas , Streptomyces , Eucaliptol/farmacologia , Doenças das Plantas/microbiologia , Prunus persica/microbiologia , Esporos Bacterianos/efeitos dos fármacos , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Virulência/efeitos dos fármacos , Micrococcaceae/patogenicidade , Micrococcaceae/efeitos dos fármacos
17.
Hortic Res ; 11(8): uhae176, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39108586

RESUMO

Synaptotagmin A (SYTA), renowned for its indispensable role in mammalian vesicle trafficking, has recently captured attention in plant biology owing to its potential regulatory functions. This study meticulously delves into the involvement of Solanum lycopersicum SlSYTA in plant immunity, focusing on its response to an array of pathogens affecting tomatoes. Our comprehensive inquiry uncovers that SlSYTA overexpression heightens susceptibility to tobacco mosaic virus (TMV), Phytophthora capsici, Botrytis cinerea, and Pseudomonas syringae pv. tomato DC3000, whereas RNA interference (RNAi) plants show a robust and encompassing resistance to these pathogens. Remarkably, our findings shed light on SlSYTA's negative regulation of pivotal aspects of pattern-triggered immunity (PTI) defense, notably hindering the reactive oxygen species (ROS) burst, impeding stomatal closure, and curtailing callose deposition. Through meticulous scrutiny via transcriptome and metabolome analyses, our studies reveal SlSYTA's profound impact on diverse plant defense pathways, specifically influencing phenylpropanoid metabolism, hormone signaling, and oxidative phosphorylation, primarily via NADPH synthesis modulation in the pentose phosphate pathway, and ultimately interplay within ROS signaling. Collectively, our research presents groundbreaking insights into the intricate molecular mechanisms governing plant immunity, emphasizing the significant role of SlSYTA in orchestrating plant responses to biotic stress.

18.
Pest Manag Sci ; 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39166737

RESUMO

BACKGROUND: Pepper blight, caused by Phytophthora capsici, is a devastating disease that seriously threatens pepper production worldwide. With the emergence of resistance in P. capsici against conventional fungicides, there is an urgent need to explore novel alternatives for pepper blight management. This study aims to assess the inhibitory effect of chloroinconazide (CHI), a compound synthesized from tryptophan, against pepper blight, and to explore its potential mechanisms of action. RESULTS: The results demonstrated that CHI effectively targeted P. capsici, disrupting its growth and mycelial structure, which resulted in the release of dissolved intracellular substances. Additionally, CHI significantly inhibited the sporangium formation, zoospores release, and zoospores germination, thereby reducing the re-infection of P. capsici. In contrast, the commercial pesticide methylaxyl only inhibited mycelial growth and had limited effect on re-infection, while azoxystrobin inhibited re-infection but had a weak inhibitory effect on mycelial growth. Furthermore, CHI activated the salicylic acid (SA) signaling pathway-mediated immune response to inhibit P. capsici infection in pepper, with this activation being contingent upon cyclic nucleotide-gated ion channel CaCNGC9. CONCLUSION: CHI exhibited potent dual inhibitory effects on P. capsici by disrupting mycelial structure and activating the CaCNGC9-mediated SA signaling pathway. These dual mechanisms of action suggested that CHI could serve as a promising alternative chemical fungicide for the effective management of pepper blight, offering a new approach to control this devastating disease. Our findings highlighted the potential of CHI as a sustainable and efficient solution to combat the increasing resistance of P. capsici to conventional fungicides, ensuring better crop protection and yield. © 2024 Society of Chemical Industry.

19.
Int J Biol Macromol ; 258(Pt 2): 128965, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38151087

RESUMO

Tobacco mosaic virus (TMV) is the most widely spread and harmful virus in the world, causing serious economic losses annually. However, the low anti-erosion ability of the pesticides for TMV management make it easy to be washed by the rain, which makes the effective duration of the pesticides shorter. In this paper, a new bio-based nanogel with superior antiviral activity was reported, and its slow-release behavior, rain erosion resistance and the antiviral mechanism was systematically studied. The results determined that the nanogels (Zn2+@ALGNP and Zn2+@ALGNP@PL) exhibited sustained releasing of Zn2+ with a 7 days duration, and the ε-PL coating could enhance the releasing rate of Zn2+. Moreover, Zn2+@ALGNP@PL displayed a lower contact angle, indicating greater adhesion to the leaf surface, and in consequence imposed better resistance to simulate rain erosion than pure Zn2+. Strikingly, Zn2+@ALGNP@PL could inhibit plant virus infection by aggregating the virions and reducing its coat protein stability, as well as inducing the efficient expression of reactive oxygen species, antioxidant enzymes and resistance genes to enhance plant resistance and promote plant growth. Overall, this study had successfully developed a high rain-erosion resistant bio-based nanogel capable of continue to induce resistant plants and promote plant growth.


Assuntos
Praguicidas , Polietilenoglicóis , Polietilenoimina , Vírus do Mosaico do Tabaco , Nanogéis , Nicotiana , Doenças das Plantas , Antivirais/farmacologia , Praguicidas/farmacologia
20.
CNS Neurosci Ther ; 30(4): e14503, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-37850654

RESUMO

AIM: To clarify the role of Eomesodermin (EOMES) to serve as a disease-relevant biomarker and the intracellular molecules underlying the immunophenotype shifting of CD4+T subsets in amyotrophic lateral sclerosis (ALS). METHODS: The derivation and validation cohorts included a total of 148 ALS patients and 101 healthy controls (HCs). Clinical data and peripheral blood were collected. T-cell subsets and the EOMES expression were quantified using multicolor flow cytometry. Serum neurofilament light chain (NFL) was measured. In 1-year longitudinal follow-ups, the ALSFRS-R scores and primary endpoint events were further recorded in the ALS patients of the validation cohort. RESULTS: In the derivation cohort, the CD4+EOMES+T-cell subsets were significantly increased (p < 0.001). EOMES+ subset was positively correlated with increased serum NFL levels in patients with onset longer than 12 months. In the validation cohort, the elevated CD4+EOMES+T-cell proportions and their association with NFL levels were also identified. The longitudinal study revealed that ALS patients with higher EOMES expression were associated with higher progression rates (p = .010) and worse prognosis (p = .003). CONCLUSIONS: We demonstrated that increased CD4+EOMES+T-cell subsets in ALS were associated with disease progression and poor prognosis. Identifying these associations may contribute to a better understanding of the immunopathological mechanism of ALS.


Assuntos
Esclerose Lateral Amiotrófica , Humanos , Estudos Longitudinais , Esclerose Lateral Amiotrófica/diagnóstico , Linfócitos T , Prognóstico , Progressão da Doença , Biomarcadores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA