Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Alzheimers Dis ; 99(4): 1285-1301, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38788074

RESUMO

Background: Caffeoylquinic acid (CQA), which is abundant in coffee beans and Centella asiatica, reportedly improves cognitive function in Alzheimer's disease (AD) model mice, but its effects on neuroinflammation, neuronal loss, and the amyloid-ß (Aß) plaque burden have remained unclear. Objective: To assess the effects of a 16-week treatment with CQA on recognition memory, working memory, Aß levels, neuronal loss, neuroinflammation, and gene expression in the brains of 5XFAD mice, a commonly used mouse model of familial AD. Methods: 5XFAD mice at 7 weeks of age were fed a 0.8% CQA-containing diet for 4 months and then underwent novel object recognition (NOR) and Y-maze tests. The Aß levels and plaque burden were analyzed by enzyme-linked immunosorbent assay and immunofluorescent staining, respectively. Immunostaining of markers of mature neurons, synapses, and glial cells was analyzed. AmpliSeq transcriptome analysis and quantitative reverse-transcription-polymerase chain reaction were performed to assess the effect of CQA on gene expression levels in the cerebral cortex of the 5XFAD mice. Results: CQA treatment for 4 months improved recognition memory and ameliorated the reduction of mature neurons and synaptic function-related gene mRNAs. The Aß levels, plaque burden, and glial markers of neuroinflammation seemed unaffected. Conclusions: These findings suggest that CQA treatment mitigates neuronal loss and improves cognitive function without reducing Aß levels or neuroinflammation. Thus, CQA is a potential therapeutic compound for AD, improving cognitive function via as-yet unknown mechanisms independent of reductions in Aß or neuroinflammation.


Assuntos
Disfunção Cognitiva , Modelos Animais de Doenças , Camundongos Transgênicos , Neurônios , Placa Amiloide , Ácido Quínico , Animais , Ácido Quínico/análogos & derivados , Ácido Quínico/farmacologia , Ácido Quínico/uso terapêutico , Camundongos , Placa Amiloide/tratamento farmacológico , Placa Amiloide/patologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/metabolismo , Peptídeos beta-Amiloides/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Doença de Alzheimer/metabolismo , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos
2.
Neurosci Res ; 165: 14-25, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32283105

RESUMO

Sleep is affected by the environment. In rodents, changes in the amount of rapid eye movement sleep (REMS) can precede those of other sleep/wake stages. The molecular mechanism underlying the dynamic regulation of REMS remains poorly understood. Here, we focused on the sublaterodorsal nucleus (SLD), located in the pontine tegmental area, which plays a crucial role in the regulation of REMS. We searched for genes selectively expressed in the SLD and identified copine-7 (Cpne7), whose involvement in sleep was totally unknown. We generated Cpne7-Cre knock-in mice, which enabled both the knockout (KO) of Cpne7 and the genetic labeling of Cpne7-expressing cells. While Cpne7-KO mice exhibited normal sleep under basal conditions, the amount of REMS in Cpne7-KO mice was larger compared to wildtype mice following cage change or water immersion and restraint stress, both of which are conditions that acutely reduce REMS. Thus, it was suggested that copine-7 is involved in negatively regulating REMS under certain conditions. In addition, chemogenetically activating Cpne7-expressing neurons in the SLD reduced the amount of REMS, suggesting that these neurons negatively regulate REMS. These results identify copine-7 and Cpne7-expressing neurons in the SLD as candidate molecular or neuronal components of the regulatory system that controls REMS.


Assuntos
Sono REM , Água , Animais , Proteínas de Transporte , Imersão , Camundongos , Sono
3.
Cell Rep ; 36(7): 109558, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34407410

RESUMO

Sleep is generally viewed as a period of recovery, but how the supply of cerebral blood flow (CBF) changes across sleep/wake states has remained unclear. Here, we directly observe red blood cells (RBCs) within capillaries, where the actual substance exchange between the blood and neurons/glia occurs, by two-photon microscopy. Across multiple cortical areas, average capillary CBF is largely increased during rapid eye movement (REM) sleep, whereas it does not differ between periods of active wakefulness and non-REM sleep. Capillary RBC flow during REM sleep is further elevated following REM sleep deprivation, suggesting that capillary CBF reflects REM sleep pressure. At the molecular level, signaling via adenosine A2a receptors is crucial; in A2a-KO mice, capillary CBF upsurge during REM sleep is dampened, and effects of REM sleep pressure are abolished. These results provide evidence regarding the dynamics of capillary CBF across sleep/wake states and insights to the underlying mechanisms.


Assuntos
Capilares/fisiologia , Circulação Cerebrovascular/fisiologia , Receptor A2A de Adenosina/metabolismo , Sono REM/fisiologia , Animais , Córtex Cerebral/fisiologia , Camundongos Endogâmicos C57BL , Vigília/fisiologia
4.
Front Neurosci ; 13: 1072, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31680813

RESUMO

Repeated stress is a risk factor for mental disorders and can also lead to sleep disturbances. Although the effects of stress on sleep architecture have been investigated in rodents, the length of the stress exposure period in most studies has been limited to about 10 days, and few studies have analyzed the effects of chronic stress over a longer period. Here we investigated how sleep is affected in a mouse model of depression induced by 3 weeks of daily water immersion and restraint stress (WIRS). Sleep was recorded after 1, 2, and 3 weeks of stress exposure. Some stress-induced changes in several sleep measures were maintained across the 3 weeks, whereas other changes were most prominent during the 1st week. The total amount of non-rapid eye movement sleep (NREMS) was increased and the total amount of time spent awake was decreased across all 3 weeks. On the other hand, the amount of REMS during the dark phase was significantly increased in the 1st week compared with that at baseline or the 2nd and 3rd weeks. Electroencephalogram (EEG) power in the delta range was decreased during NREMS, although the total amount of NREMS was increased. These findings indicate that repeated WIRS, which eventually leads to a depression-like phenotype, differentially affects sleep between the early and subsequent periods. The increase in the amount of REMS during the dark phase in the 1st week significantly correlated with changes in body weight. Our results show how sleep changes throughout a long period of chronic stress in a mouse model of depression.

5.
Neurosci Res ; 118: 3-12, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28501499

RESUMO

Many mammalian species, including humans, spend a substantial fraction of their life sleeping. Sleep deprivation in rats ultimately leads to death, indicating the essential role of sleep. Exactly why sleep is so essential, however, remains largely unknown. From an evolutionary point of view, almost all animal species that have been investigated exhibit sleep or sleep-like states, suggesting that sleep may benefit survival. In certain mammalian and avian species, sleep can be further divided into at least two stages, rapid eye movement (REM) sleep and non-REM sleep. In addition to a widely conserved role for sleep, these individual sleep stages may have roles unique to these animals. The recent use of state-of-the-art techniques, including optogenetics and chemogenetics, has greatly broadened our understanding of the neural mechanisms of sleep regulation, allowing us to address the function of sleep. Studies focusing on non-mammalian animals species have also provided novel insights into the evolution of sleep. This review provides a comprehensive overview regarding the current knowledge of the function and evolution of sleep.


Assuntos
Evolução Biológica , Invertebrados/fisiologia , Sono/fisiologia , Vertebrados/fisiologia , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA