RESUMO
The foliar uptake of Fe3O4, Cr2O3, CuO, and ZnO nanoparticles (NPs) by maize (Zea mays L.) was studied in a lab-scale experiment. The significant increase of Fe concentrations in leaves exposed to Fe3O4 was observed in both stomatal closing and stomatal opening treatments, suggesting the presence of a nonstomatal uptake. In parallel treatments with equal doses of Fe3O4 (â¼200 nm), Cr2O3 (â¼300 nm), CuO (â¼30 nm), and ZnO (â¼40 nm) (20-200 µg), the retention percentage of Fe in the leaves (21.0-69.0%) was higher than that of Cr, Cu, and Zn (0.5-14.0%). The steric hindrance effect seems more important for NPs of >200 nm, while hydrophobic surface and negative charge promote the foliar uptake of NPs smaller than 200 nm. The accumulation of NPs in the cuticle was observed through dark-field hyperspectral microscopy. Cr2O3, Fe3O4, and CuO NPs were difficult to penetrate the cuticle. In comparison, ZnO further migrated and distributed within the extracellular space of epidermal and mesophyll cells of the exposed leaf, possibly due to its comparatively higher solubility and hydrophilicity. The findings highlight the potential of the nonstomatal uptake, which might be a critical route for metallic oxide NPs to enter the food chain.
RESUMO
Cadmium (Cd) is a toxic heavy metal often found in soil and agricultural products. Due to its high mobility, Cd poses a significant health risk when absorbed by crops, a crucial component of the human diet. This absorption primarily occurs through roots and leaves, leading to Cd accumulation in edible parts of the plant. Our research aimed to understand the mechanisms behind the reduced Cd accumulation in certain crop cultivars through an extensive review of the literature. Crops employ various strategies to limit Cd influx from the soil, including rhizosphere microbial fixation and altering root cell metabolism. Additional mechanisms include membrane efflux, specific transport, chelation, and detoxification, facilitated by metalloproteins such as the natural resistance-associated macrophage protein (Nramp) family, heavy metal P-type ATPases (HMA), zinc-iron permease (ZIP), and ATP-binding cassette (ABC) transporters. This paper synthesizes differences in Cd accumulation among plant varieties, presents methods for identifying cultivars with low Cd accumulation, and explores the unique molecular biology of Cd accumulation. Overall, this review provides a comprehensive resource for managing agricultural lands with lower contamination levels and supports the development of crops engineered to accumulate minimal amounts of Cd.
Assuntos
Metais Pesados , Poluentes do Solo , Humanos , Cádmio/toxicidade , Cádmio/análise , Solo/química , Rizosfera , Raízes de Plantas/química , Raízes de Plantas/metabolismo , Poluentes do Solo/análise , Produtos Agrícolas/metabolismo , Metais Pesados/análiseRESUMO
Rapid urbanization has led to the development of intelligent transport in China. As active safety technology evolves, the integration of autonomous active safety systems is receiving increasing attention to enable the transition from functional to all-weather intelligent driving. In this process of transformation, the goal of automobile development becomes clear: autonomous vehicles. According to the Report on Development Forecast and Strategic Investment Planning Analysis of China's autonomous vehicle industry, at present, the development scale of China's intelligent autonomous vehicles has exceeded market expectations. Considering limited research on utilizing autonomous vehicles to meet the needs of urban transportation (transporting passengers), this study investigates how autonomous vehicles affect traffic demand in specific areas, using traffic modeling. It examines how different penetration rates of autonomous vehicles in various scenarios impact the efficiency of road networks with constant traffic demand. In addition, this study also predicts future changes in commuter traffic demand in selected regions using a constructed NL model. The results aim to simulate the delivery of autonomous vehicles to meet the transportation needs of the region.
RESUMO
Florpyrauxifen-benzyl is an herbicide that has been developed in recent years. Its degradation mode in paddy soil environments is not clear. In this study, the degradation dynamics in paddy soil and water were studied by ultrahigh-performance liquid chromatography. Microbial degradation was the main degradation pathway. Using third-generation high-throughput sequencing technology, the changes in the soil bacterial community structure were studied. After 30 days of application, compared with the control group (F0), the abundance of Sphingomonas, Lysobacter, and Flavisolibacter in the recommended and repeated application groups (F1, F5 and F10) increased significantly, and uncultured bacterium and Terrimonas decreased significantly. Compared with the F0 and F1 groups, the species diversity of the F0 and F1 groups showed a significant increase over time. The species diversity of the F5 and F10 groups decreased significantly on Days 5 and 15. On Day 30, the recovery even exceeded that of the control group. Luteimonas and five other genera were positively correlated with herbicide residues, and Pseudolabrys and two other genera were negatively correlated. Repeated application showed a significant effect on the structure of the soil bacterial community, mainly showing a trend of a significant decrease in the initial stage and gradual recovery in the later stage. The results will guide the safe and rational use of florpyrauxifen-benzyl and provide a scientific basis for florpyrauxifen-benzyl dynamic supervision of environmental pollution and protection of black soil in Northeast China.
Assuntos
Herbicidas , Oryza , Solo , Microbiologia do Solo , Bactérias/genética , China , Bacteroidetes , Herbicidas/toxicidadeRESUMO
Recently, hybrid Convolution-Transformer architectures have become popular due to their ability to capture both local and global image features and the advantage of lower computational cost over pure Transformer models. However, directly embedding a Transformer can result in the loss of convolution-based features, particularly fine-grained features. Therefore, using these architectures as the backbone of a re-identification task is not an effective approach. To address this challenge, we propose a feature fusion gate unit that dynamically adjusts the ratio of local and global features. The feature fusion gate unit fuses the convolution and self-attentive branches of the network with dynamic parameters based on the input information. This unit can be integrated into different layers or multiple residual blocks, which will have varying effects on the accuracy of the model. Using feature fusion gate units, we propose a simple and portable model called the dynamic weighting network or DWNet, which supports two backbones, ResNet and OSNet, called DWNet-R and DWNet-O, respectively. DWNet significantly improves re-identification performance over the original baseline, while maintaining reasonable computational consumption and number of parameters. Finally, our DWNet-R achieves an mAP of 87.53%, 79.18%, 50.03%, on the Market1501, DukeMTMC-reID, and MSMT17 datasets. Our DWNet-O achieves an mAP of 86.83%, 78.68%, 55.66%, on the Market1501, DukeMTMC-reID, and MSMT17 datasets.
Assuntos
Fontes de Energia Elétrica , Coluna Vertebral , HumanosRESUMO
This study aims to comprehensively analyze the Greenhouse Gases (GHGs) emissions from current sewage sludge treatment and disposal technologies (building material, landfill, land spreading, anaerobic digestion, and thermochemical processes) based on the database of Science Citation Index (SCI) and Social Science Citation Index (SSCI) from 1998 to 2020. The general patterns, spatial distribution, and hotspots were provided by bibliometric analysis. A comparative quantitative analysis based on life cycle assessment (LCA) put forward the current emission situation and the key influencing factors of different technologies. The effective GHG emissions reduction methods were proposed to mitigate climate change. Results showed that incineration or building materials manufacturing of highly dewatered sludge, and land spreading after anaerobic digestion have the best GHG emissions reduction benefits. Biological treatment technologies and thermochemical processes have great potential for reducing GHGs. Enhancement of pretreatment effect, co-digestion, and new technologies (e.g., injection of carbon dioxide, directional acidification) are major approaches to facilitate substitution emissions in sludge anaerobic digestion. The relationship between the quality and efficiency of secondary energy in thermochemical process and GHGs emission still needs further study. Solid sludge products generated by bio-stabilization or thermochemical processes are considered to have a certain carbon sequestration value and can improve the soil environment to control GHG emissions. The findings are useful for future development and processes selection of sludge treatment and disposal facing carbon footprint reduction.
Assuntos
Pegada de Carbono , Gases de Efeito Estufa , Esgotos , Eliminação de Resíduos Líquidos/métodos , Dióxido de Carbono/análise , Incineração , Gases de Efeito Estufa/análise , Efeito EstufaRESUMO
ALUMINUM-ACTIVATED MALATE TRANSPORTER1 (ALMT1)-mediated malate exudation from roots is critical for aluminium (Al) resistance in Arabidopsis. Its upstream molecular signalling regulation is not yet well understood. The role of CALMODULIN-LIKE24 (CML24) in Al-inhibited root growth and downstream molecular regulation of ALMT1-meditaed Al resistance was investigated. CML24 confers Al resistance demonstrated by an increased root-growth inhibition of the cml24 loss-of-function mutant under Al stress. This occurs mainly through the regulation of the ALMT1-mediated malate exudation from roots. The mutation and overexpression of CML24 leads to an elevated and reduced Al accumulation in the cell wall of roots, respectively. Al stress induced both transcript and protein abundance of CML24 in root tips, especially in the transition zone. CML24 interacts with CALMODULIN BINDING TRANSCRIPTION ACTIVATOR2 (CAMTA2) and promotes its transcriptional activity in the regulation of ALMT1 expression. This results in an enhanced malate exudation from roots and less root-growth inhibition under Al stress. Both CML24 and CAMTA2 interacted with WRKY46 suppressing the transcriptional repression of ALMT1 by WRKY46. The study provides novel insights into understanding of the upstream molecular signalling of the ALMT1-depdendent Al resistance.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Transportadores de Ânions Orgânicos , Alumínio/metabolismo , Alumínio/toxicidade , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Calmodulina/metabolismo , Regulação da Expressão Gênica de Plantas , Malatos/metabolismo , Transportadores de Ânions Orgânicos/genética , Transportadores de Ânions Orgânicos/metabolismo , Raízes de Plantas/metabolismoRESUMO
Fast selective catalytic reduction of nitrogen oxide with ammonia (NH3-SCR) (2NH3 + NO2 + NO â 2N2 + 3H2O) has aroused great interest in recent years because it is inherently faster than the standard NH3-SCR reaction (4NO + 4NH3 + O2 â 4N2 + 6H2O). In the present paper, the mechanism of the fast NH3-SCR reaction catalyzed by a series of single-atom catalysts (SACs), M1/PTA SACs (PTA = Keggin-type phosphotungstic acid, M = Mn, Fe, Co, Ni, Ru, Rh, Pd, Ir, and Pt), has been systematically studied by means of density functional theory (DFT) calculations. Molecular geometry and electronic structural analysis show that Jahn-Teller distortion effects promote an electron transfer process from N-H bonding orbitals of the NH3 molecule to the symmetry-allowed d orbitals (dxy and dx2-y2) of the single metal atom, which effectively weakens the N-H bond of the adsorbed NH3 molecule. The calculated free energy profiles along the favorable catalytic path show that decomposition of NH3 to *NH2 and *H species and decomposition of *NHNOH into N2 and H2O have high free energy barriers in the whole fast NH3-SCR path. A good synergistic effect between the Brønsted acid site (surface oxygen atom in the PTA support) and the Lewis acid site (single metal atom) effectively enhances the decomposition of NH3 to *NH2 and *H species. M1/PTA SACs (M = Ru, Rh, Pd, and Pt) were found to have potential for fast NH3-SCR reaction because of the relatively small free energy barrier and strong thermodynamic driving forces. We hope our computational results could provide some new ideas for designing and fabricating fast NH3-SCR catalysts with high activity.
RESUMO
Lu2(1-x)Eu2xO3 nanoscintillators (x = 0.005, 0.01, 0.03, 0.05, 0.07, and 0.10) with red emission were synthesized by a coprecipitation method. It is found that their photo- and radioluminescence intensities increase with increasing Eu3+ concentration until x = 0.05. According to their concentration-dependent luminescence intensity ratios (I610(C2)/I582(S6)), the existing energy transfer from Eu3+(S6) (occupying S6 sites) to Eu3+(C2) (occupying C2 sites) can be confirmed. Based on the spectral data and density functional theory (DFT) calculations, the origin of Lu2O3:Eu3+ persistent luminescence at low concentration might be related to the tunneling processes between Eu3+ (occupying C2 and S6 sites) and oxygen interstitials (Oi×). After dispersing afterglow-suppressed Lu2O3:Eu3+ nanoscintillators into polymethyl methacrylate (PMMA) polymer-acetone solution, flexible PMMA-Lu2O3:Eu3+ composite films with high thermal stability and radiation resistance were fabricated by a doctor blade method. As the flexible composite film was used as an imaging plate, static X-ray images with high spatial resolution (5.5 lp/mm) under an extremely low dose of â¼1.1 µGyair can be acquired. When a watch with a moving second hand was used as an object, the dynamic X-ray imaging can be realized under a dose rate of 55 µGyair·s-1. Our results demonstrate that Lu2O3:Eu3+ nanoscintillators can be regarded as candidate materials for dynamic digital radiographic imaging.
Assuntos
Európio , Polimetil Metacrilato , Transferência de Energia , Luminescência , Raios XRESUMO
Selectively colonized microbial communities and enriched antibiotic resistance genes (ARGs) in (micro)plastics in aquatic and soil environments make the plastisphere a great health concern. Although microplastics (MPs) are distributed in indoor environments in high abundance, information on the effect of MPs on a microbial community in an indoor environment is lacking. Here, we detected polymers (containing MPs and natural polymers), bacterial communities, and 18 kinds of ARGs in collected indoor dust samples. A significant correlation by Procrustes analysis between bacterial community composition and the abundance of MPs was observed, and correlation tests and redundancy analysis identified specific associations between MP polymers and bacterial taxa, such as polyamide and Actinobacteria. In addition, the abundance of MPs showed a positive correlation with the relative abundance of the ARGs (to 16S RNA), while natural polymers, such as cellulosics, showed positive correlations with the absolute abundance of ARGs and 16S rRNA. Simulated experiments verified that significantly higher bacterial biomasses and ARGs were observed on the surface of cotton, hair, and wool than on MPs, while a higher relative abundance of ARGs was detected on MPs. However, a significantly higher amount of ARG was found on MPs of poly(lactic acid), the biodegradable plastics with the highest yield. In addition to the plastisphere in water and soil environments, MPs in an indoor environment may also affect the bacterial community and specifically enrich ARGs. Moreover, degradable MPs and nondegradable MPs may result in different health hazards due to their distinct effects on bacterial community.
Assuntos
Microplásticos , Plásticos , Animais , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos , RNA Ribossômico 16S/genéticaRESUMO
Microplastics (MPs) in soils may be ingested by terrestrial animals. While the application of bioplastics is increasing, the ingestion and excretion characteristics of bio-MPs by terrestrial animals are poorly understood as compared to fossil-MPs. Here, the approach-avoidance behavior of adult earthworms Eisenia fetida to MP-contaminated soil was assessed. Fossil-based poly(ethylene terephthalate) (PET) and bio-based poly(lactic acid) (PLA) MPs were found to be preferred by the earthworms, which might be due to the odor of polymer monomers. MPs in earthworm casts were analyzed by microscopy counting and liquid chromatography-tandem mass spectrometry. The amount of microscopically recognizable excreted PET and PLA was 553 and 261 items/g, respectively, while a higher proportion of smaller PLA particles also presented. Bio-based PLA is much easy to break down by earthworms than fossil-based PET. Submicron and nanocron PLA accounted for 57 and 13% of the excreted PLA on the 10th day of excretion. MP excretion was well described with the first-order kinetic model, and the elimination half-life was 9.3 (for PET) and 45 h (for PLA). A longer excretion period of PLA may be related to its potential to break down in the earthworms' digestive tract. This not only promotes the environmental degradation of PLA but also suggests the ecological risk caused by nanoparticles.
Assuntos
Oligoquetos , Poluentes do Solo , Animais , Dieta , Microplásticos , Plásticos , Poliésteres , Solo , Poluentes do Solo/análiseRESUMO
Many Gram-negative pathogens enter the viable but nonculturable (VBNC) state to resist external environmental stress (such as disinfection). However, little is known about the metabolic properties, especially for the metabolic markers, of VBNC bacteria, which impedes the development of efficient disinfection technologies and causes more potential health risks. In this study, we analyzed the metabolic characteristics of chlorine stress-induced VBNC Pseudomonas aeruginosa at the population and single-cell levels. The overall metabolic activity of VBNC bacteria showed a downward trend, but the glyoxylate cycle, fatty acid and glycerophospholipid metabolism pathways were up-regulated. Based on the metabolic profiles of VBNC bacteria, nine metabolic markers (pyruvate, glyoxylate, guanine, glutamate, sn glycero-3-phos-phocholine, fatty acid, D-alanine, glutathione, N-Butanoyl-D-homoserine lactone) were determined. The results of single-cell Raman spectroscopy showed that the metabolic activity of VBNC bacteria was significantly reduced, but showed more significant metabolic heterogeneity. The redshift of the Raman peaks of 15N and 13C labeled VBNC bacteria was significantly weaker than that of the culturable bacteria, suggesting that the VBNC bacteria have a reduced ability to synthesize proteins, nucleotides, phospholipids, and carbohydrates. The result of this study can help to better understand the metabolic mechanisms and energy management strategy of VBNC bacteria, to achieve precise identification and effective control of VBNC bacteria.
Assuntos
Cloro , Pseudomonas aeruginosa , Bactérias , Desinfecção/métodos , Ácidos Graxos , GlioxilatosRESUMO
Person re-identification is essential to intelligent video analytics, whose results affect downstream tasks such as behavior and event analysis. However, most existing models only consider the accuracy, rather than the computational complexity, which is also an aspect to consider in practical deployment. We note that self-attention is a powerful technique for representation learning. It can work with convolution to learn more discriminative feature representations for re-identification. We propose an improved multi-scale feature learning structure, DM-OSNet, with better performance than the original OSNet. Our DM-OSNet replaces the 9×9 convolutional stream in OSNet with multi-head self-attention. To maintain model efficiency, we use double-layer multi-head self-attention to reduce the computational complexity of the original multi-head self-attention. The computational complexity is reduced from the original O((H×W)2) to O(H×W×G2). To further improve the model performance, we use SpCL to perform unsupervised pre-training on the large-scale unlabeled pedestrian dataset LUPerson. Finally, our DM-OSNet achieves an mAP of 87.36%, 78.26%, 72.96%, and 57.13% on the Market1501, DukeMTMC-reID, CUHK03, and MSMT17 datasets.
Assuntos
Redes Neurais de Computação , Pedestres , Humanos , Aprendizagem , Reconhecimento Automatizado de Padrão/métodosRESUMO
This study investigated the influence of N-chlorosuccinimide (NCS) pretreatment on the antimicrobial effect of benzalkonium chloride (BZC, representative of QACs) against biofilm bacteria and its mechanisms. Results show that 0.04 - 0.07 mmol/L NCS pretreatment significantly increased the antimicrobial efficacy of 0.03 mmol/L BZC on biofilm cells by 30% - 70%. The main mechanisms involved membrane permeability, oxidative damage, and metabolic disorder. More precisely, NCS pretreatment increased the permeability of bacteria and reduced the activity of the electron transport system (ETS) and dehydrogenase (DHA). At the same time, the oxidative damage of both endogenous and exogenous ROS and the disorder of the antioxidant enzymes (superoxide dismutase and catalase) further improved their combined antibacterial ability. Moreover, NCS pretreatment greatly reduced the resistance of biofilm Pseudomonas aeruginosa to BZC. The findings of the study provide a new method to effectively enhance the antimicrobial efficiency of quaternary ammonium cationic surfactants (e.g., BZC) and reduce bacterial resistance, as well as a scientific guidance for the development of new antimicrobial products.
RESUMO
The aim of this study was to investigate the accumulation of boron (B) in the soils, sediments, and plants in the wastewater (treated and untreated) irrigation farmlands. Twelve sites of soils and four sites of sediments were collected in two wastewater irrigation areas of Tianjin, China. Our results show that the long-term irrigation of wastewater induced B accumulation in the soils (81 - 90 mg kg-1 on average) and sediments (112 - 150 mg kg-1 on average). The readily available B fractions, salt extractable B and water extractable B, accounted for more than half of the extractable B. The plant available B in the soils exceeded toxic levels of most sensitive crops but B in plant leaves did not reach the thresholds. This study indicates that long-term irrigation of wastewater would induce excess accumulation of B in the soils of the farmlands and might pose a toxicity risk to the plants.
Assuntos
Poluentes do Solo , Águas Residuárias , Solo , Boro , Poluentes do Solo/análise , Monitoramento Ambiental , Produtos Agrícolas , China , Irrigação AgrícolaRESUMO
Toxicity of perfluoroalkyl substances (PFASs) in soils towards bacteria shows an impact on its ecosystem function. This study aims to obtain insight into the effect of hydrolase (e.g. α-amylase) in soil on metabolism adaptions of bacteria (e.g. Bacillus substilis) against PFOS exposure. Results show that exogenous α-amylase alleviates PFOS toxicity to bacteria growth, disturbance to membrane permeability and stimulation to reactive oxygen species (ROS) production. The mechanisms were owing to that α-amylase strongly influences the strategies of metabolism adaptions of bacteria against PFOS stress. In details, α-amylase prompts bacteria to regulate the secretion of extracellular polymeric substances (EPSs) and the production of metabolic signal (acetic acid), which leads to changes in the physicochemical properties (hydrophilicity, surface charge) of the bacterial surface and the inactivation of the interaction with PFOS, thereby reducing the PFOS toxicity. Molecular simulations show that PFOS combines with Srt A at Gly 53 and Trp 171, which may induce the increase of permeability and changes of surface characteristics. Meanwhile, α-amylase competes with Srt A to bind PFOS at Arg 125 and Lys 176. This competition changes the physicochemical characteristics of PFOS and its bioavailability, further improving the metabolism adaptions of bacteria against PFOS. Altogether, this work provides direct evidences about α-amylase buffering effect of PFOS and demonstrates that the presence of α-amylase affects the essential but complex metabolic response in bacteria triggered by PFOS.
Assuntos
Fluorocarbonos/toxicidade , Microbiologia do Solo , Poluentes do Solo/toxicidade , Solo/química , alfa-Amilases/fisiologia , Ácidos Alcanossulfônicos/toxicidade , Bactérias , Ecossistema , Poluentes do Solo/análiseRESUMO
Epistaxis is a common emergency, and its main causes are hypertensive crisis and trauma. Nasal packing is the primary treatment. After active symptomatic treatment, the symptoms of epistaxis effectively can be controlled. In this case report, the patient was treated with epistaxis many times in the outpatient department. After nasal examination, there was a clear bleeding point, and it was treated with gauze packing or silver nitrate cauterization. The symptoms of epistaxis gradually got worse and was accompanied with fever and progressive anemia. After blood culture and color Doppler ultrasound examination, it was confirmed that it was endocarditis caused by defective hypoxic bacterial infection. After active antibacterial and surgical treatment, the symptoms of epistaxis, fever and anemia were relieved.
Assuntos
Endocardite/complicações , Epistaxe/complicações , Antibacterianos/uso terapêutico , Ascomicetos , Ecocardiografia Doppler em Cores , Endocardite/diagnóstico , Endocardite/tratamento farmacológico , Epistaxe/diagnóstico , Humanos , Masculino , Adulto JovemRESUMO
To investigate the combined effects of excess boron (B) and high salinity on the growth of freshwater algal species, Chlorella vulgaris and Microcystis aeruginosa were cultured in the medium with different B and salinities. The results show that high levels of B and salinity inhibited the growth of the two algal species. For C. vulgaris, low levels of B can alleviate the growth inhibition induced by salinity, and low levels of salinity can also relieve the growth inhibition induced by B. In contrast, high levels of salinity have little effect on B toxicity, while high levels of B aggravate salinity stress. For M. aeruginosa, salinity aggravates B toxicity, regardless of salinity levels. B supply worsens salinity stress on M. aeruginosa, regardless of supply doses. These results suggest that it may be possible to control algal bloom by regulating B or salinities.
Assuntos
Chlorella vulgaris , Microcystis , Boro/toxicidade , Água Doce , SalinidadeRESUMO
Inland waters are the main medium transporting microplastics to the ocean. Aggregation, vertical settlement, and horizontal transport will occur when microplastics enter the inland waterbodies. This paper reviews these behaviors of microplastics in inland waters and their influencing factors. The aggregation of microplastics were divided into homogeneous aggregation and heterogeneous aggregation, which are critical for the settlement of microplastics. The settlement of microplastics in inland water bodies is influenced by microplastic properties (size, density, and shapes) and environmental conditions (microorganisms, sedimental properties, hydraulic conditions, and so on). Horizontal transport of microplastics in water is influenced by hydrologic conditions, rainfall, river morphologies, dams, vegetation, etc. Future perspectives including laboratory simulations and numerical models involving multiple factors, the behaviors of degradable plastics, and the influence of hydrologic conditions have been proposed.
Assuntos
Microplásticos , Poluentes Químicos da Água , Monitoramento Ambiental , Plásticos , Rios , Poluentes Químicos da Água/análiseRESUMO
In this work, we rationally designed a series of crystalline and stable dioxin-linked metallophthalocyanine covalent organic frameworks (COFs; MPc-TFPN COF, M=Ni, Co, Zn) under the guidance of reticular chemistry. As a novel single-site catalysts (SSCs), NiPc/CoPc-TFPN COF exhibited outstanding activity and selectivity for electrocatalytic CO2 reduction (ECR; Faradaic efficiency of CO (FECO )=99.8(±1.24) %/ 96.1(±1.25) % for NiPc/CoPc-TFPN COF). More importantly, when coupled with light, the FECO and current density (jCO ) were further improved across the applied potential range (-0.6 to -1.2â V vs. RHE) compared to the dark environment for NiPc-TFPN COF (jCO increased from 14.1 to 17.5â A g-1 at -0.9â V; FECO reached up to ca. 100 % at -0.8 to -0.9â V). Furthermore, an in-depth mechanism study was established by density functional theory (DFT) simulation and experimental characterization. For the first time, this work explored the application of COFs as photo-coupled electrocatalysts to improve ECR efficiency, which showed the potential of using light-sensitive COFs in the field of electrocatalysis.