Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Glob Chang Biol ; 30(1): e17115, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38273576

RESUMO

Crop residue-derived carbon (C) emissions and priming effects (PE) in cropland soils can influence the global C cycle. However, their corresponding generality, driving factors, and responses to nitrogen (N) inputs are poorly understood. As a result, the total C emissions and net C balance also remain mysterious. To address the above knowledge gaps, a meta-analysis of 1123 observations, taken from 51 studies world-wide, has been completed. The results showed that within 360 days, emission ratios of crop residues C (ER) ranged from 0.22% to 61.80%, and crop residues generally induced positive PE (+71.76%). Comparatively, the contribution of crop residue-derived C emissions (52.82%) to total C emissions was generally higher than that of PE (12.08%), emphasizing the importance of reducing ER. The ER and PE differed among crop types, and both were low in the case of rice, which was attributed to its saturated water conditions. The ER and PE also varied with soil properties, as PE decreased with increasing C addition ratio in soils where soil organic carbon (SOC) was less than 10‰; in contrast, the opposite phenomenon was observed in soils with SOC exceeding 10‰. Moreover, N inputs increased ER and PE by 8.31% and 3.78%, respectively, which was predominantly attributed to (NH4 )2 SO4 . The increased PE was verified to be dominated by microbial stoichiometric decomposition. In summary, after incorporating crop residues, the total C emissions and relative net C balance in the cropland soils ranged from 0.03 to 23.47 mg C g-1 soil and 0.21 to 0.97 mg C g-1 residue-C g-1 soil, respectively, suggesting a significant impact on C cycle. These results clarify the value of incorporating crop residues into croplands to regulate global SOC dynamics and help to establish while managing site-specific crop return systems that facilitate C sequestration.


Assuntos
Oryza , Solo , Solo/química , Carbono , Nitrogênio/análise , Agricultura/métodos
2.
Environ Sci Technol ; 58(16): 7066-7077, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38597811

RESUMO

Reactive oxygen species (ROS) are ubiquitous in the natural environment and play a pivotal role in biogeochemical processes. However, the spatiotemporal distribution and production mechanisms of ROS in riparian soil remain unknown. Herein, we performed uninterrupted monitoring to investigate the variation of ROS at different soil sites of the Weihe River riparian zone throughout the year. Fluorescence imaging and quantitative analysis clearly showed the production and spatiotemporal variation of ROS in riparian soils. The concentration of superoxide (O2•-) was 300% higher in summer and autumn compared to that in other seasons, while the highest concentrations of 539.7 and 20.12 µmol kg-1 were observed in winter for hydrogen peroxide (H2O2) and hydroxyl radicals (•OH), respectively. Spatially, ROS production in riparian soils gradually decreased along with the stream. The results of the structural equation and random forest model indicated that meteorological conditions and soil physicochemical properties were primary drivers mediating the seasonal and spatial variations in ROS production, respectively. The generated •OH significantly induced the abiotic mineralization of organic carbon, contributing to 17.5-26.4% of CO2 efflux. The obtained information highlighted riparian zones as pervasive yet previously underestimated hotspots for ROS production, which may have non-negligible implications for carbon turnover and other elemental cycles in riparian soils.


Assuntos
Carbono , Espécies Reativas de Oxigênio , Estações do Ano , Solo , Solo/química , Espécies Reativas de Oxigênio/metabolismo , Peróxido de Hidrogênio/metabolismo
3.
Ecotoxicol Environ Saf ; 215: 112175, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33773148

RESUMO

In this study, a low-temperature roasting and hydrothermal methods were used to modify the fly ash resulting in two new types of adsorption materials - modified fly ash (MFA) and artificial zeolite (ZE). These modified fly ashes, as well as a natural zeolite (ZO) were applied to two types of contaminated soils to explore their effects and mechanisms on the behavior of Cd and Pb through leaching column experiments. The bioavailable of Pb, Cd, pH, dissolved organic carbon (DOC), organic matter, as well as the microbial community changings were detected. The results showed that, 2% ZE has a significant stabilizing effect on Cd and the bioavailable fraction contents in Guanzhong (GZ) and Hunan (HN) soils decreased by 40.5% and 53.2%, respectively. However, for Pb, the 2% MFA showed a better result than that of ZE and ZO; the contents of bioavailable Pb in HN and GZ decreased by 48.3% and 30%, respectively. Furthermore, based on the Illumina NovaSep sequencing platform, 18 soil samples of GZ and HN were sequenced for microbial communities. As compared to the control blank(CK) treatment, the abundance of soil microbial communities was significantly improved in the amended soils.


Assuntos
Cádmio/química , Cinza de Carvão/química , Chumbo/química , Poluentes do Solo/química , Adsorção , Cádmio/análise , Poluição Ambiental , Recuperação e Remediação Ambiental/métodos , Solo/química , Poluentes do Solo/análise , Zeolitas/química
4.
Ecotoxicol Environ Saf ; 223: 112550, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34340151

RESUMO

In this study, modified coal fly ash (NMFA) was prepared by sodium hydroxide (NaOH) with low-temperature hydrothermal method. The differences of the ash to alkali mass ratio (5:3, 5:4, 5:5, 5:6), calcination temperature (100 â„ƒ, 200 â„ƒ, 300 â„ƒ), and calcination time (1 h, 3 h, 5 h) were investigated. The adsorption experiments obtained the optimal result with the ash to base ratio of 5:5, calcination temperature of 200 â„ƒ, and calcination time of 3 h, adsorbing 90.27 mg/g of Cd2+. The characterization results (SEM-EDS, FTIR, XRD, and XPS) also confirmed the effective adsorption of Cd2+ by NMFA. The functional groups of Si-O, Al-O, and Fe-O played an important role in Cd2+ removal. Meanwhile, the influences of dosage, different pH, and co-existing cations were also investigated. Quasi-secondary adsorption kinetics and Langmuir isotherm model were also referred to the Cd2+ adsorption by NMFA. Therefore, the good adsorption of NMFA-3 on Cd2+ provided new ideas for the safe utilization of fly ash and heavy metal purification in wastewater.


Assuntos
Cinza de Carvão , Poluentes Químicos da Água , Adsorção , Cádmio/análise , Águas Residuárias
5.
Cell Rep ; 43(5): 114180, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38733581

RESUMO

Macrophage activation is a hallmark of atherosclerosis, accompanied by a switch in core metabolism from oxidative phosphorylation to glycolysis. The crosstalk between metabolic rewiring and histone modifications in macrophages is worthy of further investigation. Here, we find that lactate efflux-associated monocarboxylate transporter 4 (MCT4)-mediated histone lactylation is closely related to atherosclerosis. Histone H3 lysine 18 lactylation dependent on MCT4 deficiency activated the transcription of anti-inflammatory genes and tricarboxylic acid cycle genes, resulting in the initiation of local repair and homeostasis. Strikingly, histone lactylation is characteristically involved in the stage-specific local repair process during M1 to M2 transformation, whereas histone methylation and acetylation are not. Gene manipulation and protein hydrolysis-targeted chimerism technology are used to confirm that MCT4 deficiency favors ameliorating atherosclerosis. Therefore, our study shows that macrophage MCT4 deficiency, which links metabolic rewiring and histone modifications, plays a key role in training macrophages to become repair and homeostasis phenotypes.


Assuntos
Aterosclerose , Histonas , Lisina , Macrófagos , Transportadores de Ácidos Monocarboxílicos , Histonas/metabolismo , Macrófagos/metabolismo , Aterosclerose/metabolismo , Aterosclerose/genética , Aterosclerose/patologia , Animais , Camundongos , Transportadores de Ácidos Monocarboxílicos/metabolismo , Transportadores de Ácidos Monocarboxílicos/genética , Lisina/metabolismo , Humanos , Proteínas Musculares/metabolismo , Proteínas Musculares/genética , Ativação de Macrófagos , Camundongos Endogâmicos C57BL
6.
Acta Pharm Sin B ; 14(7): 3027-3048, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39027248

RESUMO

Endothelial-to-mesenchymal transition (EndMT) is a key driver of atherosclerosis. Aerobic glycolysis is increased in the endothelium of atheroprone areas, accompanied by elevated lactate levels. Histone lactylation, mediated by lactate, can regulate gene expression and participate in disease regulation. However, whether histone lactylation is involved in atherosclerosis remains unknown. Here, we report that lipid peroxidation could lead to EndMT-induced atherosclerosis by increasing lactate-dependent histone H3 lysine 18 lactylation (H3K18la) in vitro and in vivo, as well as in atherosclerotic patients' arteries. Mechanistically, the histone chaperone ASF1A was first identified as a cofactor of P300, which precisely regulated the enrichment of H3K18la at the promoter of SNAI1, thereby activating SNAI1 transcription and promoting EndMT. We found that deletion of ASF1A inhibited EndMT and improved endothelial dysfunction. Functional analysis based on Apoe KO Asf1a ECKO mice in the atherosclerosis model confirmed the involvement of H3K18la in atherosclerosis and found that endothelium-specific ASF1A deficiency inhibited EndMT and alleviated atherosclerosis development. Inhibition of glycolysis by pharmacologic inhibition and advanced PROTAC attenuated H3K18la, SNAI1 transcription, and EndMT-induced atherosclerosis. This study illustrates precise crosstalk between metabolism and epigenetics via H3K18la by the P300/ASF1A molecular complex during EndMT-induced atherogenesis, which provides emerging therapies for atherosclerosis.

7.
Environ Pollut ; 292(Pt A): 118325, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34634408

RESUMO

Lead (Pb) is a toxic metal in industrial production, which can seriously threat to human health and food safety. Thus, it is particularly crucial to reduce the content of Pb in the environment. In this study, raw fly ash (FA) was used to synthesise a new active silicate materials (IM) employing the low-temperature-assisted alkali (NaOH) roasting approach. The IM was further synthesised to form zeolite-A (ZA) using the hydrothermal method. The physicochemical characteristics of IM and ZA amendments before and after Pb2+ adsorption were analysed using the Scanning electron microscope-Energy Dispersive Spectrometer (SEM-EDS), Fourier Transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD) apparatuses. The results revealed the considerably change in the microstructure and functional groups of IM and ZA amendments, conducive to Pb2+ removal. Moreover, a 3-year field experiment revealed that the IM and ZA significantly improved the growth of rice and reduced available Pb by 21%-26.8% and 9.7%-16.9%, respectively. After 3 years of remediation, the Pb concentration of the rice grain reached the national edible standard (≤0.2 mg kg-1) of 0.171 mg kg-1 and 0.179 mg kg-1, respectively. Meanwhile, the concentration of acid-exchangeable Pb reduced, while those of reducible and residual fractions of Pb increased. There was no significant difference between the IM and ZA treatments. The potential mechanisms of remediation by the amendments were ion-exchange, complexation, precipitation, and electrostatic attraction. Overall, the results indicate that IM is suitable for the remediation of contaminated soil and promotes safe food production, and develops an environmentally friendly and cost-effective amendment for the remediation of polluted soil.


Assuntos
Oryza , Poluentes do Solo , Cádmio/análise , Humanos , Silicatos , Solo , Poluentes do Solo/análise
8.
Environ Pollut ; 269: 116198, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33296705

RESUMO

Cadmium (Cd) and lead (Pb) are toxic heavy metals that impact human health and biodiversity. Removal of Cd/Pb from contaminated soils is a means for maintaining environmental sustainability and biodiversity. In this study, we applied a newly modified material fly ash (NA), zeolite (ZE), and fly ash (FA) to the paddy soils and evaluated the effects of Cd/Pb accumulation in rice via a one-year field experiment. The results showed that the application of NA and ZE enhanced the soil pH and nutrients to a large extent and reduced the availability of Cd/Pb in soil. The Cd and Pb concentrations in rice grains decreased by 32.8% and 62.9%, respectively, with the NA treatments. Similarly, the application of ZE reduced the Cd and Pb concentrations in rice grains by a factor of 27.9% and 63.5%, respectively, which indicates that the amendments can promote the transfer of Cd and Pb from acid-exchangeable fraction to oxidizable and residual fractions. The Cd/Pb showed a significant positive correlation to other metal ions and a negative correlation to the nutrients. Generally, the application of NA and ZE was effective in reducing Cd/Pb accumulation and improving rice yield. Moreover, the NA was more cost-effective than ZE. Hence, this study proves that NA may be a better amendment for remediation of Cd/Pb contaminated soils.


Assuntos
Oryza , Poluentes do Solo , Silicatos de Alumínio , Cádmio/análise , Humanos , Chumbo , Solo , Poluentes do Solo/análise
9.
J Hazard Mater ; 410: 124543, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33223317

RESUMO

In this study, the modified gangue (GE) was prepared by calcination at lower temperatures using potassium hydroxide (KOH) as the activating agent. The field emission scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR), and X-ray fluorescence (XRF) methods were employed to analyze the physicochemical characteristics of GE before and after the modification. Besides, the GE and commercial zeolite (ZE) were compared in the remediation of Cd-contaminated soil in field experiments. The results showed that both the GE and ZE had positive effects on the stabilization of Cd, decreasing the available Cd by 21.2-33.9% and 22.1-28.2%, respectively, while no significant difference was observed between the two amendments, indicating that the modification of GE was successful. Moreover, the application of GE decreased the Cd mobilization and uptake in lettuce shoot and root by 54.9-61.5% and 9.3-13.2%, respectively, and at the same time, the bio-available Cd decreased by 20.9-34.5%. Moreover, with the addition of GE, activities of urease and alkaline phosphatase increased in soil, while the peroxidase and superoxide dismutase activities were notably reduced in plants. Therefore, GE could be used as an effective amendment for the alleviation of Cd accumulation and toxicity, and thereby improve food safety.


Assuntos
Cádmio , Poluentes do Solo , Disponibilidade Biológica , Cádmio/análise , Lactuca , Solo , Poluentes do Solo/análise
10.
J Hazard Mater ; 392: 122461, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32193112

RESUMO

This work focused on preparation a novel adsorbent from coal fly ash (CFA) and solid alkali (NaOH) by low temperature roasting method. The modification parameters (mass ratio, calcination time and temperature) were specifically studied and optimized. The adsorption experiment results indicated that, the adsorption amounts of Cd2+ were enhanced with the decreasing mass ratio of CFA and NaOH, and the adsorption amounts of Cd2+ were 32.44, 31.66, 38.5 and 79.85 mg/g at the mass ratio (CFA/NaOH) of 5:5, 5:6, 5:7 and 5:8, respectively. The higher modification temperature was not conducive to the removal of Cd2+, as the adsorption capacities of Cd2+ calculated were 62.42, 69.53 and 41.73 mg/g at the reaction temperature of 250, 300 and 400 ℃. Interestingly, the modification time slightly effects on the adsorption ability of materials. According to the results, the optimum modification condition for preparing adsorbents were CFA/NaOH mass ratio of 5:8 and calcined at 300 ℃ for 3 h. Moreover, the influence of pH, ionic strength and Glycine concentration on Cd2+ uptake were also investigated. The kinetic, adsorption isotherm and thermodynamics models were applied to investigate the adsorption mechanism, which indicated that the adsorption process was better fitted by Langmuir and pseudo-second-order models.

11.
ACS Nano ; 6(7): 6005-13, 2012 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-22724925

RESUMO

The doping-dependent photoconductive properties of individual GaAs nanowires have been studied by conductive atomic force microscopy. Linear responsivity against the bias voltage is observed for moderate n-doped GaAs wires with a Schottky contact under illumination, while that of the undoped ones exhibits a saturated response. The carrier lifetime of a single nanowire can be obtained by simulating the characteristic photoelectric behavior. Consistent with the photoluminescence results, the significant drop of minority hole lifetime, from several hundred to subpicoseconds induced by n-type doping, leads to the distinct photoconductive features. Moreover, by comparing with the photoelectric behavior of AlGaAs shelled nanowires, the equivalent recombination rate of carriers at the surface is assessed to be >1 × 10(12) s(-1) for 2 × 10(17)cm(-3) n-doped bare nanowires, nearly 30 times higher than that of the doping-related bulk effects. This work suggests that intentional doping in nanowires could change the charge status of the surface states and impose significant impact on the electrical and photoelectrical performances of semiconductor nanostructures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA