Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 781
Filtrar
1.
Nature ; 609(7929): 925-930, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36171386

RESUMO

The paradigmatic example of a topological phase of matter, the two-dimensional Chern insulator1-5, is characterized by a topological invariant consisting of a single integer, the scalar Chern number. Extending the Chern insulator phase from two to three dimensions requires generalization of the Chern number to a three-vector6,7, similar to the three-dimensional (3D) quantum Hall effect8-13. Such Chern vectors for 3D Chern insulators have never been explored experimentally. Here we use magnetically tunable 3D photonic crystals to achieve the experimental demonstration of Chern vectors and their topological surface states. We demonstrate Chern vector magnitudes of up to six, higher than all scalar Chern numbers previously realized in topological materials. The isofrequency contours formed by the topological surface states in the surface Brillouin zone form torus knots or links, whose characteristic integers are determined by the Chern vectors. We demonstrate a sample with surface states forming a (2, 2) torus link or Hopf link in the surface Brillouin zone, which is topologically distinct from the surface states of other 3D topological phases. These results establish the Chern vector as an intrinsic bulk topological invariant in 3D topological materials, with surface states possessing unique topological characteristics.

2.
Nano Lett ; 24(13): 3851-3857, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38502010

RESUMO

A two-dimensional (2D) quantum electron system is characterized by quantized energy levels, or subbands, in the out-of-plane direction. Populating higher subbands and controlling the intersubband transitions have wide technological applications such as optical modulators and quantum cascade lasers. In conventional materials, however, the tunability of intersubband spacing is limited. Here we demonstrate electrostatic population and characterization of the second subband in few-layer InSe quantum wells, with giant tunability of its energy, population, and spin-orbit coupling strength, via the control of not only layer thickness but also the out-of-plane displacement field. A modulation of as much as 350% or over 250 meV is achievable, underscoring the promise of InSe for tunable infrared and THz sources, detectors, and modulators.

3.
J Am Chem Soc ; 146(19): 13527-13535, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38691638

RESUMO

Closing the carbon and nitrogen cycles by electrochemical methods using renewable energy to convert abundant or harmful feedstocks into high-value C- or N-containing chemicals has the potential to transform the global energy landscape. However, efficient conversion avenues have to date been mostly realized for the independent reduction of CO2 or NO3-. The synthesis of more complex C-N compounds still suffers from low conversion efficiency due to the inability to find effective catalysts. To this end, here we present amorphous bismuth-tin oxide nanosheets, which effectively reduce the energy barrier of the catalytic reaction, facilitating efficient and highly selective urea production. With enhanced CO2 adsorption and activation on the catalyst, a C-N coupling pathway based on *CO2 rather than traditional *CO is realized. The optimized orbital symmetry of the C- (*CO2) and N-containing (*NO2) intermediates promotes a significant increase in the Faraday efficiency of urea production to an outstanding value of 78.36% at -0.4 V vs RHE. In parallel, the nitrogen and carbon selectivity for urea formation is also enhanced to 90.41% and 95.39%, respectively. The present results and insights provide a valuable reference for the further development of new catalysts for efficient synthesis of high-value C-N compounds from CO2.

4.
Nat Mater ; 22(4): 450-458, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35739274

RESUMO

Two-dimensional (2D) materials with multiphase, multielement crystals such as transition metal chalcogenides (TMCs) (based on V, Cr, Mn, Fe, Cd, Pt and Pd) and transition metal phosphorous chalcogenides (TMPCs) offer a unique platform to explore novel physical phenomena. However, the synthesis of a single-phase/single-composition crystal of these 2D materials via chemical vapour deposition is still challenging. Here we unravel a competitive-chemical-reaction-based growth mechanism to manipulate the nucleation and growth rate. Based on the growth mechanism, 67 types of TMCs and TMPCs with a defined phase, controllable structure and tunable component can be realized. The ferromagnetism and superconductivity in FeXy can be tuned by the y value, such as superconductivity observed in FeX and ferromagnetism in FeS2 monolayers, demonstrating the high quality of as-grown 2D materials. This work paves the way for the multidisciplinary exploration of 2D TMPCs and TMCs with unique properties.

5.
Opt Express ; 32(6): 10669-10678, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38571272

RESUMO

Many applications involve the phenomenon of a material absorbing electromagnetic radiation. By exploiting wave interference, the efficiency of absorption can be significantly enhanced. Here, we propose Friedrich-Wintgen bound states in the continuum (F-W BICs) based on borophene metamaterials to realize coherent perfect absorption with a dual-band absorption peak in commercially important communication bands. Metamaterials consist of borophene gratings and a borophene sheet that can simultaneously support a Fabry-Perot plasmon resonance and a guided plasmon mode. The formation and dynamic modulation of the F-W BIC can be achieved by adjusting the width or carrier density of the borophene grating, while the strong coupling leads to the anti-crossover behavior of the absorption spectrum. Due to the weak angular dispersion originating from the intrinsic flat-band characteristic of the deep sub-wavelength periodic structure, the proposed plasmonic system exhibits almost no change in wavelength and absorption at large incident angles (within 70 degrees). In addition, we employ the temporal coupled-mode theory including near- and far-field coupling to obtain strong critical coupling, successfully achieve coherent perfect absorption, and can realize the absorption switch by changing the phase difference between the two coherent beams. Our findings can offer theoretical support for absorber design and all-optical tuning.

6.
Opt Lett ; 49(6): 1421-1424, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38489415

RESUMO

In recent years, utilizing nitrogen-vacancy color centers in diamond for temperature sensing has drawn great attention. However, increasing the sensitivity has encountered challenges due to the intrinsic temperature-dependent energy level shift, i.e., temperature responsivity, being limited to -74 kHz/K. In this Letter, we take advantage of the magnetic field to regulate the energy level to enhance temperature sensitivity. The sensor is formed by adhering a micron-sized diamond on the end face of an optical fiber, and a small magnet is mounted at a certain distance with the diamond exploiting a cured polydimethylsiloxane block as the bridge. The temperature change leads to the variation of the distance between the diamond and the magnet, thus affecting the magnetic strength felt by the diamond. This finally contributes an additional temperature-induced energy level shift, giving rise to an enhanced sensitivity. Experimental results demonstrated the proposed scheme and achieved a 4.2-fold improvement in the temperature responsivity and a 2.1-fold enhancement in sensitivity. Moreover, the diamond and the fiber-optic integrated structure improve the portability of the sensor.

7.
Phys Rev Lett ; 132(15): 156602, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38682981

RESUMO

Photonic Chern insulators are known for their topological chiral edge states (CESs), whose absolute existence is determined by the bulk band topology, but concrete dispersion can be engineered to exhibit various properties. For example, the previous theory suggested that the edge dispersion can wind many times around the Brillouin zone to slow down light, which can potentially overcome fundamental limitations in conventional slow-light devices: narrow bandwidth and keen sensitivity to fabrication imperfection. Here, we report the first experimental demonstration of this idea, achieved by coupling CESs with resonance-induced nearly flat bands. We show that the backscattering-immune hybridized CESs are significantly slowed down over a relatively broad bandwidth. Our work thus paves an avenue to broadband topological slow-light devices.

8.
Phys Rev Lett ; 132(11): 113802, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38563911

RESUMO

Quantum Hall systems host chiral edge states extending along the one-dimensional boundary of any two-dimensional sample. In solid state materials, the edge states serve as perfectly robust transport channels that produce a quantized Hall conductance; due to their chirality, and the topological protection by the Chern number of the bulk band structure, they cannot be spatially localized by defects or disorder. Here, we show experimentally that the chiral edge states of a lossy quantum Hall system can be localized. In a gyromagnetic photonic crystal exhibiting the quantum Hall topological phase, an appropriately structured loss configuration imparts the edge states' complex energy spectrum with a feature known as point-gap winding. This intrinsically non-Hermitian topological invariant is distinct from the Chern number invariant of the bulk (which remains intact) and induces mode localization via the "non-Hermitian skin effect." The interplay of the two topological phenomena-the Chern number and point-gap winding-gives rise to a non-Hermitian generalization of the paradigmatic Chern-type bulk-boundary correspondence principle. Compared to previous realizations of the non-Hermitian skin effect, the skin modes in this system have superior robustness against local defects and disorders.

9.
Soft Matter ; 20(8): 1884-1891, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38321960

RESUMO

Self-assembly is one of the most important issues of fabricating materials with precise chiral nanostructures. Herein, we constructed a chiral assembly system from amphiphiles containing hydrophobic/hydrophilic chiral coils bonded to hexabiphenyl, exhibiting controllable enantioselectivity over various aggregation behaviors. The chiral coils aroused various steric hindrances affecting intrinsic stacking tendency and compactness, leading to different aggregating behaviors, as concluded from the self-assembly investigation. The strong π-π stacking interaction between the long hexabiphenyl groups gave rise to a relatively compact arrangement in the aqueous solution, whereas the methyl side groups on the coil segments raised steric hindrance at the rigid-flexible interface, resulting in loose stacking and formation of nanostructures with a larger curvature. Compared with the achiral molecule 1 that formed micron-sized large sheets, molecules 2-4 containing chiral coils aggregated into nanodishes, which looked exactly like mosquito-repellent incense, to overcome surface tension. The helical structures effectively amplified chirality and exhibited strong circular dichroism (CD) signals, which indicate enantioselectivity. In addition, the relatively loose packing behavior permitted their co-assembly with a dye and aided efficient energy transfer, providing a foundation for the chiral application of supramolecules. Thus, by introducing a simple methyl side group in amphiphilic molecules, asymmetric synthesis and energy transfer efficiency can be realized.

10.
Acta Pharmacol Sin ; 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902503

RESUMO

Identification of compounds to modulate NADPH metabolism is crucial for understanding complex diseases and developing effective therapies. However, the complex nature of NADPH metabolism poses challenges in achieving this goal. In this study, we proposed a novel strategy named NADPHnet to predict key proteins and drug-target interactions related to NADPH metabolism via network-based methods. Different from traditional approaches only focusing on one single protein, NADPHnet could screen compounds to modulate NADPH metabolism from a comprehensive view. Specifically, NADPHnet identified key proteins involved in regulation of NADPH metabolism using network-based methods, and characterized the impact of natural products on NADPH metabolism using a combined score, NADPH-Score. NADPHnet demonstrated a broader applicability domain and improved accuracy in the external validation set. This approach was further employed along with molecular docking to identify 27 compounds from a natural product library, 6 of which exhibited concentration-dependent changes of cellular NADPH level within 100 µM, with Oxyberberine showing promising effects even at 10 µM. Mechanistic and pathological analyses of Oxyberberine suggest potential novel mechanisms to affect diabetes and cancer. Overall, NADPHnet offers a promising method for prediction of NADPH metabolism modulation and advances drug discovery for complex diseases.

11.
Arch Insect Biochem Physiol ; 115(4): e22113, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38628056

RESUMO

The efficiency of RNA interference (RNAi) has always limited the research on the phenotype innovation of Lepidoptera insects. Previous studies have found that double-stranded RNA-degrading enzyme (dsRNase) is an important factor in RNAi efficiency, but there have been no relevant reports in butterflies (Papilionoidea). Papilio xuthus is one of the important models in butterflies with an extensive experimental application value. To explore the effect of dsRNase in the RNAi efficiency on butterflies, six dsRNase genes (PxdsRNase 1-6) were identified in P. xuthus genome, and their dsRNA-degrading activities were subsequently detected by ex vivo assays. The result shows that the dsRNA-degrading ability of gut content (<1 h) was higher than hemolymph content (>12 h). We then investigated the expression patterns of these PxdsRNase genes during different tissues and developmental stages, and related RNAi experiments were carried out. Our results show that different PxdsRNase genes had different expression levels at different developmental stages and tissues. The expression of PxdsRNase2, PxdsRNase3, and PxdsRNase6 were upregulated significantly through dsGFP injection, and PxdsRNase genes can be silenced effectively by injecting their corresponding dsRNA. RNAi-of-RNAi studies with PxEbony, which acts as a reporter gene, observed that silencing PxdsRNase genes can increase RNAi efficiency significantly. These results confirm that silencing dsRNase genes can improve RNAi efficiency in P. xuthus significantly, providing a reference for the functional study of insects such as butterflies with low RNAi efficiency.


Assuntos
Borboletas , Animais , Borboletas/genética , Interferência de RNA , RNA de Cadeia Dupla , Insetos/genética , Inativação Gênica
12.
Chin Med Sci J ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38773789

RESUMO

Vertebral artery dissection is a rare pathology that causes ischemic stroke in young people. Cervical massage, especially improper pulling manipulation, is a cause of vertebral artery dissection. We present a case of 32-year-old woman who developed acute multiple posterior circulation ischemic cerebral infarctions as a result of left vertebral artery V4 segment dissection after receiving neck massage. She underwent emergency vertebral artery stent implantation at the site of the dissection. Symptoms were relieved the day after treatment. The patient recovered without adverse complications or endovascular restenosis in the following year.

13.
BMC Oral Health ; 24(1): 478, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643070

RESUMO

BACKGROUND: Myopericytoma is a rare spindle cell tumor of mesenchymal origin, typically benign, characterized by concentric proliferation of tumor cells around blood vessels within subcutaneous tissue. It primarily occurs in middle-aged adults and is often located in distal extremities, although cases have been reported in proximal extremities and head-neck regions. However, occurrences within the oral cavity are exceedingly rare. To date, literature reviews have identified only two cases in children under 10 years old and reported only five cases of myopericytoma occurring in the lip region. We provide a comprehensive review and analysis of all documented cases to better understand this condition. CASE PRESENTATION: A 7-year-old girl presented to oral and maxillofacial surgery with the discovery of a painless mass on the inner aspect of the upper lip. The diagnosis of myopericytoma was confirmed by histological examination (HE staining), alcian blue staining, and immunohistochemistry. CONCLUSIONS: Following surgical excision, there were no signs of recurrence at a 3-month follow-up. The pathological diagnosis of myopericytoma is quite challenging, and immunohistochemical testing is necessary.


Assuntos
Hemangiopericitoma , Miopericitoma , Adulto , Pessoa de Meia-Idade , Feminino , Humanos , Criança , Miopericitoma/diagnóstico , Hemangiopericitoma/diagnóstico , Hemangiopericitoma/cirurgia , Hemangiopericitoma/patologia , Lábio , Imuno-Histoquímica
14.
Angew Chem Int Ed Engl ; 63(13): e202316837, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38315104

RESUMO

The interfacial processes, mainly the lithium (Li) plating/stripping and the evolution of the solid electrolyte interphase (SEI), are directly related to the performance of all-solid-state Li-metal batteries (ASSLBs). However, the complex processes at solid-solid interfaces are embedded under the solid-state electrolyte, making it challenging to analyze the dynamic processes in real time. Here, using in situ electrochemical atomic force microscopy and optical microscopy, we directly visualized the Li plating/stripping/replating behavior, and measured the morphological and mechanical properties of the on-site formed SEI at nanoscale. Li spheres plating/stripping/replating at the argyrodite solid electrolyte (Li6 PS5 Cl)/Li electrode interface is coupled with the formation/wrinkling/inflating of the SEI on its surface. Combined with in situ X-ray photoelectron spectroscopy, details of the stepwise formation and physicochemical properties of SEI on the Li spheres are obtained. It is shown that higher operation rates can decrease the uniformity of the Li+ -conducting networks in the SEI and worsen Li plating/stripping reversibility. By regulating the applied current rates, uniform nucleation and reversible plating/stripping processes can be achieved, leading to the extension of the cycling life. The in situ analysis of the on-site formed SEI at solid-solid interfaces provides the correlation between the interfacial evolution and the electrochemical performance in ASSLBs.

15.
J Am Chem Soc ; 145(46): 25143-25149, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37941374

RESUMO

According to the traditional nucleation theory, crystals in solution nucleate under thermal fluctuations with random crystal orientation. Thus, nanosheet arrays grown on a substrate always exhibit disordered arrangements, which impede mass transfer during catalysis. To overcome this limitation, here, we demonstrate stress-induced, oriented nucleation and growth of nanosheet arrays. A regularly self-growing parallel nanosheet array is realized on a curved growth substrate. During electrochemical oxygen production, the ordered array maintains a steady flow of liquids in the microchannels, suppressing the detrimental production of flow-blocking oxygen bubbles typical of randomly oriented nanosheet arrays. Controllable parallel arrays, fully covered fluffy-like ultrathin nanosheets, and amorphous disordered structures altogether enable full-scale design of hierarchical interfaces from the micro- to the atomic scale, significantly improving the otherwise sluggish kinetics of oxygen evolution toward industrial ultrafast production. Record-high ultrafast oxygen production of 135 L·min-1·m-2 with high working current of 4000 mA·cm-2 is steadily achieved at a competitively low cell voltage of 2.862 V. These results and related insights lay the basis for further developments in oriented nucleation and growth of crystals beyond classical nucleation approaches, with benefits for large-scale, industrial electrochemical processes as shown here for ultrafast oxygen production.

16.
Small ; 19(50): e2304033, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37649175

RESUMO

Stretchable strain sensors suffer the trade-off between sensitivity and linear sensing range. Developing sensors with both high sensitivity and wide linear range remains a formidable challenge. Different from conventional methods that rely on the structure design of sensing nanomaterial or substrate, here a heterogeneous-surface strategy for silver nanowires (AgNWs) and MXene is proposed to construct a hierarchical microcrack (HMC) strain sensor. The heterogeneous surface with distinct differences in cracks and adhesion strengths divides the sensor into two regions. One region contributes to high sensitivity through penetrating microcracks of the AgNW/MXene composite film during stretching. The other region maintains conductive percolation pathways to provide a wide linear sensing range through network microcracks. As a result, the HMC sensor exhibits ultrahigh sensitivity (gauge factor ≈ 244), broad linear range (ɛ = 60%, R2 ≈ 99.25%), and fast response time (<30 ms). These merits are confirmed in the detection of large and subtle human motions and digital joint movement for Morse coding. The manipulation of cracks on the heterogeneous surface provides a new paradigm for designing high-performance stretchable strain sensors.

17.
J Bioenerg Biomembr ; 55(3): 195-205, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37237241

RESUMO

Adipose tissue-derived mesenchymal stem cells (ADSCs) have promising effects on nerve repair due to the differentiation ability to neural cells. Ghrelin has been shown to promote the neural differentiation of ADSCs. This work was designed to explore its underlying mechanism. Herein, we found high expression of LNX2 in ADSCs after neuronal differentiation. Knockdown of LNX2 might block neuronal differentiation of ADSCs, as evidenced by the decreased number of neural-like cells and dendrites per cell, and the reduced expressions of neural markers (including ß-Tubulin III, Nestin, and MAP2). We also demonstrated that LNX2 silencing suppressed the nuclear translocation of ß-catenin in differentiated ADSCs. Luciferase reporter assay indicated that LNX2 inhibited wnt/ß-catenin pathway by reducing its transcriptional activity. In addition, results showed that LNX2 expression was increased by ghrelin, and its inhibition diminished the effects of ghrelin on neuronal differentiation. Altogether, the results suggest that LNX2 is involved in the role of ghrelin to facilitate neuronal differentiation of ADSCs.


Assuntos
Grelina , Células-Tronco Mesenquimais , beta Catenina , beta Catenina/metabolismo , Diferenciação Celular/fisiologia , Células Cultivadas , Grelina/farmacologia , Grelina/metabolismo , Células-Tronco Mesenquimais/metabolismo , Neurônios/metabolismo , Humanos
18.
Opt Express ; 31(19): 30458-30469, 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37710586

RESUMO

We propose a two-dimensional array made of a double-layer of vertically separated graphene nanoribbons. The transfer matrix method and coupled mode theory are utilized to quantitatively depict the transfer properties of the system. We present a way to calculate the radiative and the intrinsic loss factors, combined with finite-difference time-domain simulation, conducting the complete analytical analysis of the unidirectional reflectionless phenomenon. By adjusting the Fermi energy and the vertical distance between two graphene nanoribbons, the plasmonic resonances are successfully excited, and the unique phenomena can be realized at the exceptional points. Our research presents the potential in the field of optics and innovative technologies to create advanced optical devices that operate in the mid-infrared range, such as terahertz antennas and reflectors.

19.
Opt Express ; 31(20): 32422-32433, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37859046

RESUMO

We propose a double-layer graphene sheets side coupling to a strip of graphene to obtain the optical pulling or pushing force. Combined with coupled mode theory and finite-difference time-domain simulations, it is found that the conveyor belt effect can be realized in conjunction with the lateral optical equilibrium effect upon the radiation loss κe equal to the intrinsic loss κo. The maximum total optical force acting on the strip in the symmetric mode (S-mode) can be up to ∼5.95 in the unit of 1/c and the anti-symmetric (AS-mode) mode reach ∼2.75 1/c. The optical trapping potential Ux and optical trapping force Fx for the S-mode have a value around -22.5 kBT/W and 240 pN/W, while for the AS-mode can up to ∼-56 kBT/W and 520 pN/W, respectively. Our work opens a new avenue for optical manipulation with potential applications in optoelectronic devices and lab-on-a-chip platforms.

20.
Opt Express ; 31(4): 6623-6632, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36823914

RESUMO

We have investigated the effect of enhanced optical force via the acoustic graphene plasmon (AGP) cavities with the ultra-small mode volumes. The AGP mode can generate stronger field confinement and higher momentum, which could provide giant optical force, and has no polarization preference for the optical source. We have demonstrated that the trapping potential and force applied on polystyrene nanoparticle in the AGP cavities are as high as -13.6 × 102 kBT/mW and 2.5 nN/mW, respectively. The effect of radius of rounded corners and gap distance of AGP cavities on the optical force has been studied. Compared with an ideal nanocube, nanocube with rounded corners is more in line with the actual situation of the device. These results show that the larger radius of nanocube rounded corners, the smaller trapping potential and force provided by AGP cavities. Our results pave a new idea for the investigation of optical field and optical force via acoustic plasmon mode.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA