RESUMO
Glutamate is traditionally viewed as the first messenger to activate NMDAR (N-methyl-D-aspartate receptor)-dependent cell death pathways in stroke1,2, but unsuccessful clinical trials with NMDAR antagonists implicate the engagement of other mechanisms3-7. Here we show that glutamate and its structural analogues, including NMDAR antagonist L-AP5 (also known as APV), robustly potentiate currents mediated by acid-sensing ion channels (ASICs) associated with acidosis-induced neurotoxicity in stroke4. Glutamate increases the affinity of ASICs for protons and their open probability, aggravating ischaemic neurotoxicity in both in vitro and in vivo models. Site-directed mutagenesis, structure-based modelling and functional assays reveal a bona fide glutamate-binding cavity in the extracellular domain of ASIC1a. Computational drug screening identified a small molecule, LK-2, that binds to this cavity and abolishes glutamate-dependent potentiation of ASIC currents but spares NMDARs. LK-2 reduces the infarct volume and improves sensorimotor recovery in a mouse model of ischaemic stroke, reminiscent of that seen in mice with Asic1a knockout or knockout of other cation channels4-7. We conclude that glutamate functions as a positive allosteric modulator for ASICs to exacerbate neurotoxicity, and preferential targeting of the glutamate-binding site on ASICs over that on NMDARs may be strategized for developing stroke therapeutics lacking the psychotic side effects of NMDAR antagonists.
Assuntos
Canais Iônicos Sensíveis a Ácido , Isquemia Encefálica , Ácido Glutâmico , Animais , Feminino , Humanos , Masculino , Camundongos , 2-Amino-5-fosfonovalerato/efeitos adversos , 2-Amino-5-fosfonovalerato/metabolismo , 2-Amino-5-fosfonovalerato/farmacologia , Canais Iônicos Sensíveis a Ácido/química , Canais Iônicos Sensíveis a Ácido/deficiência , Canais Iônicos Sensíveis a Ácido/efeitos dos fármacos , Canais Iônicos Sensíveis a Ácido/genética , Canais Iônicos Sensíveis a Ácido/metabolismo , Regulação Alostérica/efeitos dos fármacos , Sítios de Ligação/genética , Isquemia Encefálica/induzido quimicamente , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Ácido Glutâmico/análogos & derivados , Ácido Glutâmico/metabolismo , Ácido Glutâmico/farmacologia , Ácido Glutâmico/toxicidade , Camundongos Knockout , Mutagênese Sítio-Dirigida , Prótons , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/química , Receptores de N-Metil-D-Aspartato/metabolismoRESUMO
Hyperbilirubinemia (HB) is a key risk factor for hearing loss in neonates, particularly premature infants. Here we report that bilirubin (BIL)-dependent cell death in auditory brainstem of neonatal mice of both sexes is significantly attenuated by ZD7288, a blocker for hyperpolarization-activated cyclic nucleotide-gated (HCN) channel mediated current (Ih), or by genetic deletion of HCN1. GABAergic inhibitory interneurons predominantly express HCN1, on which BIL selectively acts to increase their intrinsic excitability and mortality by enhancing HCN1 activity and Ca2+-dependent membrane targeting. Chronic BIL elevation in neonatal mice in vivo increases the fraction of spontaneously active interneurons and their firing frequency, Ih and death, compromising audition at young adult stage in HCN1+/+, but not in HCN1-/- genotype. We conclude that HB preferentially targets HCN1 to injure inhibitory interneurons, fueling a feedforward loop in which lessening inhibition cascades hyperexcitability, Ca2+ overload, neuronal death and auditory impairments. These findings rationalize HCN1 as a potential target for managing HB encephalopathy.Significance Statement This study demonstrated that bilirubin preferentially targets GABAergic interneurons where it facilitates not only gating of HCN1 channels but also targeting of intracellular HCN1 to plasma membrane in calcium-dependent manner, resulting in neuronal hyperexcitability, injury and sensory dysfunction. These findings implicate HCN1 channel not only as a potential driver for auditory abnormalities in neonatal patients with bilirubin encephalopathy, but also potential intervention target for clinical management of neurological impairments associated with severe jaundice. Selective vulnerability of interneurons to neurotoxicity may be of general significance for understanding other forms of brain injury.
RESUMO
As the concentration of microplastics/microspheres (MPs) in coastal and estuarine regions increases, the likelihood of disease outbreaks and epidemics also rises. Our study investigated the impact of polyvinyl chloride MPs (PVC-MPs) on white spot syndrome virus (WSSV) infection in shrimp. The results revealed that PVC-MPs obviously increased WSSV replication in vivo, leading to a high mortality rate among the larvae and facilitating the horizontal transmission of WSSV. Furthermore, the data of WSSV loads detected together with qPCR, agarose gel electrophoresis, and flow cytometry approaches indicated that PVC-MPs could interact with the virus to prolong survival and maintain the virulence of WSSV at different temperatures and pH values. In terms of host resistance, metabolomics and transcriptomics analysis demonstrated that exposure to PVC-MPs upregulated metabolic concentrations and gene expressions associated with phospholipid metabolism that were associated with innate immunity responses. Particularly, PVC-MPs stimulated the synthesis of phosphatidylcholine (PC) and induced lipid peroxidation. The inhibition of PC on Stimulator of Interferon Genes (STING) translocation from the endoplasmic reticulum to the Golgi apparatus reduces expression of the innate immunity genes (IFN-like genes Vago4 and Vago5) regulated by STING signaling pathways, resulting in a significant decrease in the shrimp's resistance to WSSV infection. Notably, a recovery operation in which the exposed larvae were transferred to a MPs-free aquatic environment led to decreased WSSV infectivity over time, indicating the restoration of antiviral properties in shrimp. Overall, these findings highlight that MPs promote shrimp susceptibility to WSSV in two aspects: host immune defense and viral virulence.
Assuntos
Penaeidae , Vírus da Síndrome da Mancha Branca 1 , Animais , Microplásticos , Plásticos , Vírus da Síndrome da Mancha Branca 1/genética , Virulência , Imunidade Inata/genética , Penaeidae/genéticaRESUMO
One new ursane-type triterpenoid (1), named granditriol, along with 14 known compounds (2-15), was isolated from the organic extracts of Schisandra grandiflora stems. The structure of the new compound was elucidated by extensive spectroscopic methods as 28-norursa-12,17,19,21-tetraen-2α,3α,23-triol. These isolates were evaluated for anti-phytopathogenic fungi activity and cytotoxicity against human cancer cell line (HepG2). Asiatic acid (8) and 2α,3α,19α-trihydroxyurs-12-en-28-oic acid (9) inhibited the growth of two plant pathogens, Alternaria alternata and Alternaria solani. In addition, compounds 12, 15, and 11 displayed notable anti-proliferative activity against HepG2 cells. Compound 1 is the first report of 28-nortriterpenoid from the Schisandraceae family. All these were obtained from this plant for the first time.
Assuntos
Antineoplásicos Fitogênicos/isolamento & purificação , Antineoplásicos Fitogênicos/farmacologia , Schisandra/química , Triterpenos/isolamento & purificação , Triterpenos/farmacologia , Antineoplásicos Fitogênicos/química , Ensaios de Seleção de Medicamentos Antitumorais , Células Hep G2 , Humanos , Estrutura Molecular , Caules de Planta/química , Triterpenos/químicaRESUMO
Quantitative assessment of endogenously synthesized and released bilirubin from brain tissue remains a challenge. Here, we present a sensitive and reproducible experimental paradigm to quantify, in real time, unconjugated bilirubin (UCB) from isolated murine brain tissue during oxygen-glucose deprivation (OGD). We describe steps for perfusion, brain dissection, brain slice preparation and incubation, glucose depletion, and OGD processing. We then detail procedures for standard calibration plotting and sample UCB measurement. For complete details on the use and execution of this protocol, please refer to Liu et al.1.
Assuntos
Glucose , Oxigênio , Camundongos , Animais , Bilirrubina , Encéfalo , CabeçaRESUMO
Stroke prognosis is negatively associated with an elevation of serum bilirubin, but how bilirubin worsens outcomes remains mysterious. We report that post-, but not pre-, stroke bilirubin levels among inpatients scale with infarct volume. In mouse models, bilirubin increases neuronal excitability and ischemic infarct, whereas ischemic insults induce the release of endogenous bilirubin, all of which are attenuated by knockout of the TRPM2 channel or its antagonist A23. Independent of canonical TRPM2 intracellular agonists, bilirubin and its metabolic derivatives gate the channel opening, whereas A23 antagonizes it by binding to the same cavity. Knocking in a loss of binding point mutation for bilirubin, TRPM2-D1066A, effectively antagonizes ischemic neurotoxicity in mice. These findings suggest a vicious cycle of stroke injury in which initial ischemic insults trigger the release of endogenous bilirubin from injured cells, which potentially acts as a volume neurotransmitter to activate TRPM2 channels, aggravating Ca2+-dependent brain injury.
Assuntos
Acidente Vascular Cerebral , Canais de Cátion TRPM , Animais , Camundongos , Canais de Cátion TRPM/genética , Canais de Cátion TRPM/metabolismo , Bilirrubina/metabolismo , Camundongos Knockout , Encéfalo/metabolismo , Infarto , Cálcio/metabolismoRESUMO
Chronic pollution in aquatic ecosystems can lead to many adverse effects, including a greater susceptibility to pathogens among resident biota. Trifloxystrobin (TFS) is a strobilurin fungicide widely used in Asia to control soybean rust. However, it has the potential to enter aquatic ecosystems, where it may impair fish resistance to viral infections. To explore the potential environmental risks of TFS, we characterized the antiviral capacities of fish chronically exposed to TFS and subsequently infected with spring viraemia of carp virus (SVCV). Although TFS exhibited no significant cytotoxicity at the tested environmental concentrations during viral challenge, SVCV replication increased significantly in a time-dependent manner within epithelioma papulosum cyprini (EPC) cells and zebrafish exposed to 25 µg/L TFS. Results showed that the highest viral load was more than 100-fold that of the controls. Intracellular biochemical assays indicated that autophagy was induced by TFS, and associated changes included an increase in autophagosomes, conversion of LC3-II, accumulation of Beclin-1, and degradation of P62 in EPC cells and zebrafish. In addition, TFS markedly decreased the expression and phosphorylation of mTOR, indicating that activation of TFS may be associated with the mTOR-mediated autophagy pathway. This study provides new insights into the mechanism of the immunosuppressive effects of TFS on non-target aquatic hosts and suggests that the existence of TFS in aquatic environments may contribute to outbreaks of viral diseases.
Assuntos
Acetatos/toxicidade , Suscetibilidade a Doenças/induzido quimicamente , Fungicidas Industriais/toxicidade , Iminas/toxicidade , Estrobilurinas/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Autofagia , Viroses , Peixe-ZebraRESUMO
In developing sensory systems, elaborate morphological connectivity between peripheral cells and first-order central neurons emerges via genetic programming before the onset of sensory activities. However, how the first-order central neurons acquire the capacity to interface with peripheral cells remains elusive. By making patch-clamp recordings from mouse brainstem slices, we found that a subset of neurons in the cochlear nuclei, the first central station to receive peripheral acoustic impulses, exhibits spontaneous firings (SFs) as early as at birth, and the fraction of such neurons increases during the prehearing period. SFs are reduced but not eliminated by a cocktail of blockers for excitatory and inhibitory synaptic inputs, implicating the involvement of intrinsic pacemaker channels. Furthermore, we demonstrate that these intrinsic firings (IFs) are largely driven by hyperpolarization- and cyclic nucleotide-gated channel (HCN) mediated currents (Ih), as evidenced by their attenuation in the presence of HCN blockers or in neurons from HCN1 knockout mice. Interestingly, genetic deletion of HCN1 cannot be fully compensated by other pacemaker conductances and precludes age-dependent up regulation in the fraction of spontaneous active neurons and their firing rate. Surprisingly, neurons with SFs show accelerated development in excitability, spike waveform and firing pattern as well as synaptic pruning towards mature phenotypes compared to those without SFs. Our results imply that SFs of the first-order central neurons may reciprocally promote their wiring and firing with peripheral inputs, potentially enabling the correlated activity and crosstalk between the developing brain and external environment.
RESUMO
OBJECTIVE: To investigate the anti-tumor effect of intraportal administration of Adv-p53 in the treatment of the liver metastasis in mice. METHODS: 2 x 10(5) of MCA-205 cells were injected into the mouse portal vein to establish a murine liver metastasis model. The spleen was transpositioned subcutaneously to enable the administration of Adv-p53 continually into the portal system. Different doses of Adv-p53 were injected intraportally, while HBSS and Adv-CMV were injected intraportaly in the control group. Tumors in the liver were examined on day 21 after Adv-p53 administration. RESULTS: The liver weight in the Adv-p53 treated mice on day 0 group (1.20 +/- 0.34 g) was significantly less than that in the Adv-CMV group (2.59 +/- 0.48 g, P < 0.05). The number of metastatic nodules in the Adv-p53 treated mice on day 0 group (9.0 +/- 9.9) was significantly less than that in the Adv-CMV group (57.1 +/- 11.3, P < 0.05), indicating that intraportal administration of Adv-p53 inhibited the formation of liver metastasis. This anti-tumor effect was in a dose-dependent manner. After the liver metastasis was formed, Adv-p53 was administered intraportally. The liver weight in the Adv-p53 treated mice on day 5 group (1.22 +/- 0.09 g) was significantly less than that in the Adv-CMV group (3.98 +/- 1.01 g , P < 0.05). The number of metastatic nodules in the Adv-p53 treaed mice on day 5 group (5.5 +/- 3.5) was significantly less than that in the Adv-CMV group (113.2 +/- 5.8, P < 0.05). Repeatedly intraportal administration of Adv-p53 could enhance this anti-tumor effect. CONCLUSION: Local administration of Adv-p53 into the portal system would be a useful strategy for the liver metastasis treatment.
Assuntos
Adenoviridae/genética , Fibrossarcoma/patologia , Terapia Genética , Neoplasias Hepáticas Experimentais/terapia , Proteína Supressora de Tumor p53/uso terapêutico , Animais , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Feminino , Neoplasias Hepáticas Experimentais/secundário , Camundongos , Camundongos Endogâmicos C57BL , Transplante de Neoplasias , Proteínas Recombinantes/genética , Proteínas Recombinantes/uso terapêutico , Proteína Supressora de Tumor p53/administração & dosagem , Proteína Supressora de Tumor p53/genéticaRESUMO
Type I interferons (IFN-α/ß) have broad and potent immunoregulatory and antiproliferative activities, which are negatively regulated by Src homology domain 2 containing tyrosine phosphatase-2 (SHP-2). Inhibition of SHP2 by small molecules may be a new strategy to enhance the effcacy of type I IFNs. Using an in vitro screening assay for new inhibitors of SHP2 phosphatase, we found that quercetin was a potent inhibitor of SHP2. Computational modeling showed that quercetin exhibited an orientation favorable to nucleophilic attack in the phosphatase domain of SHP2. Quercetin enhanced the phosphorylation of signal transducer and activator of transcription proteins 1 (STAT1) and promoted endogenous IFN-α-regulated gene expression. Furthermore, quercetin also sensitized the antiproliferative effect of IFN-α on hepatocellular carcinoma HepG2 and Huh7 cells. The overexpression of SHP2 attenuated the effect of quercetin on IFN-α-stimulated STAT1 phosphorylation and antiproliferative effect, whereas the inhibition of SHP2 promoted the effect of quercetin on IFN-α-induced STAT1 phosphorylation and antiproliferative effect. The results suggested that quercetin potentiated the inhibitory effect of IFN-α on cancer cell proliferation through activation of JAK/STAT pathway signaling by inhibiting SHP2. Quercetin warrants further investigation as a novel therapeutic method to enhance the efficacy of IFN-α/ß.
RESUMO
Epimedium brevicornum Maxim has a long history of use in the treatment of estrogen deficiency-related diseases. However, the chemical constituents and mechanism of action of this medicinal plant are not fully understood. In the present study, we isolated four new isoprenylated flavonoid glycosides, as well as 16 known flavonoids (13 isoprenylated flavonoids), from this plant. The chemical structures of the new flavonoid glycosides were elucidated by extensive spectroscopic analysis. The new compounds 1-4 were potent promoters of estrogen biosynthesis in human ovarian granulosa-like KGN cells. ZW1, an isoprenylated flavonoid analogue and a specific inhibitor of phosphodiesterase 5 (PDE5), was synthesized and used to explore the mechanism of the isoprenylated analogues on estrogen biosynthesis. ZW1 treatment increased estrogen production by upregulation of aromatase mRNA and protein expression. ZW1 increased the phosphorylation of cAMP response element-binding protein (CREB). Further study showed that the inhibition of PDE5 by ZW1 increased estrogen biosynthesis partly through suppression of phosphodiesterase 3 (PDE3). Our results suggested that the isoprenylated flavonoids from E. brevicornum may produce beneficial health effects through the promotion of estrogen biosynthesis. PDE5 warrants further investigation as a new therapeutic target for estrogen biosynthesis in the prevention and treatment of estrogen-deficiency related diseases.
Assuntos
Epimedium/química , Estrogênios/biossíntese , Flavonoides/farmacologia , Glicosídeos/farmacologia , Células da Granulosa/efeitos dos fármacos , Inibidores de Fosfodiesterase/farmacologia , Linhagem Celular , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Feminino , Flavonoides/química , Glicosídeos/química , Células da Granulosa/metabolismo , Humanos , Inibidores de Fosfodiesterase/química , Plantas Medicinais/químicaRESUMO
BACKGROUND: Type I interferons (IFN-α/ß) have broad and potent immunoregulatory and antiproliferative activities. However, it is still known whether the dietary flavonoids exhibit their antiviral and anticancer properties by modulating the function of type I IFNs. OBJECTIVE: This study aimed at determining the role of apigenin, a dietary plant flavonoid abundant in common fruits and vegetables, on the type I IFN-mediated inhibition of cancer cell viability. DESIGN: Inhibitory effect of apigenin on human 26S proteasome, a known negative regulator of type I IFN signaling, was evaluated in vitro. Molecular docking was conducted to know the interaction between apigenin and subunits of 26S proteasome. Effects of apigenin on JAK/STAT pathway, 26S proteasome-mediated interferon receptor stability, and cancer cells viability were also investigated. RESULTS: Apigenin was identified to be a potent inhibitor of human 26S proteasome in a cell-based assay. Apigenin inhibited the chymotrypsin-like, caspase-like, and trypsin-like activities of the human 26S proteasome and increased the ubiquitination of endogenous proteins in cells. Results from computational modeling of the potential interactions of apigenin with the chymotrypsin site (ß5 subunit), caspase site (ß1 subunit), and trypsin site (ß2 subunit) of the proteasome were consistent with the observed proteasome inhibitory activity. Apigenin enhanced the phosphorylation of signal transducer and activator of transcription proteins (STAT1 and STAT2) and promoted the endogenous IFN-α-regulated gene expression. Apigenin inhibited the IFN-α-stimulated ubiquitination and degradation of type I interferon receptor 1 (IFNAR1). Apigenin also sensitized the inhibitory effect of IFN-α on viability of cervical carcinoma HeLa cells. CONCLUSION: These results suggest that apigenin potentiates the inhibitory effect of IFN-α on cancer cell viability by activating JAK/STAT signaling pathway through inhibition of 26S proteasome-mediated IFNAR1 degradation. This may provide a novel mechanism for increasing the efficacy of IFN-α/ß.
RESUMO
Nine secondary metabolites, including four steroids, four phenolics and one cerebroside, were isolated from the methanol extract of the fruiting bodies of the basidiomycete Sarcodon joedes. The isolated compounds were identified by spectroscopic analyses as (22E,24R)-6ß-methoxyergosta-7,22-diene-3ß,5α-diol (1), 2',3'-diacetoxy-3,4,5',6',4â³-pentahydroxy-p-terphenyl (2), cerebroside B (3), ergosta-7,22-dien-3ß-ol (4), ergosterol peroxide (5), (22E,24R)-3ß-hydroxy-ergosta-5,22-dien-7-one (6), benzoic acid (7), methyl p-hydroxybenzoate (8) and 3,4-dihydroxybenzoic acid (9). The cytotoxic activities of these compounds were evaluated. All these compounds were isolated from this fungus for the first time.
Assuntos
Basidiomycota/química , Carpóforos/química , Fitosteróis/química , Esteroides/químicaRESUMO
A new dibenzocyclooctene-type lignan, named schisandrin A1 (1), together with nine known lignans (2-10), was isolated from the stems of Schisandra sphenathera. The structure of schisandrin A1, which contains a spirocyclic epoxy unit, was established by means of spectroscopic methods. The absolute configurations of schisandrin A1 (1) and schisantherin A (2) were determined by electronic circular dichroism (CD) and TDDFT calculations, with 2 further confirmed by X-ray crystallographic data. Ten new schisantherin A derivatives (11-20) and 6,7-secoschisantherol A (2b) were synthesized. In addition, natural lignans and semisynthetic schisantherin A derivatives showed the antiproliferative activity on four human cancer cell lines and Id1 (an inhibitor of DNA binding protein) and estrogenic potency. Compounds 5, 7, and 8 exhibited very potent estrogenic activity.