Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 504
Filtrar
1.
Cell ; 160(6): 1209-21, 2015 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-25728666

RESUMO

Rice is sensitive to cold and can be grown only in certain climate zones. Human selection of japonica rice has extended its growth zone to regions with lower temperature, while the molecular basis of this adaptation remains unknown. Here, we identify the quantitative trait locus COLD1 that confers chilling tolerance in japonica rice. Overexpression of COLD1(jap) significantly enhances chilling tolerance, whereas rice lines with deficiency or downregulation of COLD1(jap) are sensitive to cold. COLD1 encodes a regulator of G-protein signaling that localizes on plasma membrane and endoplasmic reticulum (ER). It interacts with the G-protein α subunit to activate the Ca(2+) channel for sensing low temperature and to accelerate G-protein GTPase activity. We further identify that a SNP in COLD1, SNP2, originated from Chinese Oryza rufipogon, is responsible for the ability of COLD(jap/ind) to confer chilling tolerance, supporting the importance of COLD1 in plant adaptation.


Assuntos
Proteínas e Peptídeos de Choque Frio/metabolismo , Oryza/fisiologia , Proteínas de Plantas/metabolismo , Sequência de Aminoácidos , Cruzamento , Proteínas e Peptídeos de Choque Frio/genética , Temperatura Baixa , Retículo Endoplasmático , Proteínas de Ligação ao GTP/química , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Regulação da Expressão Gênica de Plantas , Dados de Sequência Molecular , Mutação , Oryza/citologia , Oryza/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Alinhamento de Sequência
2.
Brief Bioinform ; 25(3)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38546325

RESUMO

Expression quantitative trait loci (eQTLs) are used to inform the mechanisms of transcriptional regulation in eukaryotic cells. However, the specificity of genome-wide eQTL identification is limited by stringent control for false discoveries. Here, we described a method based on the non-homogeneous Poisson process to identify 125 489 regions with highly frequent, multiple eQTL associations, or 'eQTL-hotspots', from the public database of 59 human tissues or cell types. We stratified the eQTL-hotspots into two classes with their distinct sequence and epigenomic characteristics. Based on these classifications, we developed a machine-learning model, E-SpotFinder, for augmented discovery of tissue- or cell-type-specific eQTL-hotspots. We applied this model to 36 tissues or cell types. Using augmented eQTL-hotspots, we recovered 655 402 eSNPs and reconstructed a comprehensive regulatory network of 2 725 380 cis-interactions among eQTL-hotspots. We further identified 52 012 modules representing transcriptional programs with unique functional backgrounds. In summary, our study provided a framework of epigenome-augmented eQTL analysis and thereby constructed comprehensive genome-wide networks of cis-regulations across diverse human tissues or cell types.


Assuntos
Epigenoma , Epigenômica , Humanos , Bases de Dados Factuais , Células Eucarióticas , Aprendizado de Máquina
3.
Plant J ; 119(3): 1558-1569, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38865085

RESUMO

Heat stress is an environmental factor that significantly threatens crop production worldwide. Nevertheless, the molecular mechanisms governing plant responses to heat stress are not fully understood. Plant zinc finger CCCH proteins have roles in stress responses as well as growth and development through protein-RNA, protein-DNA, and protein-protein interactions. Here, we reveal an integrated multi-level regulation of plant thermotolerance that is mediated by the CCCH protein C3H15 in Arabidopsis. Heat stress rapidly suppressed C3H15 transcription, which attenuated C3H15-inhibited expression of its target gene HEAT SHOCK TRANSCRIPTION FACTOR A2 (HSFA2), a central regulator of heat stress response (HSR), thereby activating HEAT SHOCK COGNATE 70 (HSC70.3) expression. The RING-type E3 ligase MED25-BINDING RING-H2 PROTEIN 2 (MBR2) was identified as an interacting partner of C3H15. The mbr2 mutant was susceptible to heat stress compared to wild-type plants, whereas plants overexpressing MBR2 showed increased heat tolerance. MBR2-dependent ubiquitination mediated the degradation of phosphorylated C3H15 protein in the cytoplasm, which was enhanced by heat stress. Consistently, heat sensitivities of C3H15 overexpression lines increased in MBR2 loss-of-function and decreased in MBR2 overexpression backgrounds. Heat stress-induced accumulation of HSC70.3 promoted MBR2-mediated degradation of C3H15 protein, implying that an auto-regulatory loop involving C3H15, HSFA2, and HSC70.3 regulates HSR. Heat stress also led to the accumulation of C3H15 in stress granules (SGs), a kind of cytoplasmic RNA granule. This study advances our understanding of the mechanisms plants use to respond to heat stress, which will facilitate technologies to improve thermotolerance in crops.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Regulação da Expressão Gênica de Plantas , Fatores de Transcrição de Choque Térmico , Resposta ao Choque Térmico , Termotolerância , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Termotolerância/genética , Resposta ao Choque Térmico/genética , Resposta ao Choque Térmico/fisiologia , Fatores de Transcrição de Choque Térmico/genética , Fatores de Transcrição de Choque Térmico/metabolismo , Plantas Geneticamente Modificadas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
4.
Plant Physiol ; 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39365016

RESUMO

Reduced oxygen availability (hypoxia) represents a key plant abiotic stress in natural and agricultural systems, but conversely it is also an important component of normal growth and development. We review recent advances that demonstrate how genetic adaptations associated with hypoxia impact the known plant oxygen sensing mechanism through the PLANT CYSTEINE OXIDASE (PCO) N-degron pathway. Only three protein substrates of this pathway have been identified, and all adaptations identified to date are associated with the most important of these, the group VII ETHYLENE RESPONSE FACTOR transcription factors (ERFVIIs). We discuss how geography, altitude, and agriculture have all shaped molecular responses to hypoxia, and how these responses have emerged at different taxonomic levels through the evolution of land plants. Understanding how ecological and agricultural genetic variation acts positively to enhance hypoxia tolerance will provide novel tools and concepts to improve the performance of crops in the face of increasing extreme flooding events.

5.
Cereb Cortex ; 34(7)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-39011935

RESUMO

Companionship refers to one's being in the presence of another individual. For adults, acquiring a new language is a highly social activity that often involves learning in the context of companionship. However, the effects of companionship on new language learning have gone relatively underexplored, particularly with respect to word learning. Using a within-subject design, the current study employs electroencephalography to examine how two types of companionship (monitored and co-learning) affect word learning (semantic and lexical) in a new language. Dyads of Chinese speakers of English as a second language participated in a pseudo-word-learning task during which they were placed in monitored and co-learning companionship contexts. The results showed that exposure to co-learning companionship affected the early attention stage of word learning. Moreover, in this early stage, evidence of a higher representation similarity between co-learners showed additional support that co-learning companionship influenced attention. Observed increases in delta and theta interbrain synchronization further revealed that co-learning companionship facilitated semantic access. In all, the similar neural representations and interbrain synchronization between co-learners suggest that co-learning companionship offers important benefits for learning words in a new language.


Assuntos
Encéfalo , Eletroencefalografia , Humanos , Masculino , Feminino , Adulto Jovem , Adulto , Encéfalo/fisiologia , Aprendizagem/fisiologia , Semântica , Multilinguismo , Idioma , Atenção/fisiologia , Aprendizagem Verbal/fisiologia
6.
Cereb Cortex ; 34(9)2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39233376

RESUMO

Repeated exposure to word forms and meanings improves lexical knowledge acquisition. However, the roles of domain-general and language-specific brain regions during this process remain unclear. To investigate this, we applied intermittent theta burst stimulation over the domain-general (group left dorsolateral prefrontal cortex) and domain-specific (Group L IFG) brain regions, with a control group receiving sham intermittent theta burst stimulation. Intermittent theta burst stimulation effects were subsequently assessed in functional magnetic resonance imaging using an artificial word learning task which consisted of 3 learning phases. A generalized psychophysiological interaction analysis explored the whole brain functional connectivity, while dynamic causal modeling estimated causal interactions in specific brain regions modulated by intermittent theta burst stimulation during repeated exposure. Compared to sham stimulation, active intermittent theta burst stimulation improved word learning performance and reduced activation of the left insula in learning phase 2. Active intermittent theta burst stimulation over the domain-general region increased whole-brain functional connectivity and modulated effective connectivity between brain regions during repeated exposure. This effect was not observed when active intermittent theta burst stimulation was applied to the language-specific region. These findings suggest that the domain-general region plays a crucial role in word formation rule learning, with intermittent theta burst stimulation enhancing whole-brain connectivity and facilitating efficient information exchange between key brain regions during new word learning.


Assuntos
Encéfalo , Idioma , Imageamento por Ressonância Magnética , Estimulação Magnética Transcraniana , Humanos , Masculino , Feminino , Adulto Jovem , Estimulação Magnética Transcraniana/métodos , Encéfalo/fisiologia , Encéfalo/diagnóstico por imagem , Adulto , Cognição/fisiologia , Mapeamento Encefálico , Aprendizagem/fisiologia , Ritmo Teta/fisiologia , Aprendizagem Verbal/fisiologia , Vias Neurais/fisiologia
7.
BMC Genomics ; 25(Suppl 1): 401, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658824

RESUMO

BACKGROUND: Most of the important biological mechanisms and functions of transmembrane proteins (TMPs) are realized through their interactions with non-transmembrane proteins(nonTMPs). The interactions between TMPs and nonTMPs in cells play vital roles in intracellular signaling, energy metabolism, investigating membrane-crossing mechanisms, correlations between disease and drugs. RESULTS: Despite the importance of TMP-nonTMP interactions, the study of them remains in the wet experimental stage, lacking specific and comprehensive studies in the field of bioinformatics. To fill this gap, we performed a comprehensive statistical analysis of known TMP-nonTMP interactions and constructed a deep learning-based predictor to identify potential interactions. The statistical analysis describes known TMP-nonTMP interactions from various perspectives, such as distributions of species and protein families, enrichment of GO and KEGG pathways, as well as hub proteins and subnetwork modules in the PPI network. The predictor implemented by an end-to-end deep learning model can identify potential interactions from protein primary sequence information. The experimental results over the independent validation demonstrated considerable prediction performance with an MCC of 0.541. CONCLUSIONS: To our knowledge, we were the first to focus on TMP-nonTMP interactions. We comprehensively analyzed them using bioinformatics methods and predicted them via deep learning-based solely on their sequence. This research completes a key link in the protein network, benefits the understanding of protein functions, and helps in pathogenesis studies of diseases and associated drug development.


Assuntos
Biologia Computacional , Proteínas de Membrana , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Biologia Computacional/métodos , Aprendizado Profundo , Humanos , Mapas de Interação de Proteínas
8.
Plant Mol Biol ; 114(2): 30, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38503847

RESUMO

To cope with flooding-induced hypoxia, plants have evolved different strategies. Molecular strategies, such as the N-degron pathway and transcriptional regulation, are known to be crucial for Arabidopsis thaliana's hypoxia response. Our study uncovered a novel molecular strategy that involves a single transcription factor interacting with two identical cis-elements, one located in the promoter region and the other within the intron. This unique double-element adjustment mechanism has seldom been reported in previous studies. In humid areas, WRKY70 plays a crucial role in A. thaliana's adaptation to submergence-induced hypoxia by binding to identical cis-elements in both the promoter and intron regions of WRKY33. This dual binding enhances WRKY33 expression and the activation of hypoxia-related genes. Conversely, in arid regions lacking the promoter cis-element, WRKY70 only binds to the intron cis-element, resulting in limited WRKY33 expression during submergence stress. The presence of a critical promoter cis-element in humid accessions, but not in dry accessions, indicates a coordinated regulation enabling A. thaliana to adapt and thrive in humid habitats.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regiões Promotoras Genéticas/genética , Hipóxia/genética , Regulação da Expressão Gênica de Plantas
9.
J Am Chem Soc ; 146(28): 19137-19145, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38953468

RESUMO

Anthracenylidene is an intriguing structural unit with potential in various fields. The study presents a novel approach to introducing axial chirality into this all-carbon core skeleton through a remotely controlled desymmetrization strategy. A palladium-catalyzed enantioselective Heck arylation of exocyclic double bond of anthracene with two distinct substituents at the C10 position is harnessed to realize such a transformation. The judicious identification of the P-centrally chiral ligand is pivotal to ensure the competitive competence in reactivity and stereocontrol when the heteroatom handle is absent from the anthracenylidene skeleton. Both C10 mono- and disubstituted substrates were compatible for the established catalytic system, and structurally diverse anthracenylidene-based frameworks were forged with good-to-high enantiocontrol. The subsequent derivatization of the obtained products yielded a valuable array of centrally and axially chiral molecules, thus emphasizing the practicality of this chemistry. DFT calculations shed light on the catalytic mechanism and provided insights into the origin of the experimentally observed enantioselectivity for this reaction.

10.
Small ; : e2404909, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39073024

RESUMO

Modulating the electronic properties of transition metal sites in photocatalysts at the atomic level is essential for achieving high-activity carbon dioxide photoreduction (CO2PR). An electronic strategy is herein proposed to engineer In-d-band center of InVO4 by incorporating MnOx nanoparticles and oxygen vacancies (VO) into holey InVO4 nanobelts (MnOx/VO-InVO4), which synergistically modulates the In-d-band center to a moderate level and consequently leads to high-efficiency CO2PR. The MnOx/VO-InVO4 catalyst with optimized electronic property exhibits a single carbon evolution rate of up to 145.3 µmol g-1 h-1 and a carbon monoxide (CO) product selectivity of 92.6%, coming out in front of reported InVO4-based materials. It is discovered that the modulated electronic property favors the interaction between the In sites and their intermediates, which thereby improves the thermodynamics and kinetics of the CO2PR-to-CO reaction. This work not only demonstrates the effective engineering of the d orbital of the low-coordination In atoms to promote CO2PR, but also paves the way for the application of tuning d-band center to develop high-efficiency catalysts.

11.
Small ; 20(43): e2402526, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38958071

RESUMO

The intricate processes that govern the interactions between peripatetic immune cells and distal renal injury in obesity are not fully understood. Employing transcriptomic analysis of circulating extracellular vesicles (EVs), a marked amplification of small RNA (miR-3960) is discerned within CD3-CD19+ B cells. This RNA is found to be preferentially augmented in kidney tissues, contrasting with its subdued expression in other organs. By synthesizing dual-luciferase reporter assay with co-immunoprecipitation analysis, it is pinpointed that miR-3960 specifically targets the nuclear gene TRMT5, a pivotal actor in the methylation of mitochondrial tRNA. This liaison instigates aberrations in the post-transcriptional modifications of mitochondrial tRNA, engendering deficiencies within the electron respiratory chain, primarily attributable to the diminution of the mitochondrial bioenergetic compound (NDUFA7) complex I. Such perturbations lead to a compromised mitochondrial respiratory capacity in renal tubular cells, thereby exacerbating tubular injury. In contrast, EV blockade or miR-3960 depletion markedly alleviates renal tubular injury in obesity. This investigation unveils a hitherto unexplored pathway by which obesity-induced circulating immune cells remotely manipulate mitochondrial metabolism in target organs. The strategic targeting of obese EVs or infiltrative immune cells and their specifically secreted RNAs emerges as a promising therapeutic avenue to forestall obesity-related renal afflictions.


Assuntos
Linfócitos B , Vesículas Extracelulares , MicroRNAs , Mitocôndrias , Obesidade , Vesículas Extracelulares/metabolismo , Mitocôndrias/metabolismo , Obesidade/metabolismo , Animais , MicroRNAs/metabolismo , MicroRNAs/genética , Linfócitos B/metabolismo , Rim/metabolismo , Rim/patologia , Camundongos , Camundongos Endogâmicos C57BL , Humanos
12.
Plant Physiol ; 191(1): 660-678, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36269175

RESUMO

Herbivore-associated molecular patterns (HAMPs) enable plants to recognize herbivores and may help plants adjust their defense responses. Here, we report on herbivore-induced changes in a protein disulfide isomerase (PDI) widely distributed across arthropods. PDI from the spider mite Tetranychus evansi (TePDI), a mesophyll-feeding agricultural pest worldwide, triggered immunity in multiple Solanaceae plants. TePDI-mediated cell death in Nicotiana benthamiana required the plant signaling proteins SGT1 (suppressor of the G2 allele of skp1) and HSP90 (heat shock protein 90), but was suppressed by spider mite effectors Te28 and Te84. Moreover, PDIs from phylogenetically distinct herbivorous and nonherbivorous arthropods triggered plant immunity. Finally, although PDI-induced plant defenses impaired the performance of spider mites on plants, RNAi experiments revealed that PDI genes are essential for the survival of mites and whiteflies. Our findings indicate that plants recognize evolutionarily conserved HAMPs to activate plant defense and resist pest damage, pointing to opportunities for broad-spectrum pest management.


Assuntos
Herbivoria , Tetranychidae , Animais , Isomerases de Dissulfetos de Proteínas/genética , Plantas , Nicotiana/genética , Proteínas de Plantas/genética , Tetranychidae/fisiologia
13.
Plant Cell ; 33(5): 1771-1789, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-33616649

RESUMO

Oxygen deprivation caused by flooding activates acclimation responses to stress and restricts plant growth. After experiencing flooding stress, plants must restore normal growth; however, which genes are dynamically and precisely controlled by flooding stress remains largely unknown. Here, we show that the Arabidopsis thaliana ubiquitin E3 ligase SUBMERGENCE RESISTANT1 (SR1) regulates the stability of the transcription factor WRKY33 to modulate the submergence response. SR1 physically interacts with WRKY33 in vivo and in vitro and controls its ubiquitination and proteasomal degradation. Both the sr1 mutant and WRKY33 overexpressors exhibited enhanced submergence tolerance and enhanced expression of hypoxia-responsive genes. Genetic experiments showed that WRKY33 functions downstream of SR1 during the submergence response. Submergence induced the phosphorylation of WRKY33, which enhanced the activation of RAP2.2, a positive regulator of hypoxia-response genes. Phosphorylated WRKY33 and RAP2.2 were degraded by SR1 and the N-degron pathway during reoxygenation, respectively. Taken together, our findings reveal that the on-and-off module SR1-WRKY33-RAP2.2 is connected to the well-known N-degron pathway to regulate acclimation to submergence in Arabidopsis. These two different but related modulation cascades precisely balance submergence acclimation with normal plant growth.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Proteólise , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Escuridão , Epistasia Genética , Regulação da Expressão Gênica de Plantas , Modelos Biológicos , Fosforilação , Ligação Proteica , Ubiquitinação
14.
Eur J Nucl Med Mol Imaging ; 51(6): 1582-1592, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38246910

RESUMO

PURPOSE: Programmed cell death protein ligand 1 (PD-L1) is a crucial biomarker for immunotherapy. However, nearly 70% of patients do not respond to PD-L1 immune checkpoint therapy. Accurate monitoring of PD-L1 expression and quantification of target binding during treatment are essential. In this study, a series of small-molecule radiotracers were developed to assess PD-L1 expression and direct immunotherapy. METHODS: Radiotracers of [68Ga]Ga-D-PMED, [68Ga]Ga-D-PEG-PMED, and [68Ga]Ga-D-pep-PMED were designed based on a 2-methyl-3-biphenyl methanol scaffold and successfully synthesized. Cellular experiments and molecular docking assays were performed to determine their specificity for PD-L1. PD-L1 status was investigated via positron emission tomography (PET) imaging in MC38 tumor models. PET imaging of [68Ga]Ga-D-pep-PMED was performed to noninvasively quantify PD-L1 blocking using an anti-mouse PD-L1 antibody (PD-L1 mAb). RESULTS: The radiosyntheses of [68Ga]Ga-D-PMED, [68Ga]Ga-D-PEG-PMED, and [68Ga]Ga-D-pep-PMED were achieved with radiochemical yields of 87 ± 6%, 82 ± 4%, and 79 ± 9%, respectively. In vitro competition assays demonstrated their high affinities (the IC50 values of [68Ga]Ga-D-PMED, [68Ga]Ga-D-PEG-PMED, and [68Ga]Ga-D-pep-PMED were 90.66 ± 1.24, 160.8 ± 1.35, and 51.6 ± 1.32 nM, respectively). At 120 min postinjection (p.i.) of the radiotracers, MC38 tumors displayed optimized tumor-to-muscle ratios for all radioligands. Owing to its hydrophilic modification, [68Ga]Ga-D-pep-PMED had the highest target-to-nontarget (T/NT) ratio of approximately 6.2 ± 1.2. Interestingly, the tumor/liver ratio was hardly affected by different concentrations of the inhibitor BMS202. We then evaluated the impacts of dose and time on accessible PD-L1 levels in the tumor during anti-mouse PD-L1 antibody treatment. The tumor uptake of [68Ga]Ga-D-pep-PMED significantly decreased with increasing PD-L1 mAb dose. Moreover, after 8 days of treatment with a single antibody, the uptake of [68Ga]Ga-D-pep-PMED in the tumor significantly increased but remained lower than that in the saline group. CONCLUSION: PET imaging with [68Ga]Ga-D-pep-PMED, a small-molecule radiotracer, is a promising tool for evaluating PD-L1 expression and quantifying the target blockade of PD-L1 to assist in the development of effective therapeutic regimens.


Assuntos
Acetamidas , Antígeno B7-H1 , Tomografia por Emissão de Pósitrons , Piridinas , Imunoterapia , Antígeno B7-H1/análise , Antígeno B7-H1/antagonistas & inibidores , Humanos , Animais , Camundongos , Linhagem Celular Tumoral , Células A549 , Compostos Organometálicos , Radioisótopos de Gálio , Acetamidas/química , Piridinas/química
15.
Artigo em Inglês | MEDLINE | ID: mdl-39289182

RESUMO

PURPOSE: The stimulator of interferon genes (STING) is a critical component of the innate immune system and plays a pivotal role in tumor immunotherapy. Developing non-invasive in vivo diagnostic methods for visualizing STING is highly valuable for STING-related immunotherapy. This work aimed to build a noninvasive imaging platform that can dynamically and quantitatively monitor tumor STING expression. METHODS: We investigated the in vivo positron emission tomography (PET) imaging of STING-expressing tumors (B16F10, MC38, and Panc02) with STING-targeted radioprobe ([18F]F-CRI1). The expression of STING in tumors was quantified, and correlation analysis was performed between these results and the outcomes of PET imaging. Furthermore, we optimized the structure of [18F]F-CRIn with polyethylene glycol (PEG) to improve the pharmacokinetic characteristics in vivo. A comprehensive comparison of the imaging and biodistribution results obtained with the optimized probes was conducted in the B16F10 tumors. RESULTS: The PET imaging results showed that the uptake of [18F]F-CRI1 in tumors was positively correlated with the expression of STING in tumors (r = 0.9184, P < 0.001 at 0.5 h). The lipophilicity of the optimized probes was significantly reduced. As a result of employing optimized probes, B16F10 tumor-bearing mice exhibited significantly improved tumor visualization in PET imaging, along with a marked reduction in retention within non-target areas such as the gallbladder and intestines. Biodistribution experiments further validated the efficacy of probe optimization in reducing uptake in non-target areas. CONCLUSION: In summary, this work demonstrated a promising pathway for the development of STING-targeted radioprobes, advancing in vivo PET imaging capabilities.

16.
Inorg Chem ; 63(41): 19439-19449, 2024 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-39356592

RESUMO

The uranium recovery from high concentration fluorine-containing uranium wastewater is a desired research target in the field of environmental radiochemistry but is very challenging due to the formation of stable uranium fluoride complexes that are quite difficult to extract. By employing surface defect engineering and interfacial heterostructure design, we present here the rational design of an efficient photocatalyst (Ag/WO3-x) for U(VI) uptake from fluorine-containing uranium wastewater without any sacrificial agents. The defect-rich surface of Ag/WO3-x facilitates confined adsorption of uranium, while the introduction of Ag nanoparticles enables both efficient electron-hole separation and a plasmon effect upon light irradiation. Ag/WO3-x shows high U(VI) removal efficiency of 96.3% at 8 mg/L U(VI) within 60 min. Notably, even when the ratio of F- to U(VI) is as high as 20:1, the removal efficiency of U(VI) by Ag/WO3-x reaches up to 95%. Additionally, the maximum capture capacity of U(VI) on Ag/WO3-x reaches 676.8 mg/g at 200 mg/L of U(VI) within 60 min, which is superior to ever-reported photocatalysts in fluorine-containing uranium wastewater. This work provides an effective way for the uranium capture from fluorine-containing wastewater through the synergy of plasmon effect and defect engineering.

17.
Mol Biol Rep ; 51(1): 329, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38393658

RESUMO

Ventricular arrhythmias are the leading cause of sudden cardiac death in patients after myocardial infarction (MI). Connexin43 (Cx43) is the most important gap junction channel-forming protein in cardiomyocytes. Dysfunction of Cx43 contributes to impaired myocardial conduction and the development of ventricular arrhythmias. Following an MI, Cx43 undergoes structural remodeling, including expression abnormalities, and redistribution. These alterations detrimentally affect intercellular communication and electrical conduction within the myocardium, thereby increasing the susceptibility to post-infarction ventricular arrhythmias. Emerging evidence suggests that post-translational modifications play essential roles in Cx43 regulation after MI. Therefore, Cx43-targeted management has the potential to be a promising protective strategy for the prevention and treatment of post infarction ventricular arrhythmias. In this article, we primarily reviewed the regulatory mechanisms of Cx43 mediated post-translational modifications on post-infarction ventricular arrhythmias. Furthermore, Cx43-targeted therapy have also been discussed, providing insights into an innovative treatment strategy for ventricular arrhythmias after MI.


Assuntos
Conexina 43 , Infarto do Miocárdio , Humanos , Arritmias Cardíacas/metabolismo , Conexina 43/genética , Conexina 43/metabolismo , Infarto do Miocárdio/complicações , Infarto do Miocárdio/metabolismo , Miocárdio/metabolismo , Processamento de Proteína Pós-Traducional
18.
BMC Cardiovasc Disord ; 24(1): 470, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39223509

RESUMO

BACKGROUND: Glucose fluctuations may be involved in the pathophysiological process of cardiomyocyte apoptosis, but the exact mechanism remains elusive. This study focused on exploring the mechanisms related to glucose fluctuation-induced cardiomyocyte apoptosis. METHODS: Diabetic rats established via an injection of streptozotocin were randomized to five groups: the controlled diabetic (CD) group, the uncontrolled diabetic (UD) group, the glucose fluctuated diabetic (GFD) group, the GFD group rats with the injection of 0.9% sodium chloride (NaCl) (GFD + NaCl) and the GFD group rats with the injection of N-acetyl-L-cysteine (NAC) (GFD + NAC). Twelve weeks later, cardiac function and apoptosis related protein expressions were tested. Proteomic analysis was performed to further analyze the differential protein expression pattern of CD and GFD. RESULTS: The left ventricular ejection fraction levels and fractional shortening levels were decreased in the GFD group, compared with those in the CD and UD groups. Positive cells tested by DAB-TUNEL were increased in the GFD group, compared with those in the CD group. The expression of Bcl-2 was decreased, but the expressions of Bax, cleaved caspase-3 and cleaved caspase-9 were increased in response to glucose fluctuations. Compared with CD, there were 527 upregulated and 152 downregulated proteins in GFD group. Txnip was one of the differentially expressed proteins related to oxidative stress response. The Txnip expression was increased in the GFD group, while the Akt phosphorylation level was decreased. The interaction between Txnip and Akt was enhanced when blood glucose fluctuated. Moreover, the application of NAC partially reversed glucose fluctuations-induced cardiomyocyte apoptosis. CONCLUSIONS: Glucose fluctuations lead to cardiomyocyte apoptosis by up-regulating Txnip expression and enhancing Txnip-Akt interaction.


Assuntos
Proteínas Reguladoras de Apoptose , Apoptose , Glicemia , Proteínas de Transporte , Diabetes Mellitus Experimental , Miócitos Cardíacos , Proteínas Proto-Oncogênicas c-akt , Ratos Sprague-Dawley , Transdução de Sinais , Animais , Miócitos Cardíacos/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Diabetes Mellitus Experimental/metabolismo , Masculino , Proteínas de Transporte/metabolismo , Glicemia/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Fosforilação , Função Ventricular Esquerda/efeitos dos fármacos , Tiorredoxinas/metabolismo , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/patologia , Cardiomiopatias Diabéticas/fisiopatologia , Cardiomiopatias Diabéticas/etiologia , Proteômica , Ratos , Mapas de Interação de Proteínas , Proteínas de Ciclo Celular
19.
Environ Res ; 252(Pt 2): 118946, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38631470

RESUMO

Heavy metals pollution is a notable threat to environment and human health. This study evaluated the potential ecological and health risks of heavy metals (Cu, Cr, Cd, Pb, Zn, Ni, and As) and their accumulation in a peanut-soil system based on 34 soil and peanut kernel paired samples across China. Soil As and Cd posed the greatest pollution risk with 47.1% and 17.6% of soil samples exceeding the risk screen levels, respectively, with 26.5% and 20.6% of the soil sites at relatively strong potential ecological risk level, respectively, and with the geo-accumulation levels at several soil sites in the uncontaminated to moderately contaminated categories. About 35.29% and 2.94% of soil sites were moderately and severely polluted based on Nemerow comprehensive pollution index, respectively, and a total of 32.4% of samples were at moderate ecological hazard level based on comprehensive potential ecological risk index values. The Cd, Cr, Ni, and Cu contents exceeded the standard in 11.76, 8.82, 11.76 and 5.88% of the peanut kernel samples, respectively. Soil metals posed more health risks to children than adults in the order As > Ni > Cr > Cu > Pb > Zn > Cd for non-carcinogenic health risks and Ni > Cr â‰« Cd > As > Pb for carcinogenic health risks. The soil As non-cancer risk index for children was greater than the permitted limits at 14 sites, and soil Ni and Cr posed the greatest carcinogenic risk to adults and children at many soil sites. The metals in peanut did not pose a non-carcinogenic risk according to standard. Peanut kernels had strong enrichment ability for Cd with an average bio-concentration factor (BCF) of 1.62. Soil metals contents and significant soil properties accounted for 35-74% of the variation in the BCF values of metals based on empirical prediction models.


Assuntos
Arachis , Metais Pesados , Poluentes do Solo , Metais Pesados/análise , Arachis/química , Medição de Risco , Poluentes do Solo/análise , Humanos , China , Monitoramento Ambiental , Solo/química , Criança
20.
J Nanobiotechnology ; 22(1): 101, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38462598

RESUMO

BACKGROUND: Radiotheranostics differs from the vast majority of other cancer therapies in its capacity for simultaneous imaging and therapy, and it is becoming more widely implemented. A balance between diagnostic and treatment requirements is essential for achieving effective radiotheranostics. Herein, we propose a proof-of-concept strategy aiming to address the profound differences in the specific requirements of the diagnosis and treatment of radiotheranostics. RESULTS: To validate the concept, we designed an s-tetrazine (Tz) conjugated prostate-specific membrane antigen (PSMA) ligand (DOTA-PSMA-Tz) for 68Ga or 177Lu radiolabeling and tumor radiotheranostics, a trans-cyclooctene (TCO) modified Pd@Au nanoplates (Pd@Au-PEG-TCO) for signal amplification, respectively. We then demonstrated this radiotheranostic strategy in the tumor-bearing mice with the following three-step procedures: (1) i.v. injection of the [68Ga]Ga-PSMA-Tz for diagnosis; (2) i.v. injection of the signal amplification module Pd@Au-PEG-TCO; (3) i.v. injection of the [177Lu]Lu-PSMA-Tz for therapy. Firstly, this strategy was demonstrated in 22Rv1 tumor-bearing mice via positron emission tomography (PET) imaging with [68Ga]Ga-PSMA-Tz. We observed significantly higher tumor uptake (11.5 ± 0.8%ID/g) with the injection of Pd@Au-PEG-TCO than with the injection [68Ga]Ga-PSMA-Tz alone (5.5 ± 0.9%ID/g). Furthermore, we validated this strategy through biodistribution studies of [177Lu]Lu-PSMA-Tz, with the injection of the signal amplification module, approximately five-fold higher tumor uptake of [177Lu]Lu-PSMA-Tz (24.33 ± 2.53% ID/g) was obtained when compared to [177Lu]Lu-PSMA-Tz alone (5.19 ± 0.26%ID/g) at 48 h post-injection. CONCLUSION: In summary, the proposed strategy has the potential to expand the toolbox of pretargeted radiotherapy in the field of theranostics.


Assuntos
Neoplasias Colorretais , Compostos Radiofarmacêuticos , Masculino , Animais , Camundongos , Radioisótopos de Gálio , Distribuição Tecidual , Linhagem Celular Tumoral , Neoplasias Colorretais/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA