Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(19)2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36232630

RESUMO

Ubiquilin-2 (UBQLN2) mutations lead to familial amyotrophic lateral sclerosis (FALS)/and frontotemporal dementia (FTLD) through unknown mechanisms. The combination of iPSC technology and CRISPR-mediated genome editing technology can generate an iPSC-derived motor neuron (iPSC-MN) model with disease-relevant mutations, which results in increased opportunities for disease mechanism research and drug screening. In this study, we introduced a UBQLN2-P497H mutation into a healthy control iPSC line using CRISPR/Cas9, and differentiated into MNs to study the pathology of UBQLN2-related ALS. Our in vitro MN model faithfully recapitulated specific aspects of the disease, including MN apoptosis. Under sodium arsenite (SA) treatment, we found differences in the number and the size of UBQLN2+ inclusions in UBQLN2P497H MNs and wild-type (WT) MNs. We also observed cytoplasmic TAR DNA-binding protein (TARDBP, also known as TDP-43) aggregates in UBQLN2P497H MNs, but not in WT MNs, as well as the recruitment of TDP-43 into stress granules (SGs) upon SA treatment. We noted that UBQLN2-P497H mutation induced MNs DNA damage, which is an early event in UBQLN2-ALS. Additionally, DNA damage led to an increase in compensation for FUS, whereas UBQLN2-P497H mutation impaired this function. Therefore, FUS may be involved in DNA damage repair signaling.


Assuntos
Esclerose Lateral Amiotrófica , Células-Tronco Pluripotentes Induzidas , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Esclerose Lateral Amiotrófica/metabolismo , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , DNA/metabolismo , Dano ao DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Neurônios Motores/metabolismo , Mutação , Fatores de Transcrição/metabolismo
2.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 47(10): 1444-1453, 2022 Oct 28.
Artigo em Inglês, Zh | MEDLINE | ID: mdl-36411696

RESUMO

Mesenchymal stem cells (MSCs) are multipotent stem cells that exist widely in the human body, which can self-renewal and differentiate into different types of cell. Due to its advantages of tumor tissue tropism and easy to be engineered, it has been widely used in cancer treatment research recently. However, the tumor-promoting or anti-tumor effect of MSCs is controversial, especially for unmodified MSCs. Therefore, researchers are more inclined to use MSCs as carriers to engineer them. With the deepening in understanding of vesicles, it is found that the vesicles derived from MSCs seem to have greater advantages as carriers. Although the current research of MSCs in the treatment of tumors has been initiated in the clinic, there are still many problems to be solved in the pre-clinical application.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Humanos
3.
J Cell Physiol ; 236(6): 4138-4151, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33275291

RESUMO

Programmed cell death-1 (PD-1) is a negative coreceptor mainly expressed on the surface of activated T cells. The binding of PD-1 to its ligand PD-L1 significantly induces non-reactivity of T cells to maintain the balance of autoimmunity and immune tolerance. It is reported that tumor cells highly express PD-L1 to restrict cellular immune response, which is one of the most important mechanisms for tumor to mediate immune escape. Cancer immunotherapy targeting PD-1/PD-L1 has achieved remarkable success so far. Tumor-derived exosomes (TEXs) are lipid bilayer vesicles released by tumor cells in an endosome-dependent manner, mediating communication between tumor cells and adjacent cells in the tumor microenvironment. Through signals transmitted by TEXs, tumor can alter the biological characteristics of these cells to promote tumor growth and metastasis. Recent studies have demonstrated that TEXs not only carry tumor-derived PD-L1, but are also closely related to PD-1/PD-L1 expression on target cells. The primary focus of this review will be on how TEXs regulate the PD-1/PD-L1 axis to promote tumor progression, and the promising clinical applications targeting TEXs and exosomal PD-L1.


Assuntos
Antígeno B7-H1/metabolismo , Biomarcadores Tumorais/metabolismo , Exossomos/metabolismo , Neoplasias/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Evasão Tumoral , Animais , Antígeno B7-H1/antagonistas & inibidores , Biomarcadores Tumorais/antagonistas & inibidores , Progressão da Doença , Exossomos/efeitos dos fármacos , Exossomos/imunologia , Exossomos/patologia , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Neoplasias/patologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Transdução de Sinais , Evasão Tumoral/efeitos dos fármacos , Microambiente Tumoral
4.
Cancer Cell Int ; 20: 33, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32015693

RESUMO

BACKGROUND: Interleukin-24 (IL-24) is a therapeutic gene for melanoma, which can induce melanoma cell apoptosis. Mesenchymal stem cells (MSCs) show promise as a carrier to delivery anti-cancer factors to tumor tissues. Induced pluripotent stem cells (iPSCs) are an alternative source of mesenchymal stem cells (MSCs). We previously developed a novel non-viral gene targeting vector to target IL-24 to human iPSCs. This study aims to investigate whether MSCs derived from the iPSCs with the site-specific integration of IL-24 can inhibit the growth of melanoma in a tumor-bearing mouse model via retro-orbital injection. METHODS: IL-24-iPSCs were differentiated into IL-24-iMSCs in vitro, of which cellular properties and potential of differentiation were characterized. The expression of IL-24 in the IL-24-iMSCs was measured by qRT-PCR, Western Blotting, and ELISA analysis. IL-24-iMSCs were transplanted into the melanoma-bearing mice by retro-orbital intravenous injection. The inhibitory effect of IL-24-iMSCs on the melanoma cells was investigated in a co-culture system and tumor-bearing mice. The molecular mechanisms underlying IL-24-iMSCs in exerting anti-tumor effect were also explored. RESULTS: iPSCs-derived iMSCs have the typical profile of cell surface markers of MSCs and have the ability to differentiate into osteoblasts, adipocytes, and chondroblasts. The expression level of IL-24 in IL-24-iMSCs reached 95.39 ng/106 cells/24 h, which is significantly higher than that in iMSCs, inducing melanoma cells apoptosis more effectively in vitro compared with iMSCs. IL-24-iMSCs exerted a significant inhibitory effect on the growth of melanoma in subcutaneous mouse models, in which the migration of IL-24-iMSCs to tumor tissue was confirmed. Additionally, increased expression of Bax and Cleaved caspase-3 and down-regulation of Bcl-2 were observed in the mice treated with IL-24-iMSCs. CONCLUSION: MSCs derived from iPSCs with the integration of IL-24 at rDNA locus can inhibit the growth of melanoma in tumor-bearing mouse models when administrated via retro-orbital injection.

5.
Hum Mol Genet ; 24(21): 6054-65, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26251042

RESUMO

Mutations in connexin-31 (Cx31) are associated with multiple human diseases, including familial erythrokeratodermia variabilis (EKV). The pathogenic mechanism of EKV-associated Cx31 mutants remains largely elusive. Here, we show that EKV-pathogenic Cx31 mutants are un/misfolded and temperature sensitive. In Drosophila, expression of pathogenic Cx31, but not wild-type Cx31, causes depigmentation and degeneration of ommatidia that are rescued by expression of either dBip or dHsp70. Ectopic expression of Cx31 in mouse skin results in skin abnormalities resembling human EKV. The affected tissues show remarkable disrupted gap junction formation and significant upregulation of chaperones Bip and Hsp70 as well as AP-1 proteins c-Fos and JunB, in addition to molecular signatures of skin diseases. Consistently, c-Fos, JunB, Bip and Hsp70 are strikingly higher in keratinocytes of EKV patients than their matched control individuals. Furthermore, a druggable AP-1 inhibitory small molecule suppresses skin phenotype and pathological abnormalities of transgenic Cx31 mice. The study suggests that Cx31 mutant proteins are un/misfolded to cause EKV likely via an AP-1-mediated mechanism and identifies a small molecule with therapeutic potential of the disease.


Assuntos
Conexinas/metabolismo , Eritroceratodermia Variável/metabolismo , Dobramento de Proteína , Animais , Animais Geneticamente Modificados , Benzofenonas/farmacologia , Olho Composto de Artrópodes/patologia , Conexinas/antagonistas & inibidores , Conexinas/genética , Drosophila , Proteínas de Drosophila/genética , Eritroceratodermia Variável/tratamento farmacológico , Eritroceratodermia Variável/genética , Eritroceratodermia Variável/patologia , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Células HeLa , Humanos , Isoxazóis/farmacologia , Camundongos , Mutação , Pigmentação/genética , Desdobramento de Proteína , Deficiências na Proteostase/genética , Deficiências na Proteostase/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas Recombinantes de Fusão , Pele/patologia , Estresse Fisiológico , Temperatura , Fator de Transcrição TFIID/genética , Fatores de Transcrição/metabolismo , Regulação para Cima
6.
Acta Neuropathol ; 129(3): 417-28, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25388785

RESUMO

Mutations in ubiquilin 2 (Ubqln2) is linked to amyotrophic lateral sclerosis and frontotemporal lobar degeneration. A foremost question regarding Ubqln2 pathogenesis is whether pathogenically mutated Ubqln2 causes neuron death via a gain or loss of functions. To better understand Ubqln2 pathobiology, we created Ubqln2 transgenic and knockout rats and compared phenotypic expression in these novel rat models. Overexpression of Ubqln2 with a pathogenic mutation (P497H substitution) caused cognitive deficits and neuronal loss in transgenic rats at the age of 130 days. In the transgenic rats, neuronal loss was preceded by the progressive formation of Ubqln2 aggregates and was accompanied by the progressive accumulation of the autophagy substrates p62 and LC3-II and the impairment of endosome pathways. In contrast, none of these pathologies observed in mutant Ubqln2 transgenic rats was detected in Ubqln2 knockout rats at the age of 300 days. Together, our findings in Ubqln2 transgenic and knockout rats collectively suggest that pathogenic Ubqln2 causes neuron death mainly through a gain of unrevealed functions rather than a loss of physiological functions.


Assuntos
Degeneração Neural/genética , Neurônios/patologia , Ubiquitinas/metabolismo , Animais , Morte Celular/genética , Técnicas de Inativação de Genes , Células HEK293 , Humanos , Immunoblotting , Imunoprecipitação , Microscopia Eletrônica de Transmissão , Mutação , Ratos , Ratos Sprague-Dawley , Ratos Transgênicos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ubiquitinas/deficiência
7.
J Neurochem ; 129(1): 99-106, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24215460

RESUMO

Protein aggregation is a common feature of several neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration. How protein aggregates are formed and contribute to neurodegeneration, however, is not clear. Mutation of Ubiquilin 2 (UBQLN2) has recently been linked to ALS and frontotemporal lobar degeneration. Therefore, we examined the effect of ALS-linked UBQLN2 mutation on endoplasmic reticulum-associated protein degradation (ERAD). Compared to its wild-type counterpart, mutated UBQLN2 caused greater accumulation of the ERAD substrate Hong Kong variant of α-1-antitrypsin, although ERAD was disturbed by both UBQLN2 over-expression and knockdown. Also, UBQLN2 interacted with ubiquitin regulatory X domain-containing protein 8 (UBXD8) in vitro and in vivo, and this interaction was impaired by pathogenic mutation of UBQLN2. As UBXD8 is an endoplasmic membrane protein involved in the translocation of ubiquitinated ERAD substrates, UBQLN2 likely cooperates with UBXD8 to transport defective proteins from the endoplasmic reticulum to the cytosol for degradation, and this cell-protective function is disturbed by pathogenic mutation of UBQLN2.


Assuntos
Proteínas Sanguíneas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Membrana/metabolismo , Mutação/fisiologia , Proteólise , Ubiquitinas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteínas Relacionadas à Autofagia , Proteínas Sanguíneas/genética , Proteínas de Ciclo Celular/genética , Sobrevivência Celular/fisiologia , Células Cultivadas , Embrião de Galinha , Galinhas , Retículo Endoplasmático/genética , Retículo Endoplasmático/patologia , Proteínas de Membrana/genética , Ligação Proteica/fisiologia , Transporte Proteico/fisiologia , Renilla , Ubiquitinas/genética
8.
Technol Cancer Res Treat ; 23: 15330338241242654, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38584413

RESUMO

Purpose: Deep learning (DL) is widely used in dose prediction for radiation oncology, multiple DL techniques comparison is often lacking in the literature. To compare the performance of 4 state-of-the-art DL models in predicting the voxel-level dose distribution for cervical cancer volumetric modulated arc therapy (VMAT). Methods and Materials: A total of 261 patients' plans for cervical cancer were retrieved in this retrospective study. A three-channel feature map, consisting of a planning target volume (PTV) mask, organs at risk (OARs) mask, and CT image was fed into the three-dimensional (3D) U-Net and its 3 variants models. The data set was randomly divided into 80% as training-validation and 20% as testing set, respectively. The model performance was evaluated on the 52 testing patients by comparing the generated dose distributions against the clinical approved ground truth (GT) using mean absolute error (MAE), dose map difference (GT-predicted), clinical dosimetric indices, and dice similarity coefficients (DSC). Results: The 3D U-Net and its 3 variants DL models exhibited promising performance with a maximum MAE within the PTV 0.83% ± 0.67% in the UNETR model. The maximum MAE among the OARs is the left femoral head, which reached 6.95% ± 6.55%. For the body, the maximum MAE was observed in UNETR, which is 1.19 ± 0.86%, and the minimum MAE was 0.94 ± 0.85% for 3D U-Net. The average error of the Dmean difference for different OARs is within 2.5 Gy. The average error of V40 difference for the bladder and rectum is about 5%. The mean DSC under different isodose volumes was above 90%. Conclusions: DL models can predict the voxel-level dose distribution accurately for cervical cancer VMAT treatment plans. All models demonstrated almost analogous performance for voxel-wise dose prediction maps. Considering all voxels within the body, 3D U-Net showed the best performance. The state-of-the-art DL models are of great significance for further clinical applications of cervical cancer VMAT.


Assuntos
Aprendizado Profundo , Radioterapia de Intensidade Modulada , Neoplasias do Colo do Útero , Feminino , Humanos , Radioterapia de Intensidade Modulada/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Dosagem Radioterapêutica , Neoplasias do Colo do Útero/diagnóstico por imagem , Neoplasias do Colo do Útero/radioterapia , Estudos Retrospectivos , Órgãos em Risco
9.
Biomolecules ; 14(5)2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38785998

RESUMO

Small extracellular vesicles (sEVs) have emerged as promising therapeutic agents and drug delivery vehicles. Targeted modification of sEVs and their contents using genetic modification strategies is one of the most popular methods. This study investigated the effects of p53 fusion with arrestin domain-containing protein 1 (ARRDC1) and CD63 on the generation of sEVs, p53 loading efficiency, and therapeutic efficacy. Overexpression of either ARRDC1-p53 (ARP) or CD63-p53 (CDP) significantly elevated p53 mRNA and protein levels. The incorporation of ARRDC1 and CD63 significantly enhanced HEK293T-sEV biogenesis, evidenced by significant increases in sEV-associated proteins TSG101 and LAMP1, resulting in a boost in sEV production. Importantly, fusion with ARRDC1 or CD63 substantially increased the efficiency of loading both p53 fusion proteins and its mRNA into sEVs. sEVs equipped with ARP or CDP significantly enhanced the enrichment of p53 fusion proteins and mRNA in p53-null H1299 cells, resulting in a marked increase in apoptosis and a reduction in cell proliferation, with ARP-sEVs demonstrating greater effectiveness than CDP-sEVs. These findings underscore the enhanced functionality of ARRDC1- and CD63-modified sEVs, emphasizing the potential of genetic modifications in sEV-based therapies for targeted cancer treatment.


Assuntos
Apoptose , Vesículas Extracelulares , Proteínas Recombinantes de Fusão , Proteína Supressora de Tumor p53 , Humanos , Linhagem Celular Tumoral , Proliferação de Células , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/genética , Células HEK293 , Proteína 1 de Membrana Associada ao Lisossomo , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Tetraspanina 30/metabolismo , Tetraspanina 30/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Arrestinas/genética , Arrestinas/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
10.
Biomedicines ; 12(8)2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39200158

RESUMO

Mutations in the C-terminal of KIF1A (Kinesin family member 1A) may lead to amyotrophic lateral sclerosis (ALS) through unknown mechanisms that are not yet understood. Using iPSC reprogramming technology and motor neuron differentiation techniques, we generated iPSCs from a healthy donor and two ALS patients with KIF1A mutations (R1457Q and P1688L) and differentiated them into spinal motor neurons (iPSC-MN) to investigate KIF1A-related ALS pathology. Our in vitro iPSC-iMN model faithfully recapitulated specific aspects of the disease, such as neurite fragmentation. Through this model, we observed that these mutations led to KIF1A aggregation at the proximal axon of motor neurons and abnormal accumulation of its transport cargo, LAMP1, resulting in autophagy dysfunction and cell death. RNAseq analysis also indicated that the functions of the extracellular matrix, structure, and cell adhesion were significantly disturbed. Notably, using rapamycin during motor neuron differentiation can effectively prevent motor neuron death.

11.
Sci Total Environ ; 949: 175235, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39102947

RESUMO

Wastewater-based epidemiology (WBE) has emerged as a promising tool for monitoring the spread of COVID-19, as SARS-CoV-2 can be shed in the faeces of infected individuals, even in the absence of symptoms. This study aimed to optimize a prediction model for estimating COVID-19 infection rates based on SARS-CoV-2 RNA concentrations in wastewater, and reveal the infection trends and variant diversification in Shenzhen, China following the lifting of a strict COVID-19 strategy. Faecal samples (n = 4337) from 1204 SARS-CoV-2 infected individuals hospitalized in a designated hospital were analysed to obtain Omicron variant-specific faecal shedding dynamics. Wastewater samples from 6 wastewater treatment plants (WWTPs) and 9 pump stations, covering 3.55 million people, were monitored for SARS-CoV-2 RNA concentrations and variant abundance. We found that the viral load in wastewater increased rapidly in December 2022 in the two districts, demonstrating a sharp peak in COVID-19 infections in late-December 2022, mainly caused by Omicron subvariants BA.5.2.48 and BF.7.14. The prediction model, based on the mass balance between total viral load in wastewater and individual faecal viral shedding, revealed a surge in the cumulative infection rate from <0.1 % to over 70 % within three weeks after the strict COVID-19 strategy was lifted. Additionally, 39 cryptic SARS-CoV-2 variants were identified in wastewater, in addition to those detected through clinical surveillance. These findings demonstrate the effectiveness of WBE in providing comprehensive and efficient assessments of COVID-19 infection rates and identifying cryptic variants, highlighting its potential for monitoring emerging pathogens with faecal shedding.


Assuntos
COVID-19 , SARS-CoV-2 , Águas Residuárias , COVID-19/epidemiologia , China/epidemiologia , Águas Residuárias/virologia , Humanos , Fezes/virologia , Betacoronavirus , Pandemias , Vigilância Epidemiológica Baseada em Águas Residuárias , RNA Viral/análise , Eliminação de Partículas Virais , Carga Viral
12.
Life (Basel) ; 13(2)2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36836704

RESUMO

BACKGROUND: Extracellular vesicle (EV) microRNAs have been documented in several studies to have significantly different expressions in hepatitis B virus (HBV)-related liver diseases, such as hepatocellular carcinoma (HCC). The current work aimed to observe the characteristics of EVs and EV miRNA expressions in patients with severe liver injury chronic hepatitis B (CHB) and patients with HBV-associated decompensated cirrhosis (DeCi). METHODS: The characterization of the EVs in the serum was carried out for three different groups, namely, patients with severe liver injury-CHB, patients with DeCi, and healthy controls. EV miRNAs were analyzed using miRNA-seq and RT-qPCR arrays. Additionally, we assessed the predictive and observational values of the miRNAs with significant differential expressions in serum EVs. RESULTS: Patients with severe liver injury-CHB had the highest EV concentrations when compared to the normal controls (NCs) and patients with DeCi (p < 0.001). The miRNA-seq of the NC and severe liver injury-CHB groups identified 268 differentially expressed miRNAs (|FC| > 2, p < 0.05). In this case, 15 miRNAs were verified using RT-qPCR, and it was found that novel-miR-172-5p and miR-1285-5p in the severe liver injury-CHB group showed marked downregulation in comparison to the NC group (p < 0.001). Furthermore, compared with the NC group, three EV miRNAs (novel-miR-172-5p, miR-1285-5p, and miR-335-5p) in the DeCi group showed various degrees of downregulated expression. However, when comparing the DeCi group with the severe liver injury-CHB group, only the expression of miR-335-5p in the DeCi group decreased significantly (p < 0.05). For the severe liver injury-CHB and DeCi groups, the addition of miR-335-5p improved the predictive accuracy of the serological levels, while miR-335-5p was significantly correlated with ALT, AST, AST/ALT, GGT, and AFP. Conclusions: The patients with severe liver injury-CHB had the highest number of EVs. The combination of novel-miR-172-5p and miR-1285-5p in serum EVs helped in predicting the progression of the NCs to severe liver injury-CHB, while the addition of EV miR-335-5p improved the serological accuracy of predicting the progression of severe liver injury-CHB to DeCi.

13.
ACS Chem Neurosci ; 13(16): 2356-2370, 2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35905138

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease. In recent years, a large number of ALS-related mutations have been discovered to have a strong link to stress granules (SGs). SGs are cytoplasmic ribonucleoprotein condensates mediated by liquid-liquid phase separation (LLPS) of biomacromolecules. They help cells cope with stress. The normal physiological functions of SGs are dependent on three key aspects of SG "homeostasis": SG assembly, disassembly, and SG components. Any of these three aspects can be disrupted, resulting in abnormalities in the cellular stress response and leading to cytotoxicity. Several ALS-related pathogenic mutants have abnormal LLPS abilities that disrupt SG homeostasis, and some of them can even cause aberrant phase transitions. As a result, ALS-related mutants may disrupt various aspects of SG homeostasis by directly disturbing the intermolecular interactions or affecting core SG components, thus disrupting the phase equilibrium of the cytoplasm during stress. Considering that the importance of the "global view" of SG homeostasis in ALS pathogenesis has not received enough attention, we first systematically summarize the physiological regulatory mechanism of SG homeostasis based on LLPS and then examine ALS pathogenesis from the perspective of disrupted SG homeostasis and aberrant phase transition of biomacromolecules.


Assuntos
Esclerose Lateral Amiotrófica , Doenças Neurodegenerativas , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Grânulos Citoplasmáticos/patologia , Humanos , Mutação , Grânulos de Estresse
14.
Front Physiol ; 13: 969052, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36531165

RESUMO

CTG (cardiotocography) has consistently been used to diagnose fetal hypoxia. It is susceptible to identifying the average fetal acid-base balance but lacks specificity in recognizing prenatal acidosis and neurological impairment. CTG plays a vital role in intrapartum fetal state assessment, which can prevent severe organ damage if fetal hypoxia is detected earlier. In this paper, we propose a novel deep feature fusion network (DFFN) for fetal state assessment. First, we extract spatial and temporal information from the fetal heart rate (FHR) signal using a multiscale CNN-BiLSTM network, increasing the features' diversity. Second, the multiscale CNN-BiLSM network and frequently used features are integrated into the deep learning model. The proposed DFFN model combines different features to improve classification accuracy. The multiscale convolutional kernels can identify specific essential information and consider signal's temporal information. The proposed method achieves 61.97%, 73.82%, and 66.93% of sensitivity, specificity, and quality index, respectively, on the public CTU-UHB database. The proposed method achieves the highest QI on the private database, verifying the proposed method's effectiveness and generalization. The proposed DFFN combines the advantages of feature engineering and deep learning models and achieves competitive accuracy in fetal state assessment compared with related works.

15.
Front Pharmacol ; 13: 961127, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36304147

RESUMO

Exosomes, as natural biomolecular carriers produced by cells, have the potential and advantage of delivering drugs to target organs or cells in vivo. The steps to improve exosomes as a drug delivery system can be divided into three steps:large-scale preparation of exosomes, loading of drugs and targeted delivery of exosomes. Based on the existing production process and technology, there is still much room for improvement. This review highlights the research progress in three aspects and proposes new technologies and innovative approaches to improve the efficiency of exosome delivery.

16.
CNS Neurosci Ther ; 28(1): 105-115, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34750982

RESUMO

AIMS: The ubiquilin-like protein ubiquilin 2 (UBQLN2) is associated with amyotrophic lateral sclerosis and frontotemporal degeneration (ALS/FTD). The biological function of UBQLN2 has previously been shown to be related to stress granules (SGs). In this study, we aimed to clarify the regulatory relationship between UBQLN2 and SGs. METHODS: In this study, we transfected UBQLN2-WT or UBQLN2-P497H plasmids into cell lines (HEK293T, HeLa), and observed the process of SG dynamics by immunofluorescence. Meanwhile, immunoblot analyses the protein changes of stress granules related components. RESULTS: We observed that ubiquilin 2 colocalizes with the SG component proteins G3BP1, TIA-1, ATXN2, and PABPC1. In cells expressing WT UBQLN2 or P497H mutants, in the early stages of SG formation under oxidative stress, the percentage of cells with SGs and the number of SGs per cell decreased to varying degrees. Between WT and mutant, there was no significant difference in eIF2α activity after stress treatment. Interestingly, the UBQLN2 P497H mutant downregulates the level of TIA-1. In addition, the overexpression of the UBQLN2 P497H mutant inhibited the phosphorylation of 4E-BP1 and affected the nucleoplasmic distribution of TDP-43. CONCLUSIONS: Ubiquilin 2 colocalizes with the SG component proteins G3BP1, TIA-1, ATXN2, and PABPC1. It participates in regulating SG dynamics. And UBQLN2 mutation affects the assembly of stress granules by regulating TIA-1. In addition, the overexpression of the UBQLN2 P497H mutant inhibited the phosphorylation of 4E-BP1 and affected the nuclear and cytoplasmic distribution of TDP-43. These provide new insights into the role of UBQLN2 in oxidative stress and the pathogenesis of ALS.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Esclerose Lateral Amiotrófica/genética , Proteínas Relacionadas à Autofagia/genética , Mutação/genética , Grânulos de Estresse , Esclerose Lateral Amiotrófica/metabolismo , DNA Helicases , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Células HEK293 , Humanos , Proteínas de Ligação a Poli-ADP-Ribose , RNA Helicases , Proteínas com Motivo de Reconhecimento de RNA , Antígeno-1 Intracelular de Células T
17.
Rev Neurosci ; 31(7): 743-756, 2020 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-32681787

RESUMO

Central nervous system (CNS) diseases are common diseases that threaten human health. The CNS is highly enriched in lipids, which play important roles in maintaining normal physiological functions of the nervous system. Moreover, many CNS diseases are closely associated with abnormal lipid metabolism. Exosomes are a subtype of extracellular vesicles (EVs) secreted from multivesicular bodies (MVBs) . Through novel forms of intercellular communication, exosomes secreted by brain cells can mediate inter-neuronal signaling and play important roles in the pathogenesis of CNS diseases. Lipids are essential components of exosomes, with cholesterol and sphingolipid as representative constituents of its bilayer membrane. In the CNS, lipids are closely related to the formation and function of exosomes. Their dysregulation causes abnormalities in exosomes, which may, in turn, lead to dysfunctions in inter-neuronal communication and promote diseases. Therefore, the role of lipids in the treatment of neurological diseases through exosomes has received increasing attention. The aim of this review is to discuss the relationship between lipids and exosomes and their roles in CNS diseases.


Assuntos
Comunicação Celular/fisiologia , Exossomos/metabolismo , Vesículas Extracelulares/metabolismo , Metabolismo dos Lipídeos/fisiologia , Lipídeos , Doenças do Sistema Nervoso Central/metabolismo , Humanos
19.
Hum Gene Ther ; 29(2): 146-150, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29366352

RESUMO

Gene therapy is a new technology that provides potential for curing monogenic diseases caused by mutations in a single gene. Hemophilia and Duchenne muscular dystrophy (DMD) are ideal target diseases of gene therapy. Important advances have been made in clinical trials, including studies of adeno-associated virus vectors in hemophilia and antisense in DMD. However, issues regarding the high doses of viral vectors required and limited delivery efficiency of antisense oligonucleotides have not yet been fully addressed. As an alternative strategy to classic gene addition, genome editing based on programmable nucleases has also shown promise to correct mutations in situ. This review describes the recent progress made by Chinese researchers in gene therapy for hemophilia and DMD.


Assuntos
Edição de Genes/tendências , Terapia Genética/tendências , Hemofilia A/terapia , Distrofia Muscular de Duchenne/terapia , Dependovirus/genética , Vetores Genéticos/uso terapêutico , Hemofilia A/genética , Humanos , Distrofia Muscular de Duchenne/genética , Oligonucleotídeos Antissenso/efeitos dos fármacos , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA