Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Nature ; 597(7878): 709-714, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34497421

RESUMO

Multiple sclerosis (MS) lesions that do not resolve in the months after they form harbour ongoing demyelination and axon degeneration, and are identifiable in vivo by their paramagnetic rims on MRI scans1-3. Here, to define mechanisms underlying this disabling, progressive neurodegenerative state4-6 and foster development of new therapeutic agents, we used MRI-informed single-nucleus RNA sequencing to profile the edge of demyelinated white matter lesions at various stages of inflammation. We uncovered notable glial and immune cell diversity, especially at the chronically inflamed lesion edge. We define 'microglia inflamed in MS' (MIMS) and 'astrocytes inflamed in MS', glial phenotypes that demonstrate neurodegenerative programming. The MIMS transcriptional profile overlaps with that of microglia in other neurodegenerative diseases, suggesting that primary and secondary neurodegeneration share common mechanisms and could benefit from similar therapeutic approaches. We identify complement component 1q (C1q) as a critical mediator of MIMS activation, validated immunohistochemically in MS tissue, genetically by microglia-specific C1q ablation in mice with experimental autoimmune encephalomyelitis, and therapeutically by treating chronic experimental autoimmune encephalomyelitis with C1q blockade. C1q inhibition is a potential therapeutic avenue to address chronic white matter inflammation, which could be monitored by longitudinal assessment of its dynamic biomarker, paramagnetic rim lesions, using advanced MRI methods.


Assuntos
Astrócitos/patologia , Linfócitos/patologia , Microglia/patologia , Esclerose Múltipla/patologia , Animais , Encéfalo/patologia , Complemento C1q/antagonistas & inibidores , Complemento C1q/metabolismo , Encefalomielite Autoimune Experimental/patologia , Feminino , Humanos , Inflamação/patologia , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Esclerose Múltipla/diagnóstico por imagem , RNA-Seq , Transcriptoma , Substância Branca/patologia
2.
Proc Natl Acad Sci U S A ; 115(4): 774-779, 2018 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-29311293

RESUMO

Efforts to knock out Plasmodium falciparum calcium-dependent protein kinase 1 (PfCDPK1) from asexual erythrocytic stage have not been successful, indicating an indispensable role of the enzyme in asexual growth. We recently reported generation of a transgenic parasite with mutant CDPK1 [Bansal A, et al. (2016) MBio 7:e02011-16]. The mutant CDPK1 (T145M) had reduced activity of transphosphorylation. We reasoned that CDPK1 could be disrupted in the mutant parasites. Consistent with this assumption, CDPK1 was successfully disrupted in the mutant parasites using CRISPR/Cas9. We and others could not disrupt PfCDPK1 in the WT parasites. The CDPK1 KO parasites show a slow growth rate compared with the WT and the CDPK1 T145M parasites. Additionally, the CDPK1 KO parasites show a defect in both male and female gametogenesis and could not establish an infection in mosquitoes. Complementation of the KO parasite with full-length PfCDPK1 partially rescued the asexual growth defect and mosquito infection. Comparative global transcriptomics of WT and the CDPK1 KO schizonts using RNA-seq show significantly high transcript expression of gametocyte-specific genes in the CDPK1 KO parasites. This study conclusively demonstrates that CDPK1 is a good target for developing transmission-blocking drugs.


Assuntos
Culicidae/parasitologia , Gametogênese , Proteínas Quinases/fisiologia , Proteínas de Protozoários/fisiologia , Animais , Sistemas CRISPR-Cas , Edição de Genes , Regulação da Expressão Gênica , Plasmodium falciparum
3.
Am J Respir Cell Mol Biol ; 63(2): 185-197, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32338995

RESUMO

The primary function of APOE (apolipoprotein E) is to mediate the transport of cholesterol- and lipid-containing lipoprotein particles into cells by receptor-mediated endocytosis. APOE also has pro- and antiinflammatory effects, which are both context and concentration dependent. For example, Apoe-/- mice exhibit enhanced airway remodeling and hyperreactivity in experimental asthma, whereas increased APOE levels in lung epithelial lining fluid induce IL-1ß secretion from human asthmatic alveolar macrophages. However, APOE-mediated airway epithelial cell inflammatory responses and signaling pathways have not been defined. Here, RNA sequencing of human asthmatic bronchial brushing cells stimulated with APOE identified increased expression of mRNA transcripts encoding multiple proinflammatory genes, including CXCL5 (C-X-C motif chemokine ligand 5), an epithelial-derived chemokine that promotes neutrophil activation and chemotaxis. We subsequently characterized the APOE signaling pathway that induces CXCL5 secretion by human asthmatic small airway epithelial cells (SAECs). Neutralizing antibodies directed against TLR4 (Toll-like receptor 4), but not TLR2, attenuated APOE-mediated CXCL5 secretion by human asthmatic SAECs. Inhibition of TAK1 (transforming growth factor-ß-activated kinase 1), IκKß (inhibitor of nuclear factor κ B kinase subunit ß), TPL2 (tumor progression locus 2), and JNK (c-Jun N-terminal kinase), but not p38 MAPK (mitogen-activated protein kinase) or MEK1/2 (MAPK kinase 1/2), attenuated APOE-mediated CXCL5 secretion. The roles of TAK1, IκKß, TPL2, and JNK in APOE-mediated CXCL5 secretion were verified by RNA interference. Furthermore, RNA interference showed that after APOE stimulation, both NF-κB p65 and TPL2 were downstream of TAK1 and IκKß, whereas JNK was downstream of TPL2. In summary, elevated levels of APOE in the airway may activate a TLR4/TAK1/IκKß/NF-κB/TPL2/JNK signaling pathway that induces CXCL5 secretion by human asthmatic SAECs. These findings identify new roles for TLR4 and TPL2 in APOE-mediated proinflammatory responses in asthma.


Assuntos
Apolipoproteínas E/metabolismo , Asma/metabolismo , Quimiocina CXCL5/metabolismo , Células Epiteliais/metabolismo , Sistema Respiratório/metabolismo , Transdução de Sinais/fisiologia , Receptor 4 Toll-Like/metabolismo , Quimiocinas/metabolismo , Humanos , Inflamação/metabolismo , Neutrófilos/metabolismo , RNA Mensageiro/metabolismo
4.
J Virol ; 92(17)2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29976658

RESUMO

Host-influenza virus interplay at the transcript level has been extensively characterized in epithelial cells. Yet, there are no studies that simultaneously characterize human host and influenza A virus (IAV) genomes. We infected human bronchial epithelial BEAS-2B cells with two seasonal IAV/H3N2 strains, Brisbane/10/07 and Perth/16/09 (reference strains for past vaccine seasons) and the well-characterized laboratory strain Udorn/307/72. Strand-specific RNA sequencing (RNA-seq) of the infected BEAS-2B cells allowed for simultaneous analysis of host and viral transcriptomes, in addition to pathogen genomes, to reveal changes in mRNA expression and alternative splicing (AS). In general, patterns of global and immune gene expression induced by the three IAVs were mostly shared. However, AS of host transcripts and small nuclear RNAs differed between the seasonal and laboratory strains. Analysis of viral transcriptomes showed deletions of the polymerase components (defective interfering-like RNAs) within the genome. Surprisingly, we found that the neuraminidase gene undergoes AS and that the splicing event differs between seasonal and laboratory strains. Our findings reveal novel elements of the host-virus interaction and highlight the importance of RNA-seq in identifying molecular changes at the genome level that may contribute to shaping RNA-based innate immunity.IMPORTANCE The use of massively parallel RNA sequencing (RNA-seq) has revealed insights into human and pathogen genomes and their evolution. Dual RNA-seq allows simultaneous dissection of host and pathogen genomes and strand-specific RNA-seq provides information about the polarity of the RNA. This is important in the case of negative-strand RNA viruses like influenza virus, which generate positive (complementary and mRNA) and negative-strand RNAs (genome) that differ in their potential to trigger innate immunity. Here, we characterize interactions between human bronchial epithelial cells and three influenza A/H3N2 strains using strand-specific dual RNA-seq. We focused on this subtype because of its epidemiological importance in causing significant morbidity and mortality during influenza epidemics. We report novel elements that differ between seasonal and laboratory strains highlighting the complexity of the host-virus interplay at the RNA level.


Assuntos
Genoma Humano/genética , Genoma Viral/genética , Interações Hospedeiro-Patógeno/genética , Imunidade Inata/genética , Vírus da Influenza A Subtipo H3N2/genética , Influenza Humana/imunologia , Brônquios/citologia , Brônquios/virologia , Células Epiteliais/virologia , Perfilação da Expressão Gênica , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Vírus da Influenza A Subtipo H3N2/imunologia , Influenza Humana/virologia , Neuraminidase/genética , Splicing de RNA/genética , Estações do Ano , Análise de Sequência de RNA/métodos
5.
Hum Genet ; 137(3): 203-213, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29423652

RESUMO

Increasing evidence implicates mitochondrial dysfunction in aging and age-related conditions. But little is known about the molecular basis for this connection. A possible cause may be mutations in the mitochondrial DNA (mtDNA), which are often heteroplasmic-the joint presence of different alleles at a single locus in the same individual. However, the involvement of mtDNA heteroplasmy in aging and age-related conditions has not been investigated thoroughly. We deep-sequenced the complete mtDNA genomes of 356 Framingham Heart Study participants (52% women, mean age 43, mean coverage 4570-fold), identified 2880 unique mutations and comprehensively annotated them by MITOMAP and PolyPhen-2. We discovered 11 heteroplasmic "hot" spots [NADH dehydrogenase (ND) subunit 1, 4, 5 and 6 genes, n = 7; cytochrome c oxidase I (COI), n = 2; 16S rRNA, n = 1; D-loop, n = 1] for which the alternative-to-reference allele ratios significantly increased with advancing age (Bonferroni correction p < 0.001). Four of these heteroplasmic mutations in ND and COI genes were predicted to be deleterious nonsynonymous mutations which may have direct impact on ATP production. We confirmed previous findings that healthy individuals carry many low-frequency heteroplasmy mutations with potentially deleterious effects. We hypothesize that the effect of a single deleterious heteroplasmy may be minimal due to a low mutant-to-wildtype allele ratio, whereas the aggregate effects of many deleterious mutations may cause changes in mitochondrial function and contribute to age-related diseases. The identification of age-related mtDNA mutations is an important step to understand the genetic architecture of age-related diseases and may uncover novel therapeutic targets for such diseases.


Assuntos
DNA Mitocondrial/genética , Genoma Mitocondrial/genética , Sequenciamento de Nucleotídeos em Larga Escala , NADH Desidrogenase/genética , Adulto , Alelos , Feminino , Humanos , Masculino , Mitocôndrias/genética , Mutação , RNA Ribossômico 16S/genética
6.
Nucleic Acids Res ; 44(14): 6817-29, 2016 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-27369383

RESUMO

T cell activation is a well-established model for studying cellular responses to exogenous stimulation. Using strand-specific RNA-seq, we observed that intron retention is prevalent in polyadenylated transcripts in resting CD4(+) T cells and is significantly reduced upon T cell activation. Several lines of evidence suggest that intron-retained transcripts are less stable than fully spliced transcripts. Strikingly, the decrease in intron retention (IR) levels correlate with the increase in steady-state mRNA levels. Further, the majority of the genes upregulated in activated T cells are accompanied by a significant reduction in IR. Of these 1583 genes, 185 genes are predominantly regulated at the IR level, and highly enriched in the proteasome pathway, which is essential for proper T cell proliferation and cytokine release. These observations were corroborated in both human and mouse CD4(+) T cells. Our study revealed a novel post-transcriptional regulatory mechanism that may potentially contribute to coordinated and/or quick cellular responses to extracellular stimuli such as an acute infection.


Assuntos
Linfócitos T CD4-Positivos/metabolismo , Regulação da Expressão Gênica , Íntrons/genética , Ativação Linfocitária/genética , Animais , Sequência Conservada/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Modelos Biológicos , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Estabilidade de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Regulação para Cima/genética
7.
PLoS Genet ; 11(3): e1005035, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25785607

RESUMO

Genome-wide association studies (GWAS) have uncovered numerous genetic variants (SNPs) that are associated with blood pressure (BP). Genetic variants may lead to BP changes by acting on intermediate molecular phenotypes such as coded protein sequence or gene expression, which in turn affect BP variability. Therefore, characterizing genes whose expression is associated with BP may reveal cellular processes involved in BP regulation and uncover how transcripts mediate genetic and environmental effects on BP variability. A meta-analysis of results from six studies of global gene expression profiles of BP and hypertension in whole blood was performed in 7017 individuals who were not receiving antihypertensive drug treatment. We identified 34 genes that were differentially expressed in relation to BP (Bonferroni-corrected p<0.05). Among these genes, FOS and PTGS2 have been previously reported to be involved in BP-related processes; the others are novel. The top BP signature genes in aggregate explain 5%-9% of inter-individual variance in BP. Of note, rs3184504 in SH2B3, which was also reported in GWAS to be associated with BP, was found to be a trans regulator of the expression of 6 of the transcripts we found to be associated with BP (FOS, MYADM, PP1R15A, TAGAP, S100A10, and FGBP2). Gene set enrichment analysis suggested that the BP-related global gene expression changes include genes involved in inflammatory response and apoptosis pathways. Our study provides new insights into molecular mechanisms underlying BP regulation, and suggests novel transcriptomic markers for the treatment and prevention of hypertension.


Assuntos
Pressão Sanguínea/genética , Estudo de Associação Genômica Ampla , Hipertensão/genética , Transcriptoma/genética , Regulação da Expressão Gênica , Predisposição Genética para Doença , Genótipo , Humanos , Hipertensão/patologia , Polimorfismo de Nucleotídeo Único
8.
Mol Syst Biol ; 11(1): 799, 2015 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-25882670

RESUMO

Genome-wide association studies (GWAS) have identified numerous loci associated with blood pressure (BP). The molecular mechanisms underlying BP regulation, however, remain unclear. We investigated BP-associated molecular mechanisms by integrating BP GWAS with whole blood mRNA expression profiles in 3,679 individuals, using network approaches. BP transcriptomic signatures at the single-gene and the coexpression network module levels were identified. Four coexpression modules were identified as potentially causal based on genetic inference because expression-related SNPs for their corresponding genes demonstrated enrichment for BP GWAS signals. Genes from the four modules were further projected onto predefined molecular interaction networks, revealing key drivers. Gene subnetworks entailing molecular interactions between key drivers and BP-related genes were uncovered. As proof-of-concept, we validated SH2B3, one of the top key drivers, using Sh2b3(-/-) mice. We found that a significant number of genes predicted to be regulated by SH2B3 in gene networks are perturbed in Sh2b3(-/-) mice, which demonstrate an exaggerated pressor response to angiotensin II infusion. Our findings may help to identify novel targets for the prevention or treatment of hypertension.


Assuntos
Pressão Sanguínea/genética , Hipertensão/genética , Proteínas Adaptadoras de Transdução de Sinal , Adulto , Idoso , Angiotensina II/metabolismo , Animais , Índice de Massa Corporal , Estudos de Coortes , Modelos Animais de Doenças , Feminino , Redes Reguladoras de Genes , Loci Gênicos , Estudo de Associação Genômica Ampla , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Modelos Lineares , Masculino , Proteínas de Membrana , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Domínios e Motivos de Interação entre Proteínas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Sequência de RNA , Biologia de Sistemas , Transcriptoma , Adulto Jovem
9.
Arterioscler Thromb Vasc Biol ; 33(6): 1418-26, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23539218

RESUMO

OBJECTIVE: To identify transcriptomic biomarkers of coronary heart disease (CHD) in 188 cases with CHD and 188 age- and sex-matched controls who were participants in the Framingham Heart Study. APPROACH AND RESULTS: A total of 35 genes were differentially expressed in cases with CHD versus controls at false discovery rate<0.5, including GZMB, TMEM56, and GUK1. Cluster analysis revealed 3 gene clusters associated with CHD, 2 linked to increased erythrocyte production and a third to reduced natural killer and T cell activity in cases with CHD. Exon-level results corroborated and extended the gene-level results. Alternative splicing analysis suggested that GUK1 and 38 other genes were differentially spliced in cases with CHD versus controls. Gene Ontology analysis linked ubiquitination and T-cell-related pathways with CHD. CONCLUSIONS: Two bioinformatically defined groups of genes show consistent associations with CHD. Our findings are consistent with the hypotheses that hematopoesis is upregulated in CHD, possibly reflecting a compensatory mechanism, and that innate immune activity is disrupted in CHD or altered by its treatment. Transcriptomic signatures may be useful in identifying pathways associated with CHD and point toward novel therapeutic targets for its treatment and prevention.


Assuntos
Doença das Coronárias/epidemiologia , Doença das Coronárias/genética , DNA Recombinante/genética , Predisposição Genética para Doença/epidemiologia , Transcriptoma/genética , Distribuição por Idade , Idoso , Estudos de Casos e Controles , Análise por Conglomerados , Éxons/genética , Feminino , Granzimas/genética , Humanos , Incidência , Masculino , Proteínas de Membrana , Proteínas dos Microfilamentos , Pessoa de Meia-Idade , Neurofibromina 2/genética , Reação em Cadeia da Polimerase em Tempo Real , Valores de Referência , Reprodutibilidade dos Testes , Fatores de Risco , Distribuição por Sexo
10.
Arterioscler Thromb Vasc Biol ; 33(6): 1427-34, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23539213

RESUMO

OBJECTIVE: Genetic approaches have identified numerous loci associated with coronary heart disease (CHD). The molecular mechanisms underlying CHD gene-disease associations, however, remain unclear. We hypothesized that genetic variants with both strong and subtle effects drive gene subnetworks that in turn affect CHD. APPROACH AND RESULTS: We surveyed CHD-associated molecular interactions by constructing coexpression networks using whole blood gene expression profiles from 188 CHD cases and 188 age- and sex-matched controls. Twenty-four coexpression modules were identified, including 1 case-specific and 1 control-specific differential module (DM). The DMs were enriched for genes involved in B-cell activation, immune response, and ion transport. By integrating the DMs with gene expression-associated single-nucleotide polymorphisms and with results of genome-wide association studies of CHD and its risk factors, the control-specific DM was implicated as CHD causal based on its significant enrichment for both CHD and lipid expression-associated single-nucleotide polymorphisms. This causal DM was further integrated with tissue-specific Bayesian networks and protein-protein interaction networks to identify regulatory key driver genes. Multitissue key drivers (SPIB and TNFRSF13C) and tissue-specific key drivers (eg, EBF1) were identified. CONCLUSIONS: Our network-driven integrative analysis not only identified CHD-related genes, but also defined network structure that sheds light on the molecular interactions of genes associated with CHD risk.


Assuntos
Doença da Artéria Coronariana/epidemiologia , Doença da Artéria Coronariana/genética , Regulação da Expressão Gênica , Redes Reguladoras de Genes/genética , Predisposição Genética para Doença/epidemiologia , Biologia de Sistemas/métodos , Distribuição por Idade , Idoso , Teorema de Bayes , Estudos de Casos e Controles , Doença da Artéria Coronariana/fisiopatologia , Feminino , Variação Genética , Estudo de Associação Genômica Ampla/métodos , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Valores de Referência , Medição de Risco , Distribuição por Sexo
11.
HGG Adv ; 5(2): 100274, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38358893

RESUMO

Pathogenic variants in the DES gene clinically manifest as progressive skeletal muscle weakness, cardiomyopathy with associated severe arrhythmias, and respiratory insufficiency, and are collectively known as desminopathies. While most DES pathogenic variants act via a dominant mechanism, recessively acting variants have also been reported. Currently, there are no effective therapeutic interventions for desminopathies of any type. Here, we report an affected individual with rapidly progressive dilated cardiomyopathy, requiring heart transplantation at age 13 years, in the setting of childhood-onset skeletal muscle weakness. We identified biallelic DES variants (c.640-13 T>A and c.1288+1 G>A) and show aberrant DES gene splicing in the affected individual's muscle. Through the generation of an inducible lentiviral system, we transdifferentiated fibroblast cultures derived from the affected individual into myoblasts and validated this system using RNA sequencing. We tested rationally designed, custom antisense oligonucleotides to screen for splice correction in these transdifferentiated cells and a functional minigene splicing assay. However, rather than correctly redirecting splicing, we found them to induce undesired exon skipping. Our results indicate that, while an individual precision-based molecular therapeutic approach to splice-altering pathogenic variants is promising, careful preclinical testing is imperative for each novel variant to test the feasibility of this type of approach for translation.


Assuntos
Cardiomiopatias , Cardiomiopatia Dilatada , Adolescente , Humanos , Cardiomiopatias/genética , Cardiomiopatia Dilatada/genética , Mutação , Splicing de RNA/genética
12.
Blood ; 117(2): 542-52, 2011 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-20956803

RESUMO

Bortezomib induces remissions in 30%-50% of patients with relapsed mantle cell lymphoma (MCL). Conversely, more than half of patients' tumors are intrinsically resistant to bortezomib. The molecular mechanism of resistance has not been defined. We generated a model of bortezomib-adapted subclones of the MCL cell lines JEKO and HBL2 that were 40- to 80-fold less sensitive to bortezomib than the parental cells. Acquisition of bortezomib resistance was gradual and reversible. Bortezomib-adapted subclones showed increased proteasome activity and tolerated lower proteasome capacity than the parental lines. Using gene expression profiling, we discovered that bortezomib resistance was associated with plasmacytic differentiation, including up-regulation of IRF4 and CD38 and expression of CD138. In contrast to plasma cells, plasmacytic MCL cells did not increase immunoglobulin secretion. Intrinsically bortezomib-resistant MCL cell lines and primary tumor cells from MCL patients with inferior clinical response to bortezomib also expressed plasmacytic features. Knockdown of IRF4 was toxic for the subset of MCL cells with plasmacytic differentiation, but only slightly sensitized cells to bortezomib. We conclude that plasmacytic differentiation in the absence of an increased secretory load can enable cells to withstand the stress of proteasome inhibition. Expression of CD38 and IRF4 could serve as markers of bortezomib resistance in MCL. This study has been registered at http://clinicaltrials.gov as NCT00131976.


Assuntos
Antineoplásicos/farmacologia , Ácidos Borônicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/fisiologia , Linfoma de Célula do Manto/tratamento farmacológico , Plasmócitos/patologia , Pirazinas/farmacologia , ADP-Ribosil Ciclase 1/biossíntese , Idoso , Western Blotting , Bortezomib , Diferenciação Celular , Linhagem Celular Tumoral , Separação Celular , Ensaio de Imunoadsorção Enzimática , Feminino , Citometria de Fluxo , Perfilação da Expressão Gênica , Humanos , Fatores Reguladores de Interferon/biossíntese , Linfoma de Célula do Manto/genética , Linfoma de Célula do Manto/metabolismo , Masculino , Pessoa de Meia-Idade , Análise de Sequência com Séries de Oligonucleotídeos , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo
13.
Blood ; 117(2): 563-74, 2011 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-20940416

RESUMO

Chronic lymphocytic leukemia (CLL), an incurable malignancy of mature B lymphocytes, involves blood, bone marrow, and secondary lymphoid organs such as the lymph nodes (LN). A role of the tissue microenvironment in the pathogenesis of CLL is hypothesized based on in vitro observations, but its contribution in vivo remains ill-defined. To elucidate the effects of tumor-host interactions in vivo, we purified tumor cells from 24 treatment-naive patients. Samples were obtained concurrently from blood, bone marrow, and/or LN and analyzed by gene expression profiling. We identified the LN as a key site in CLL pathogenesis. CLL cells in the LN showed up-regulation of gene signatures, indicating B-cell receptor (BCR) and nuclear factor-κB activation. Consistent with antigen-dependent BCR signaling and canonical nuclear factor-κB activation, we detected phosphorylation of SYK and IκBα, respectively. Expression of BCR target genes was stronger in clinically more aggressive CLL, indicating more effective BCR signaling in this subtype in vivo. Tumor proliferation, quantified by the expression of the E2F and c-MYC target genes and verified with Ki67 staining by flow cytometry, was highest in the LN and was correlated with clinical disease progression. These data identify the disruption of tumor microenvironment interactions and the inhibition of BCR signaling as promising therapeutic strategies in CLL. This study is registered at http://clinicaltrials.gov as NCT00019370.


Assuntos
Leucemia Linfocítica Crônica de Células B/patologia , Linfonodos/patologia , NF-kappa B/metabolismo , Receptores de Antígenos de Linfócitos B/metabolismo , Transdução de Sinais/fisiologia , Microambiente Tumoral/fisiologia , Adulto , Proliferação de Células , Separação Celular , Feminino , Citometria de Fluxo , Perfilação da Expressão Gênica , Humanos , Hibridização in Situ Fluorescente , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/metabolismo , Linfonodos/metabolismo , Masculino , Pessoa de Meia-Idade , Análise de Sequência com Séries de Oligonucleotídeos , Receptores de Antígenos de Linfócitos B/genética
14.
bioRxiv ; 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37425704

RESUMO

Granulocyte colony stimulating factor (G-CSF) is commonly used as adjunct treatment to hasten recovery from neutropenia following chemotherapy and autologous transplantation of hematopoietic stem and progenitor cells (HSPCs) for malignant disorders. However, the utility of G-CSF administration after ex vivo gene therapy procedures targeting human HSPCs has not been thoroughly evaluated. Here, we provide evidence that post-transplant administration of G-CSF impedes engraftment of CRISPR-Cas9 gene edited human HSPCs in xenograft models. G-CSF acts by exacerbating the p53-mediated DNA damage response triggered by Cas9- mediated DNA double-stranded breaks. Transient p53 inhibition in culture attenuates the negative impact of G-CSF on gene edited HSPC function. In contrast, post-transplant administration of G-CSF does not impair the repopulating properties of unmanipulated human HSPCs or HSPCs genetically engineered by transduction with lentiviral vectors. The potential for post-transplant G-CSF administration to aggravate HSPC toxicity associated with CRISPR-Cas9 gene editing should be considered in the design of ex vivo autologous HSPC gene editing clinical trials.

15.
Physiol Genomics ; 44(1): 59-75, 2012 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-22045913

RESUMO

Despite a growing number of reports of gene expression analysis from blood-derived RNA sources, there have been few systematic comparisons of various RNA sources in transcriptomic analysis or for biomarker discovery in the context of cardiovascular disease (CVD). As a pilot study of the Systems Approach to Biomarker Research (SABRe) in CVD Initiative, this investigation used Affymetrix Exon arrays to characterize gene expression of three blood-derived RNA sources: lymphoblastoid cell lines (LCL), whole blood using PAXgene tubes (PAX), and peripheral blood mononuclear cells (PBMC). Their performance was compared in relation to identifying transcript associations with sex and CVD risk factors, such as age, high-density lipoprotein, and smoking status, and the differential blood cell count. We also identified a set of exons that vary substantially between participants, but consistently in each RNA source. Such exons are thus stable phenotypes of the participant and may potentially become useful fingerprinting biomarkers. In agreement with previous studies, we found that each of the RNA sources is distinct. Unlike PAX and PBMC, LCL gene expression showed little association with the differential blood count. LCL, however, was able to detect two genes related to smoking status. PAX and PBMC identified Y-chromosome probe sets similarly and slightly better than LCL.


Assuntos
Sangue/metabolismo , Doenças Cardiovasculares/sangue , Perfilação da Expressão Gênica , Leucócitos Mononucleares/metabolismo , Linfócitos/metabolismo , Adulto , Biomarcadores/análise , Biomarcadores/sangue , Biomarcadores/metabolismo , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/genética , Linhagem Celular , Estudos de Coortes , Feminino , Humanos , Linfócitos/patologia , Masculino , Massachusetts , Análise em Microsséries , Pessoa de Meia-Idade , Projetos Piloto
16.
Sci Rep ; 12(1): 1801, 2022 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-35110616

RESUMO

Lymphoblastoid cell lines (LCLs) provide an unlimited source of genomic DNA for genetic studies. Here, we compared mtDNA sequence variants, heteroplasmic or homplasmic, between LCL (sequenced by mitoRCA-seq method) and whole blood samples (sequenced through whole genome sequencing approach) of the same 130 participants in the Framingham Heart Study. We applied harmonization of sequence coverages and consistent quality control to mtDNA sequences. We identified 866 variation sites in the 130 LCL samples and 666 sites in the 130 blood samples. More than 94% of the identified homoplasmies were present in both LCL and blood samples while more than 70% of heteroplasmic sites were uniquely present either in LCL or in blood samples. The LCL and whole blood samples carried a similar number of homoplasmic variants (p = 0.45) per sample while the LCL carried a greater number of heteroplasmic variants than whole blood per sample (p < 2.2e-16). Furthermore, the LCL samples tended to accumulate low level heteroplasmies (heteroplasmy level in 3-25%) than their paired blood samples (p = 0.001). These results suggest that cautions should be taken in the interpretation and comparison of findings when different tissues/cell types or different sequencing technologies are applied to obtain mtDNA sequences.


Assuntos
Células Sanguíneas , DNA Mitocondrial/genética , Heteroplasmia , Mitocôndrias/genética , Sequenciamento Completo do Genoma , Adulto , Células Sanguíneas/metabolismo , Linhagem Celular Transformada , DNA Mitocondrial/sangue , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade , Mitocôndrias/metabolismo , Reprodutibilidade dos Testes
17.
Physiol Genomics ; 43(20): 1117-34, 2011 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-21828245

RESUMO

Hematopoietic differentiation is strictly regulated by complex network of transcription factors that are controlled by ligands binding to cell surface receptors. Disruptions of the intricate sequences of transcriptional activation and suppression of multiple genes cause hematological diseases, such as leukemias, myelodysplastic syndromes, or myeloproliferative syndromes. From a clinical standpoint, deciphering the pattern of gene expression during hematopoiesis may help unravel disease-specific mechanisms in hematopoietic malignancies. Herein, we describe a human in vitro hematopoietic model system where lineage-specific differentiation of CD34(+) cells was accomplished using specific cytokines. Microarray and RNAseq-based whole transcriptome and exome analysis was performed on the differentiated erythropoietic, granulopoietic, and megakaryopoietic cells to delineate changes in expression of whole transcripts and exons. Analysis on the Human 1.0 ST exon arrays indicated differential expression of 172 genes (P < 0.0000001) and significant alternate splicing of 86 genes during differentiation. Pathway analysis identified these genes to be involved in Rac/RhoA signaling, Wnt/B-catenin signaling and alanine/aspartate metabolism. Comparison of the microarray data to next generation RNAseq analysis during erythroid differentiation demonstrated a high degree of correlation in gene (R = 0.72) and exon (R = 0.62) expression. Our data provide a molecular portrait of events that regulate differentiation of hematopoietic cells. Knowledge of molecular processes by which the cells acquire their cell-specific fate would be beneficial in developing cell-based therapies for human diseases.


Assuntos
Processamento Alternativo/genética , Diferenciação Celular/genética , Linhagem da Célula/genética , Perfilação da Expressão Gênica , Células-Tronco Hematopoéticas/citologia , Análise de Sequência de DNA , Transcriptoma/genética , Antígenos CD34/metabolismo , Análise por Conglomerados , Células Eritroides/citologia , Células Eritroides/metabolismo , Éxons/genética , Citometria de Fluxo , Regulação da Expressão Gênica , Redes Reguladoras de Genes/genética , Hematopoese/genética , Células-Tronco Hematopoéticas/metabolismo , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase , Análise de Componente Principal , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reprodutibilidade dos Testes , Transdução de Sinais/genética
18.
Sci Adv ; 7(22)2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34039612

RESUMO

Chronic infectious diseases have a substantial impact on the human B cell compartment including a notable expansion of B cells here termed atypical B cells (ABCs). Using unbiased single-cell RNA sequencing (scRNA-seq), we uncovered and characterized heterogeneities in naïve B cell, classical memory B cells, and ABC subsets. We showed remarkably similar transcriptional profiles for ABC clusters in malaria, HIV, and autoimmune diseases and demonstrated that interferon-γ drove the expansion of ABCs in malaria. These observations suggest that ABCs represent a separate B cell lineage with a common inducer that further diversifies and acquires disease-specific characteristics and functions. In malaria, we identified ABC subsets based on isotype expression that differed in expansion in African children and in B cell receptor repertoire characteristics. Of particular interest, IgD+IgMlo and IgD-IgG+ ABCs acquired a high antigen affinity threshold for activation, suggesting that ABCs may limit autoimmune responses to low-affinity self-antigens in chronic malaria.

19.
mBio ; 10(1)2019 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-30696738

RESUMO

RNA-binding proteins (RBPs) control mRNA processing, stability, transport, editing, and translation. We recently conducted transcriptome analyses comparing normal (i.e., healthy) cervical tissue samples with human papillomavirus (HPV)-positive cervical cancer tissue samples and identified 614 differentially expressed protein-coding transcripts which are enriched in cancer-related pathways and consist of 95 known RBPs. We verified the altered expression of 26 genes with a cohort of 72 cervical samples, including 24 normal cervical samples, 25 cervical intraepithelial neoplasia grade 2 (CIN2) and CIN3 samples, and 23 cervical cancer tissue samples. LY6K (lymphocyte antigen 6 complex locus K), FAM83A (family member with sequence similarity 83), CELSR3, ASF1B, IQGAP3, SEMA3F, CLDN10, MSX1, CXCL5, ASRGL1, ELAVL2, GRB7, KHSRP, NOVA1, PTBP1, and RNASEH2A were identified as novel candidate genes associated with cervical lesion progression and carcinogenesis. HPV16 or HPV18 infection was found to alter the expression of 8 RBP genes (CDKN2A, ELAVL2, GRB7, HSPB1, KHSRP, NOVA1, PTBP1, and RNASEH2A) in human vaginal and foreskin keratinocytes. Both viral E6 and E7 decreased NOVA1 expression, but only E7 increased the expression of RNASEH2A in an E2F1-dependent manner. Proliferating cell nuclear antigen (PCNA) directs RNASEH2 activity with respect to DNA replication by removing the RNA primers to promote Okazaki fragment maturation, and two factors are closely associated with neoplasia progression. Therefore, we predict that the induction of expression of RNASEH2A via viral E7 and E2F1 may promote DNA replication and cancer cell proliferation.IMPORTANCE High-risk HPV infections lead to development of cervical cancer. This study identified the differential expression of 16 novel genes (LY6K, FAM83A, CELSR3, ASF1B, IQGAP3, SEMA3F, CLDN10, MSX1, CXCL5, ASRGL1, ELAVL2, GRB7, KHSRP, NOVA1, PTBP1, and RNASEH2A) in HPV-infected cervical tissue samples and keratinocytes. Eight of these genes (CDKN2A, ELAVL2, GRB7, HSPB1, KHSRP, NOVA1, PTBP1, and RNASEH2A) encode RNA-binding proteins. Further studies indicated that both HPV16 and HPV18 infections lead to the aberrant expression of selected RBP-encoding genes. We found that viral E6 and E7 decrease NOVA1 expression but that E7 increases RNASEH2A expression via E2F1. The altered expression of these genes may be utilized as biomarkers for high-risk (HR)-HPV carcinogenesis and progression.


Assuntos
Fator de Transcrição E2F1/metabolismo , Interações Hospedeiro-Patógeno , Papillomavirus Humano 16/fisiologia , Papillomavirus Humano 18/fisiologia , Proteínas E7 de Papillomavirus/metabolismo , Ribonuclease H/metabolismo , Neoplasias do Colo do Útero/patologia , Células Cultivadas , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Queratinócitos/patologia , Queratinócitos/virologia , Infecções por Papillomavirus/patologia , Infecções por Papillomavirus/virologia
20.
Methods Mol Biol ; 1783: 171-183, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29767362

RESUMO

MicroRNAs are a class of small noncoding RNAs that function as regulators involving in many biological processes. The evaluation of miRNAs and their targets has been aided by miRNA expression profiling studies including multiplex PCR, microarrays, and recent next-generation sequencing tools. Next-generation sequencing has enabled us to profile thousands of genes in a single experiment and overcome the background signal and cross-hybridization issues of microarrays. Next-generation sequencing also allows for the simultaneous confirmation of known miRNAs and discovery of new miRNAs, and significantly reduces costs while providing billions of nucleotide information within a single experiment. Here we describe a detailed procedure of generation of miRNA library for next-generation sequencing to increase the efficiency of adapter ligation and finally construct a more specific cDNA library for sequencing and analyses for miRNA expression profiling.


Assuntos
Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala/métodos , MicroRNAs/genética , Análise de Sequência de RNA/métodos , Biblioteca Gênica , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA