Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Hazard Mater ; 465: 133495, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38232549

RESUMO

Currently, the binding of iron-binding protein transferrin (TF) with NPs and their interaction mechanisms have not been completely elucidated yet. Here, we probed the conformation-dependent release of Fe ions from TF induced by nano-sized polystyrene plastics (PS-NPs) using dialysis, ICP-MS, multi-spectroscopic techniques, and computational simulation. The results showed that the release of free Fe ions from TF was activated after PS-NPs binding, which displayed a clear dose-effect correlation. PS-NPs binding can induce the unfolding and loosening of polypeptide chain and backbone of TF. Alongside this we found that the TF secondary structure was destroyed, thereby causing TF protein misfolding and denaturation. In parallel, PS-NPs interacted with the chromophores, resulting in the occurrence of fluorescence sensitization effects and the disruption of the surrounding micro-environment of aromatic amino acids. Also, the binding of PS-NPs induced the formation of new aggregates in the PS-NPs-TF system. Further simulations indicated that PS-NPs exhibited a preference for binding to the hinge region that connects the C-lobe and N-lobe, which is responsible for the Fe ions release and structural alterations of TF. This finding provides a new understanding about the regulation of the release of Fe ions of iron-loaded TF through NPs-induced conformational and structural changes.


Assuntos
Plásticos , Poliestirenos , Poliestirenos/metabolismo , Plásticos/metabolismo , Ferro/química , Transferrina/metabolismo , Conformação Proteica
2.
Environ Sci Pollut Res Int ; 31(32): 44800-44814, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38954347

RESUMO

Naphthalene (NAP) was frequently detected in polycyclic aromatic hydrocarbons (PAHs)-contaminated soil, and its residues may pose an eco-toxicological threat to soil organisms. The toxic effects of NAP were closely tied to phenolic and quinone metabolites in biological metabolism. However, the present knowledge concerning the eco-toxicological impacts of NAP metabolites at the animal level is scanty. Here, we assessed the differences in the eco-toxicological responses of Eisenia fetida (E. fetida) in NAP, 1-naphthol (1-NAO) or 1,4-naphthoquinone (1,4-NQ) contaminated soils. NAP, 1-NAO, and 1,4-NQ exposure triggered the onset of oxidative stress as evidenced by the destruction of the antioxidant enzyme system. The lipid peroxidation and DNA oxidative damage levels induced by 1-NAO and 1,4-NQ were higher than those of NAP. The elevation of DNA damage varied considerably depending on differences in oxidative stress and the direct mode of action of NAP or its metabolites with DNA. All three toxicants induced different degrees of physiological damage to the body wall, but only 1, 4-NQ caused the shedding of intestinal epithelial cells. The integrated biomarker response for different exposure times illustrated that the comprehensive toxicity at the animal level was 1,4-NQ > 1-NAO > NAP, and the time-dependent trends of oxidative stress responses induced by the three toxicants were similar. At the initial stage, the antioxidant system of E. fetida responded positively to the provocation, but the ability of E. fetida to resist stimulation decreased with the prolongation of time resulting in provocation oxidative damage. This study would provide new insights into the toxicological effects and biohazard of PAHs on soil animals.


Assuntos
Naftalenos , Oligoquetos , Estresse Oxidativo , Poluentes do Solo , Animais , Oligoquetos/efeitos dos fármacos , Oligoquetos/metabolismo , Poluentes do Solo/toxicidade , Naftalenos/toxicidade , Solo/química , Dano ao DNA , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Peroxidação de Lipídeos/efeitos dos fármacos
3.
Water Res ; 256: 121562, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38604064

RESUMO

Halophenylacetamides (HPAcAms) have been identified as a new group of nitrogenous aromatic disinfection byproducts (DBPs) in drinking water, but the toxicity mechanisms associated with HPAcAms remain almost completely unknown. In this work, the cytotoxicity of HPAcAms in human hepatoma (HepG2) cells was evaluated, intracellular oxidative stress/damage levels were analyzed, their binding interactions with antioxidative enzyme were explored, and a quantitative structure-activity relationship (QSAR) model was established. Results indicated that the EC50 values of HPAcAms ranged from 2353 µM to 9780 µM, and the isomeric structure as well as the type and number of halogen substitutions could obviously induce the change in the cytotoxicity of HPAcAms. Upon exposure to 2-(3,4-dichlorophenyl)acetamide (3,4-DCPAcAm), various important biomarkers linked to oxidative stress and damage, such as reactive oxygen species, 8­hydroxy-2-deoxyguanosine, and cell apoptosis, exhibited a significant increase in a dose-dependent manner. Moreover, 3,4-DCPAcAm could directly bind with Cu/Zn-superoxide dismutase and induce the alterations in the structure and activity, and the formation of complexes was predominantly influenced by the van der Waals force and hydrogen bonding. The QSAR model supported that the nucleophilic reactivity as well as the molecular compactness might be highly important in their cytotoxicity mechanisms in HepG2 cells, and 2-(2,4-dibromophenyl)acetamide and 2-(3,4-dibromophenyl)acetamide deserved particular attention in future studies due to the relatively higher predicted cytotoxicity. This study provided the first comprehensive investigation on the cytotoxicity mechanisms of HPAcAm DBPs.


Assuntos
Desinfecção , Água Potável , Água Potável/química , Humanos , Células Hep G2 , Relação Quantitativa Estrutura-Atividade , Acetamidas/toxicidade , Acetamidas/química , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/química , Estresse Oxidativo/efeitos dos fármacos , Desinfetantes/toxicidade , Desinfetantes/química , Espécies Reativas de Oxigênio/metabolismo
4.
Sci Total Environ ; 912: 169359, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38103599

RESUMO

Elevated levels of iodide occur in raw water in certain regions, where iodination disinfection byproducts are formed during chloramine-assisted disinfection of naturally iodide-containing water. Iodoacetic acid (IAA) is one of the typical harmful products. The mechanisms underlying IAA-induced immunotoxicity and its direct effects on biomolecules remained unclear in the past. Cellular, biochemical, and molecular methods were used to investigate the mechanism of IAA-induced immunotoxicity and its binding to lysozyme. In the presence of IAA, the cell viability of coelomocytes was significantly reduced to 70.8 %, as was the intracellular lysozyme activity. Upon binding to IAA, lysozyme underwent structural and conformational changes, causing elongation and unfolding of the protein due to loosening of the backbone and polypeptide chains. IAA effectively quenched the fluorescence of lysozyme and induced a reduction in particle sizes. Molecular docking revealed that the catalytic residue, Glu 35, which is crucial for lysozyme activity, resided within the docking range, suggesting the preferential binding of IAA to the active site of lysozyme. Moreover, electrostatic interaction emerged as the primary driving force behind the interaction between IAA and lysozyme. In conclusion, the structural and conformational changes induced by IAA in lysozyme resulted in impaired immune protein function in coelomocytes, leading to cellular dysfunction.


Assuntos
Iodetos , Muramidase , Ácido Iodoacético/toxicidade , Ácido Iodoacético/química , Ácido Iodoacético/metabolismo , Simulação de Acoplamento Molecular , Água
5.
Sci Total Environ ; : 175562, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39153621

RESUMO

Arsenic (As) is the most prolific contaminant in food, triggering arseniasis primarily via contaminated rice and drinking contaminated water. However, toxicological data for arsenite (As (III)) and arsenate (As (V)) on antioxidant enzyme catalase (CAT) at molecular level is shortage. The interaction mechanism of As (III) and As (V) with CAT was investigated using enzyme activity detection, multi-spectroscopic techniques, isothermal titration calorimetry and computational simulations. Results indicated As (III) and As (V) induced protein skeleton relaxation, secondary structure transformation, fluorescence sensitization and particle alteration of CAT, particularly As (III). Moreover, As (III)/As (V) bound to CAT through hydrogen bonding and hydrophobic. As (III) and As (V) contacted with core residues His 74, Asn 147 and His A74, Trp A357, respectively, thereby inhibiting CAT activity. Overall, As (III) is more aggressive against the structure and physiological function of CAT than As (V). Our findings enhance the understanding of health risk related to dietary As exposure.

6.
Sci Total Environ ; 915: 170036, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38242479

RESUMO

Plastic fragments are widely distributed in different environmental media and has recently drawn special attention due to its difficulty in degradation and serious health and environmental problems. Among, nanoplastics (NPs) are smaller in size, larger in surface/volume ratio, and more likely to easily adsorb ambient pollutants than macro plastic particles. Moreover, NPs can be easily absorbed by wide variety of organisms and accumulate in multiple tissues/organs and cells, thus posing a more serious threat to living organisms. Alpha-amylase (α-amylase) is a hydrolase, which can be derived from various sources such as animals, plants, and microorganisms. Currently, no studies have concentrated on the binding of NPs with α-amylase and their interaction mechanisms by employing a multidimensional strategy. Hence, we explored the interaction mechanisms of polystyrene nanoplastics (PS-NPs) with α-amylase by means of multispectral analysis, in vitro enzymatic activity analysis, and molecular simulation techniques under in vitro conditions. The findings showed that PS-NPs had the capability to bind with the intrinsic fluorescence chromophores, leading to fluorescence changes of these specific amino acids. This interaction also caused the alterations in the micro-environment of the fluorophore residues mainly tryptophan (TRP) and tyrosine (TYR) residues of α-amylase. PS-NPs interaction promoted the unfolding and partial expansion of polypeptide chains and the loosening of protein skeletons, and destroyed the secondary structure (increased random coil contents and decreased α-helical contents) of this protein, forming a larger particle size of the PS-NPs-α-amylase complex. Moreover, the enzymatic activity of α-amylase in vitro was found to be inhibited in a concentration dependent manner, thereby impairing its physiological functions. Further molecular simulation found that PS-NPs had a higher tendency to bind to the active site of α-amylase, which is the cause for its structural and functional changes. Additionally, the hydrophobic force played a major role in mediating the binding interactions between PS-NPs and α-amylase. Taken together, our study indicated that PS-NPs interaction can initiate the abnormal physiological functions of α-amylase through PS-NPs-induced structural and conformational alternations.


Assuntos
Nanopartículas , Poluentes Químicos da Água , Animais , Poliestirenos/metabolismo , Microplásticos , alfa-Amilases , Nanopartículas/química , Poluentes Químicos da Água/metabolismo
7.
Environ Pollut ; 355: 124239, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38810687

RESUMO

Nanoplastics (NPs) are easily ingested by organisms and their major accumulation organ was determined to be liver. To date, the size-dependent cytotoxicity of NPs on mammalian hepatocytes remains unclear. This study utilized mouse primary hepatocytes and catalase (CAT) as specific receptors to investigate the toxicity of NPs from cells to molecules, focusing on size-dependent effects. Results showed that the larger the particle size of NP at low doses (≤50 mg/L), the most pronounced inhibitory effect on hepatocyte viability. 20 nm NPs significantly inhibit cell viability only at high doses (100 mg/L). Larger NP particles (500 nm and 1000 nm) resulted in a massive release of lactate dehydrogenase (LDH) from the cell (cell membrane damage). Reactive oxygen species (ROS), superoxide dismutase (SOD) and CAT tests suggest that NPs disturbed the cellular antioxidant system. 20 nm NPs show great strength in oxidizing lipids and disrupting mitochondrial function compared to NPs of other particle sizes. The degree of inhibition of CAT activity by different sized NPs was coherent at the cellular and molecular levels, and NP-500 had the most impact. This suggests that the structure and microenvironment of the polypeptide chain in the vicinity of the CAT active site is more susceptible to proximity and alteration by NP-500. In addition, the smaller NPs are capable of inducing relaxation of CAT backbone, disruption of H-bonding and reduction of α-helix content, whereas the larger NPs cause contraction of CAT backbone and increase in α-helix content. All NPs induce CAT fluorescence sensitization and make the chromophore microenvironment hydrophobic. This study provides new insights for NP risk assessment and applications.


Assuntos
Catalase , Hepatócitos , Tamanho da Partícula , Espécies Reativas de Oxigênio , Animais , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Catalase/metabolismo , Nanopartículas/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Microplásticos/toxicidade
8.
Sci Total Environ ; 947: 174688, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38992361

RESUMO

The concurrent environmental contamination by nanoplastics (NPs) and norfloxacin (NOR) is a burgeoning concern, with significant accumulations in various ecosystems and potential ingress into the human body via the food chain, posing threats to both public health and ecological balance. Despite the gravity of the situation, studies on the co-exposure contamination effects of these substances are limited. Moreover, the response mechanisms of key functional proteins to these pollutants are yet to be fully elucidated. In this work, we conducted a comprehensive assessment of the interaction mechanisms of NPs and NOR with lysozyme under both single and co-exposure condition, utilizing dynamic light scattering, ζ-potential measurements, multi-spectroscopy methods, enzyme activity assays and molecular docking, to obtain a relationship between the compound effects of NPs and NOR. Our results indicate that NPs adsorb NOR on their surface, forming more stable aggregates. These aggregates influence the conformation, secondary structure (α-Helix ratio decreased by 3.1 %) and amino acid residue microenvironment of lysozyme. And changes in structure affect the activity of lysozyme (reduced by 39.9 %) with the influence of composited pollutants exerting stronger changes. Molecular simulation indicated the key residues Asp 52 for protein function located near the docking site, suggesting pollutants preferentially binds to the active center of lysozyme. Through this study, we have found the effect of increased toxicity on lysozyme under the compounded conditions of NPs and NOR, confirming that the increased molecular toxicity of NPs and NOR is predominantly realized through the increase in particle size and stability of the aggregates under weak interactions, as well as induction of protein structural looseness. This study proposes a molecular perspective on the differential effects and mechanisms of NPs-NOR composite pollution, providing new insights into the assessment of in vitro responses to composite pollutant exposure.


Assuntos
Simulação de Acoplamento Molecular , Muramidase , Norfloxacino , Muramidase/química , Norfloxacino/toxicidade , Poluentes Ambientais/toxicidade , Nanopartículas/toxicidade , Antibacterianos/toxicidade
9.
Sci Total Environ ; 944: 173970, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-38876350

RESUMO

Chromium (Cr) poses a high ecological risk, however the toxic mechanisms of Cr in different valence states to soil organisms at cellular and molecular levels are not exactly. In this study, the Eisenia fetida coelomocytes and Cu/Zn-superoxide dismutase (Cu/Zn-SOD) were chosen as the target subjects to investigate the effects and mechanisms of cellular toxicity induced by Cr(VI) and Cr(III). Results indicated that Cr(VI) and Cr(III) significantly reduced the coelomocytes viability. The level of reactive oxygen species (ROS) was markedly increased after Cr(VI) exposure, which finally reduced antioxidant defense abilities, and induced lipid peroxidation and cellular membrane damage in earthworm coelomocytes. However, Cr(III) induced lower levels of oxidative stress and cellular damage with respect to Cr(VI). From a molecular perspective, the binding of both Cr(VI) and Cr(III) with Cu/Zn-SOD resulted in protein backbone loosening and reduced ß-Sheet content. The Cu/Zn-SOD showed fluorescence enhancement with Cr(III), whereas Cr(VI) had no obvious effect. The activity of Cu/Zn-SOD continued to decrease with the exposure of Cr. Molecular docking indicated that Cr(III) interacted more readily with the active center of Cu/Zn-SOD. Our results illustrate that oxidative stress induced by Cr(VI) and Cr(III) plays an important role in the cytotoxic differences of Eisenia fetida coelomocytes and the binding of Cr with Cu/Zn-SOD can also affect the normal structures and functions of antioxidant defense-associated protein.


Assuntos
Cromo , Oligoquetos , Estresse Oxidativo , Poluentes do Solo , Oligoquetos/fisiologia , Oligoquetos/efeitos dos fármacos , Animais , Cromo/toxicidade , Poluentes do Solo/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo , Simulação de Acoplamento Molecular , Peroxidação de Lipídeos/efeitos dos fármacos
10.
Sci Total Environ ; : 175330, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39117213

RESUMO

The significant health risks of nanoplastics (NPs) and cadmium (Cd) are currently attracting a great deal of attention and research. At present, the effects and mechanisms of NPs and Cd on human serum albumin (HSA), a key functional protein in the organism on transportation, remain unknown. Here, the differences in the effects and mechanisms of action of Cd alone and composite systems (NPsCd) were explored by enzyme activity assay, multi-spectroscopy analysis and molecular docking. The results showed that HSA activity was inhibited and decreased to 80 % and 69.55 % (Cd = 30 mg/L) by Cd alone and NPs-Cd exposure, respectively. Exposure to Cd induced backbone disruption and protein defolding of HSA, and secondary structure disruption was manifested by the reduction of α-helix. Cd exposure also induces fluorescence sensitization of HSA. Notably, the addition of NPs further exacerbated the effects associated with Cd exposure, which was consistent with the changes in HSA activity. Thus, the above conformational changes may be responsible for inducing the loss of enzyme activity. Moreover, it was determined by RLS spectroscopy that NPs-Cd bound to HSA in the form of protein crowns. Molecular docking has further shown that Cd binds to the surface of Sudlow site II of HSA, suggesting that Cd impairs the function of HSA by affecting the protein structure. More importantly, the addition of NPs further exacerbated the disruption of the protein structure by the adherent binding of HSA on the surface of the plastic particles, which induced a greater change in the enzyme activity. This study provides useful perspectives for investigating the impact of composite pollution on HSA of human functional proteins.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA