Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 214
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 71(6): 1092-1104.e5, 2018 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-30174291

RESUMO

Activation of class I phosphatidylinositol 3-kinase (PI3K) leads to formation of phosphatidylinositol-3,4,5-trisphophate (PIP3) and phosphatidylinositol-3,4-bisphophate (PI34P2), which spatiotemporally coordinate and regulate a myriad of cellular processes. By simultaneous quantitative imaging of PIP3 and PI34P2 in live cells, we here show that they have a distinctively different spatiotemporal distribution and history in response to growth factor stimulation, which allows them to selectively induce the membrane recruitment and activation of Akt isoforms. PI34P2 selectively activates Akt2 at both the plasma membrane and early endosomes, whereas PIP3 selectively stimulates Akt1 and Akt3 exclusively at the plasma membrane. These spatiotemporally distinct activation patterns of Akt isoforms provide a mechanism for their differential regulation of downstream signaling molecules. Collectively, our studies show that different spatiotemporal dynamics of PIP3 and PI34P2 and their ability to selectively activate key signaling proteins allow them to mediate class I PI3K signaling pathways in a spatiotemporally specific manner.


Assuntos
Imagem Óptica/métodos , Fosfatos de Fosfatidilinositol/fisiologia , Imagem Individual de Molécula/métodos , Animais , Linhagem Celular , Membrana Celular , Humanos , Fosfatos de Inositol , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/fisiologia , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatidilinositóis , Isoformas de Proteínas , Transporte Proteico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
2.
Chem Soc Rev ; 53(2): 1058, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38116765

RESUMO

Correction for 'Virus-mimicking nanosystems: from design to biomedical applications' by Hao-Yang Liu et al., Chem. Soc. Rev., 2023, 52, 8481-8499, https://doi.org/10.1039/D3CS00138E.

3.
Nano Lett ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38953881

RESUMO

Acute methicillin-resistant Staphylococcus aureus (MRSA) pneumonia is a common and serious lung infection with high morbidity and mortality rates. Due to the increasing antibiotic resistance, toxicity, and pathogenicity of MRSA, there is an urgent need to explore effective antibacterial strategies. In this study, we developed a dry powder inhalable formulation which is composed of porous microspheres prepared from poly(lactic-co-glycolic acid) (PLGA), internally loaded with indocyanine green (ICG)-modified, heat-resistant phages that we screened for their high efficacy against MRSA. This formulation can deliver therapeutic doses of ICG-modified active phages to the deep lung tissue infection sites, avoiding rapid clearance by alveolar macrophages. Combined with the synergistic treatment of phage therapy and photothermal therapy, the formulation demonstrates potent bactericidal effects in acute MRSA pneumonia. With its long-term stability at room temperature and inhalable characteristics, this formulation has the potential to be a promising drug for the clinical treatment of MRSA pneumonia.

4.
Nano Lett ; 24(5): 1816-1824, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38270101

RESUMO

Accurate quantification of exosomal PD-L1 protein in tumors is closely linked to the response to immunotherapy, but robust methods to achieve high-precision quantitative detection of PD-L1 expression on the surface of circulating exosomes are still lacking. In this work, we developed a signal amplification approach based on aptamer recognition and DNA scaffold hybridization-triggered assembly of quantum dot nanospheres, which enables bicolor phenotyping of exosomes to accurately screen for cancers and predict PD-L1-guided immunotherapeutic effects through machine learning. Through DNA-mediated assembly, we utilized two aptamers for simultaneous ultrasensitive detection of exosomal antigens, which have synergistic roles in tumor diagnosis and treatment prediction, and thus, we achieved better sample classification and prediction through machine-learning algorithms. With a drop of blood, we can distinguish between different cancer patients and healthy individuals and predict the outcome of immunotherapy. This approach provides valuable insights into the development of personalized diagnostics and precision medicine.


Assuntos
Nanosferas , Neoplasias , Pontos Quânticos , Humanos , Detecção Precoce de Câncer , Antígeno B7-H1 , Imunoterapia , Aprendizado de Máquina , Oligonucleotídeos , DNA
5.
Nano Lett ; 24(8): 2544-2552, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38349341

RESUMO

Labeling the genome and envelope of a virus with multicolor quantum dots (QDs) simultaneously enables real-time monitoring of viral uncoating and genome release, contributing to our understanding of virus infection mechanisms. However, current labeling techniques require genetic modification, which alters the virus's composition and infectivity. To address this, we utilized the CRISPR/Cas13 system and a bioorthogonal metabolic method to label the Japanese encephalitis virus (JEV) genome and envelopes with different-colored QDs in situ. This technique allows one-step two-color labeling of the viral envelope and intraviral genome with QDs harnessing virus infection. In combination with single-virus tracking, we visualized JEV uncoating and genome release in real time near the endoplasmic reticulum of live cells. This labeling strategy allows for real-time visualization of uncoating and genome release at the single-virus level, and it is expected to advance the study of other viral infection mechanisms.


Assuntos
Pontos Quânticos , Viroses , Vírus , Humanos , Envelope Viral/metabolismo , Proteínas do Envelope Viral
6.
Anal Chem ; 96(18): 7231-7239, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38656982

RESUMO

Electrochemiluminescence (ECL) imaging, a rapidly evolving technology, has attracted significant attention in the field of cellular imaging. However, its primary limitation lies in its inability to analyze the motion behaviors of individual particles in live cellular environments. In this study, we leveraged the exceptional ECL properties of quantum dots (QDs) and the excellent electrochemical properties of carbon dots (CDs) to develop a high-brightness ECL nanoprobe (CDs-QDs) for real-time ECL imaging between living cells. This nanoprobe has excellent signal-to-noise ratio imaging capabilities for the single-particle tracking (SPT) of biomolecules. Our finding elucidated the enhanced ECL mechanism of CDs-QDs in the presence of reactive oxygen species through photoluminescence, electrochemistry, and ECL techniques. We further tracked the movement of single particles on membrane nanotubes between live cells and confirmed that the ECL-based SPT technique using CD-QD nanoparticles is an effective approach for monitoring the transport behaviors of biomolecules on membrane nanotubes between live cells. This opens a promising avenue for the advancement of ECL-based single-particle detection and the dynamic quantitative imaging of biomolecules.


Assuntos
Técnicas Eletroquímicas , Medições Luminescentes , Nanotubos , Pontos Quânticos , Pontos Quânticos/química , Humanos , Técnicas Eletroquímicas/métodos , Nanotubos/química , Medições Luminescentes/métodos , Células HeLa , Membrana Celular/metabolismo , Membrana Celular/química , Espécies Reativas de Oxigênio/metabolismo , Espécies Reativas de Oxigênio/análise , Carbono/química
7.
Anal Chem ; 96(21): 8501-8509, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38717985

RESUMO

Cell membrane stiffness is critical for cellular function, with cholesterol and sphingomyelin as pivot contributors. Current methods for measuring membrane stiffness are often invasive, ex situ, and slow in process, prompting the need for innovative techniques. Here, we present a fluorescence resonance energy transfer (FRET)-based protein sensor designed to address these challenges. The sensor consists of two fluorescent units targeting sphingomyelin and cholesterol, connected by a linker that responds to the proximity of these lipids. In rigid membranes, cholesterol and sphingomyelin are in close proximity, leading to an increased FRET signal. We utilized this sensor in combination with confocal microscopy to explore changes in plasma membrane stiffness under various conditions, including differences in osmotic pressure, the presence of reactive oxygen species (ROS) and variations in substrate stiffness. Furthermore, we explored the impact of SARS-CoV-2 on membrane stiffness and the distribution of ACE2 after attachment to the cell membrane. This tool offers substantial potential for future investigations in the field of mechanobiology.


Assuntos
Membrana Celular , Colesterol , Transferência Ressonante de Energia de Fluorescência , SARS-CoV-2 , Esfingomielinas , Transferência Ressonante de Energia de Fluorescência/métodos , Humanos , Membrana Celular/metabolismo , Membrana Celular/química , Esfingomielinas/análise , Esfingomielinas/metabolismo , Colesterol/análise , Colesterol/metabolismo , Microscopia Confocal/métodos , Espécies Reativas de Oxigênio/metabolismo , Espécies Reativas de Oxigênio/análise , COVID-19/virologia , Enzima de Conversão de Angiotensina 2/metabolismo , Técnicas Biossensoriais/métodos
8.
BMC Microbiol ; 24(1): 119, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580930

RESUMO

Obesity is a metabolic disorder closely associated with profound alterations in gut microbial composition. However, the dynamics of species composition and functional changes in the gut microbiome in obesity remain to be comprehensively investigated. In this study, we conducted a meta-analysis of metagenomic sequencing data from both obese and non-obese individuals across multiple cohorts, totaling 1351 fecal metagenomes. Our results demonstrate a significant decrease in both the richness and diversity of the gut bacteriome and virome in obese patients. We identified 38 bacterial species including Eubacterium sp. CAG:274, Ruminococcus gnavus, Eubacterium eligens and Akkermansia muciniphila, and 1 archaeal species, Methanobrevibacter smithii, that were significantly altered in obesity. Additionally, we observed altered abundance of five viral families: Mesyanzhinovviridae, Chaseviridae, Salasmaviridae, Drexlerviridae, and Casjensviridae. Functional analysis of the gut microbiome indicated distinct signatures associated to obesity and identified Ruminococcus gnavus as the primary driver for function enrichment in obesity, and Methanobrevibacter smithii, Akkermansia muciniphila, Ruminococcus bicirculans, and Eubacterium siraeum as functional drivers in the healthy control group. Additionally, our results suggest that antibiotic resistance genes and bacterial virulence factors may influence the development of obesity. Finally, we demonstrated that gut vOTUs achieved a diagnostic accuracy with an optimal area under the curve of 0.766 for distinguishing obesity from healthy controls. Our findings offer comprehensive and generalizable insights into the gut bacteriome and virome features associated with obesity, with the potential to guide the development of microbiome-based diagnostics.


Assuntos
Clostridiales , Microbioma Gastrointestinal , Humanos , Microbioma Gastrointestinal/genética , Metagenoma , Obesidade/microbiologia , Bactérias/genética , Fezes/microbiologia , Akkermansia
9.
Bioconjug Chem ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38935869

RESUMO

Membrane tension is an important physical parameter of describing cellular homeostasis, and it is widely used in the study of cellular processes involving membrane deformation and reorganization, such as cell migration, cell spreading, and cell division. Despite the importance of membrane tension, direct measurement remains difficult. In this work, we developed a ratiometric fluorescent probe sensitive to membrane tension by adjusting the carbon chain structure based on polarity-sensitive fluorophores. The probe is sensitive to changes in membrane tension after cells were subjected to physical or chemical stimuli, such as osmotic shock, lipid peroxidation, and mechanical stress. When the polarity of the plasma membrane increases (the green/red ratio decreases) and the membrane tension increases, the relative magnitude of the membrane tension can be quantitatively calculated by fluorescence ratio imaging. Thus, the probe proved to be an efficient and sensitive membrane tension probe.

10.
Analyst ; 149(9): 2507-2525, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38630498

RESUMO

Outbreaks of viral diseases seriously jeopardize people's health and cause huge economic losses. At the same time, virology provides a new perspective for biology, molecular biology and cancer research, and it is important to study the discovered viruses with potential applications. Therefore, the development of immediate and rapid viral detection methods for the prevention and treatment of viral diseases as well as the study of viruses has attracted extensive attention from scientists. With the continuous progress of science and technology, especially in the field of bioanalysis, a series of new detection techniques have been applied to the on-site rapid detection of viruses, which has become a powerful approach for human beings to fight against viruses. In this paper, the latest research progress of rapid point-of-care detection of viral nucleic acids, antigens and antibodies is presented. In addition, the advantages and disadvantages of these technologies are discussed from the perspective of practical application requirements. Finally, the problems and challenges faced by rapid viral detection methods and their development prospects are discussed.


Assuntos
Testes Imediatos , Vírus , Humanos , Vírus/isolamento & purificação , Vírus/genética , Viroses/diagnóstico , Antígenos Virais/análise , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/análise , Técnicas Biossensoriais/métodos , Sistemas Automatizados de Assistência Junto ao Leito , RNA Viral/análise , RNA Viral/genética
11.
J Nat Prod ; 87(6): 1501-1512, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38603577

RESUMO

Epithelial ovarian cancer is among the deadliest gynecological tumors worldwide. Clinical treatment usually consists of surgery and adjuvant chemo- and radiotherapies. Due to the high rate of recurrence and rapid development of drug resistance, the current focus of research is on finding effective natural products with minimal toxic side effects for treating epithelial ovarian tumors. Cannabidiol is among the most abundant cannabinoids and has a non-psychoactive effect compared to tetrahydrocannabinol, which is a key advantage for clinical application. Studies have shown that cannabidiol has antiproliferative, pro-apoptotic, cytotoxic, antiangiogenic, anti-inflammatory, and immunomodulatory properties. However, its therapeutic value for epithelial ovarian tumors remains unclear. This study aims to investigate the effects of cannabidiol on epithelial ovarian tumors and to elucidate the underlying mechanisms. The results showed that cannabidiol has a significant inhibitory effect on epithelial ovarian tumors. In vivo experiments demonstrated that cannabidiol could inhibit tumor growth by modulating the intestinal microbiome and increasing the abundance of beneficial bacteria. Western blot assays showed that cannabidiol bound to EGFR/AKT/MMPs proteins and suppressed EGFR/AKT/MMPs expression in a dose-dependent manner. Network pharmacology and molecular docking results suggested that cannabidiol could affect the EGFR/AKT/MMPs signaling pathway.


Assuntos
Canabidiol , Carcinoma Epitelial do Ovário , Microbioma Gastrointestinal , Neoplasias Ovarianas , Canabidiol/farmacologia , Canabidiol/química , Microbioma Gastrointestinal/efeitos dos fármacos , Feminino , Humanos , Carcinoma Epitelial do Ovário/tratamento farmacológico , Neoplasias Ovarianas/tratamento farmacológico , Animais , Camundongos , Receptores ErbB/metabolismo , Linhagem Celular Tumoral , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proliferação de Células/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Estrutura Molecular
12.
Chem Soc Rev ; 52(24): 8481-8499, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37929845

RESUMO

Nanomedicine, as an interdisciplinary discipline involving the development and application of nanoscale materials and technologies, is rapidly developing under the impetus of bionanotechnology and has attracted a great deal of attention from researchers. Especially, with the global outbreak of COVID-19, the in-depth investigation of the infection mechanism of the viruses has made the study of virus-mimicking nanosystems (VMNs) a popular research topic. In this review, we initiate with a brief historical perspective on the emergence and development of VMNs for providing a comprehensive view of the field. Next, we present emerging design principles and functionalization strategies for fabricating VMNs in light of viral infection mechanisms. Then, we describe recent advances in VMNs in biology, with a major emphasis on representative examples. Finally, we summarize the opportunities and challenges that exist in this field, hoping to provide new insights and inspiration to develop VMNs for disease diagnosis and treatment and to attract the interest of more researchers from different fields.


Assuntos
COVID-19 , Vírus , Humanos , Nanomedicina , COVID-19/diagnóstico
13.
Chin J Traumatol ; 27(4): 218-225, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38744544

RESUMO

PURPOSE: The present study aimed to analyze the influence of muscle activation on lumbar injury under a specific +Gz load. METHODS: A hybrid finite element human body model with detailed lumbar anatomy and lumbar muscle activation capabilities was developed. Using the specific +Gz loading acceleration as input, the kinematic and biomechanical responses of the occupant's lower back were studied for both activated and deactivated states of the lumbar muscles. RESULTS: The results indicated that activating the major lumbar muscles enhanced the stability of the occupant's torso, which delayed the contact between the occupant's head and the headrest. Lumbar muscle activation led to higher strain and stress output in the lumbar spine under +Gz load, such as the maximum Von Mises stress of the vertebrae and intervertebral discs increased by 177.9% and 161.8%, respectively, and the damage response index increased by 84.5%. CONCLUSION: In both simulations, the occupant's risk of lumbar injury does not exceed 10% probability. Therefore, the activation of muscles could provide good protection for maintaining the lumbar spine and reduce the effect of acceleration in vehicle travel direction.


Assuntos
Vértebras Lombares , Humanos , Vértebras Lombares/lesões , Fenômenos Biomecânicos , Análise de Elementos Finitos , Aceleração , Hipergravidade/efeitos adversos , Músculo Esquelético/lesões , Músculo Esquelético/fisiologia , Músculo Esquelético/fisiopatologia , Traumatismos da Coluna Vertebral/fisiopatologia , Traumatismos da Coluna Vertebral/etiologia
14.
Anal Chem ; 95(44): 16298-16304, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37874254

RESUMO

Translation is one of the many critical cellular activities regulated by viruses following host-cell invasion, and studies of viral mRNA translation kinetics and subcellular localization require techniques for the dynamic, real-time visualization of translation. However, conventional tools for imaging mRNA translation often require coding region modifications that may affect native translation. Here, we achieve dynamic imaging of translation with a tool that labels target mRNAs with unmodified coding regions using a CRISPR/dCas13 system with specific complementary paired guide RNAs. This system enables a real-time dynamic visualization of the translation process and is a promising tool for further investigations of the mechanisms of translation.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Vírus , RNA Mensageiro/genética , Vírus/genética , Diagnóstico por Imagem , Biossíntese de Proteínas
15.
J Virol ; 96(5): e0181321, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35020471

RESUMO

Influenza A virus (IAV) is a global health threat. The cellular endocytic machineries harnessed by IAV remain elusive. Here, by tracking single IAV particles and quantifying the internalized IAV, we found that sphingomyelin (SM)-sequestered cholesterol, but not accessible cholesterol, is essential for the clathrin-mediated endocytosis (CME) of IAV. The clathrin-independent endocytosis of IAV is cholesterol independent, whereas the CME of transferrin depends on SM-sequestered cholesterol and accessible cholesterol. Furthermore, three-color single-virus tracking and electron microscopy showed that the SM-cholesterol complex nanodomain is recruited to the IAV-containing clathrin-coated structure (CCS) and facilitates neck constriction of the IAV-containing CCS. Meanwhile, formin-binding protein 17 (FBP17), a membrane-bending protein that activates actin nucleation, is recruited to the IAV-CCS complex in a manner dependent on the SM-cholesterol complex. We propose that the SM-cholesterol nanodomain at the neck of the CCS recruits FBP17 to induce neck constriction by activating actin assembly. These results unequivocally show the physiological importance of the SM-cholesterol complex in IAV entry. IMPORTANCE IAV infects cells by harnessing cellular endocytic machineries. A better understanding of the cellular machineries used for its entry might lead to the development of antiviral strategies and would also provide important insights into physiological endocytic processes. This work demonstrated that a special pool of cholesterol in the plasma membrane, SM-sequestered cholesterol, recruits FBP17 for the constriction of clathrin-coated pits in IAV entry. Meanwhile, the clathrin-independent cell entry of IAV is cholesterol independent. The internalization of transferrin, the gold-standard cargo endocytosed solely via CME, is much less dependent on the SM-cholesterol complex. These results provide new insights into IAV infection and the pathway/cargo-specific involvement of the cholesterol pool(s).


Assuntos
Colesterol , Vesículas Revestidas por Clatrina , Proteínas de Ligação a Ácido Graxo , Forminas , Vírus da Influenza A , Internalização do Vírus , Actinas/metabolismo , Animais , Colesterol/metabolismo , Vesículas Revestidas por Clatrina/metabolismo , Vesículas Revestidas por Clatrina/virologia , Endocitose/fisiologia , Proteínas de Ligação a Ácido Graxo/metabolismo , Forminas/metabolismo , Vírus da Influenza A/metabolismo , Domínios Proteicos , Esfingomielinas/metabolismo , Transferrinas/metabolismo
16.
J Transl Med ; 21(1): 704, 2023 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-37814323

RESUMO

BACKGROUND: Colorectal cancer (CRC) is the third most common malignant tumor. Fusobacterium nucleatum (F. nucleatum) is overabundant in CRC and associated with metastasis, but the role of F. nucleatum in CRC cell migration and metastasis has not been fully elucidated. METHODS: Differential gene analysis, protein-protein interaction, robust rank aggregation analysis, functional enrichment analysis, and gene set variation analysis were used to figure out the potential vital genes and biological functions affected by F. nucleatum infection. The 16S rDNA sequencing and q-PCR were used to detect the abundance of F. nucleatum in tissues and stools. Then, we assessed the effect of F. nucleatum on CRC cell migration by wound healing and transwell assays, and confirmed the role of Matrix metalloproteinase 7 (MMP7) induced by F. nucleatum in cell migration. Furthermore, we dissected the mechanisms involved in F. nucleatum induced MMP7 expression. We also investigated the MMP7 expression in clinical samples and its correlation with prognosis in CRC patients. Finally, we screened out potential small molecular drugs that targeted MMP7 using the HERB database and molecular docking. RESULTS: F. nucleatum infection altered the gene expression profile and affected immune response, inflammation, biosynthesis, metabolism, adhesion and motility related biological functions in CRC. F. nucleatum was enriched in CRC and promoted the migration of CRC cell by upregulating MMP7 in vitro. MMP7 expression induced by F. nucleatum infection was mediated by the MAPK(JNK)-AP1 axis. MMP7 was highly expressed in CRC and correlated with CMS4 and poor clinical prognosis. Small molecular drugs such as δ-tocotrienol, 3,4-benzopyrene, tea polyphenols, and gallic catechin served as potential targeted therapeutic drugs for F. nucleatum induced MMP7 in CRC. CONCLUSIONS: Our study showed that F. nucleatum promoted metastasis-related characteristics of CRC cell by upregulating MMP7 via MAPK(JNK)-AP1 axis. F. nucleatum and MMP7 may serve as potential therapeutic targets for repressing CRC advance and metastasis.


Assuntos
Neoplasias Colorretais , Infecções por Fusobacterium , Humanos , Fusobacterium nucleatum/genética , Metaloproteinase 7 da Matriz/genética , Neoplasias Colorretais/patologia , Simulação de Acoplamento Molecular , Infecções por Fusobacterium/complicações , Infecções por Fusobacterium/diagnóstico , Infecções por Fusobacterium/microbiologia
17.
Bioconjug Chem ; 34(6): 1037-1044, 2023 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-37204067

RESUMO

Sphingomyelinase (SMase), a hydrolase of sphingomyelin (SM) enriched in the outer leaflet of the plasma membrane of mammalian cells, is closely associated with the onset and development of many diseases, but the specific mechanisms of SMase on the cell structure, function, and behavior are not yet fully understood due to the complexity of the cell structure. Artificial cells are minimal biological systems constructed from various molecular components designed to mimic cellular processes, behaviors, and structures, which are excellent models for studying biochemical reactions and dynamic changes in cell membranes. In this work, we presented an artificial cell model that mimics the lipid composition and content of the outer leaflet of mammalian plasma membranes for studying the effect of SMase on cell behavior. The results confirmed that the artificial cells can respond to SM degradation by producing ceramides that enrich and alter the membrane charge and permeability, thus inducing the budding and fission of the artificial cells. Thus, the artificial cells developed here provide a powerful tool to study the mechanism of action of cell membrane lipids on cell biological behavior, paving the way for further molecular mechanism studies.


Assuntos
Células Artificiais , Esfingomielinas , Animais , Esfingomielinas/análise , Esfingomielinas/metabolismo , Esfingomielinas/farmacologia , Ceramidas/química , Ceramidas/metabolismo , Ceramidas/farmacologia , Membrana Celular/metabolismo , Esfingomielina Fosfodiesterase/química , Esfingomielina Fosfodiesterase/metabolismo , Esfingomielina Fosfodiesterase/farmacologia , Mamíferos/metabolismo
18.
Phytother Res ; 37(10): 4722-4739, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37443453

RESUMO

Epithelial ovarian cancer (EOC) is the most common and fatal subtype of ovarian malignancies, with no effective therapeutics available. Our previous studies have demonstrated extraordinary suppressive efficacy of enterolactone (ENL) on EOC. A chemotherapeutic agent, trabectedin (Trabe), is shown to be effective on ovarian cancer, especially when combined with other therapeutics, such as pegylated liposomal doxorubicin or oxaliplatin. Thrombospondin 1 (THBS1), a kind of matrix glycoprotein, plays important roles against cancer development through inhibiting angiogenesis but whether it is involved in the suppression of EOC by ENL or Trabe remains unknown. To test combined suppressive effects of ENL and Trabe on EOC and possible involvement of THBS1 in the anticancer activities of ENL and Trabe. The EOC cell line ES-2 was transfected with overexpressed THBS1 by lentivirus vector. We employed tube formation assay to evaluate the anti-angiogenesis activity of ENL and of its combined use with Trabe after THBS1 overexpression and established drug intervention and xenograft nude mouse cancer models to assess the in vivo effects of the hypothesized synergistic suppression between the agents and the involvement of THBS1. Mouse fecal samples were collected for 16S rDNA sequencing and microbiota analysis. We detected strong inhibitory activities of ENL and Trabe against the proliferation and migration of cancer cells and observed synergistic effects between ENL and Trabe in suppressing EOC. ENL and Trabe, given either separately or in combination, could suppress the tube formation capability of human microvascular endothelial cells, and this inhibitory effect became even stronger with THBS1 overexpression. In the ENL plus Trabe combination group, the expression of tissue inhibitor of metalloproteinases 3 and cluster of differentiation 36 was both upregulated, whereas matrix metalloproteinase 9, vascular endothelial growth factor, and cluster of differentiation 47 were all decreased. With the overexpression of THBS1, the results became even more pronounced. In animal experiments, combined use of ENL and Trabe showed superior inhibitory effects to either single agent and significantly suppressed tumor growth, and the overexpression of THBS1 further enhanced the anti-cancer activities of the drug combination group. ENL and Trabe synergistically suppress EOC and THBS1 could remarkably facilitate the synergistic anticancer effects of ENL and Trabe.


Assuntos
Neoplasias Ovarianas , Trombospondina 1 , Animais , Camundongos , Humanos , Feminino , Carcinoma Epitelial do Ovário , Trabectedina/uso terapêutico , Trombospondina 1/uso terapêutico , Fator A de Crescimento do Endotélio Vascular , Células Endoteliais/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética
19.
Nano Lett ; 22(22): 9163-9173, 2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36374537

RESUMO

Maximizing the therapeutic capacity of drugs by allowing them to escape lysosomal degradation is a long-term challenge for nanodrug delivery. Japanese encephalitis virus (JEV) has evolved the ability to escape the endosomal region to avoid degradation of internal genetic material by lysosomes and further induce upregulation of cellular autophagy for the purpose of their mass reproduction. In this work, to exploit the lysosome escape and autophagy-inducing properties of JEV for cancer therapy, we constructed a virus-mimicking nanodrug consisting of anti-PDL1 antibody-decorated JEV-mimicking virosome encapsulated with a clinically available autophagy inhibitor, hydroxychloroquine (HCQ). Our study indicated that the nanodrug can upregulate the autophagy level and inhibit the autophagic flux, thereby inducing the apoptosis of tumor cells, and further activating the immune response, which can greatly improve the antitumor and tumor metastasis suppression effects and provide a potential therapeutic strategy for tumor treatment.


Assuntos
Nanopartículas , Neoplasias , Autofagia , Lisossomos/metabolismo , Apoptose , Hidroxicloroquina/farmacologia , Hidroxicloroquina/uso terapêutico , Nanopartículas/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo
20.
Molecules ; 28(14)2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37513239

RESUMO

Sphingomyelin (SM) and its metabolites are crucial regulators of tumor cell growth, differentiation, senescence, and programmed cell death. With the rise in lipid-based nanomaterials, engineered lipidic nanomaterials inspired by SM metabolism, corresponding lipid targeting, and signaling activation have made fascinating advances in cancer therapeutic processes. In this review, we first described the specific pathways of SM metabolism and the roles of their associated bioactive molecules in mediating cell survival or death. We next summarized the advantages and specific applications of SM metabolism-based lipidic nanomaterials in specific cancer therapies. Finally, we discussed the challenges and perspectives of this emerging and promising SM metabolism-based nanomaterials research area.


Assuntos
Nanoestruturas , Neoplasias , Humanos , Esfingomielinas , Nanoestruturas/uso terapêutico , Neoplasias/tratamento farmacológico , Apoptose , Sobrevivência Celular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA