Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(17): e202318568, 2024 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-38433368

RESUMO

ATR has emerged as a promising target for anti-cancer drug development. Several potent ATR inhibitors are currently undergoing various stages of clinical trials, but none have yet received FDA approval due to unclear regulatory mechanisms. In this study, we discovered a potent and selective ATR degrader. Its kinase-independent regulatory functions in acute myeloid leukemia (AML) cells were elucidated using this proteolysis-targeting chimera (PROTAC) molecule as a probe. The ATR degrader, 8 i, exhibited significantly different cellular phenotypes compared to the ATR kinase inhibitor 1. Mechanistic studies revealed that ATR deletion led to breakdown in the nuclear envelope, causing genome instability and extensive DNA damage. This would increase the expression of p53 and triggered immediately p53-mediated apoptosis signaling pathway, which was earlier and more effective than ATR kinase inhibition. Based on these findings, the in vivo anti-proliferative effects of ATR degrader 8 i were assessed using xenograft models. The degrader significantly inhibited the growth of AML cells in vivo, unlike the ATR inhibitor. These results suggest that the marked anti-AML activity is regulated by the kinase-independent functions of the ATR protein. Consequently, developing potent and selective ATR degraders could be a promising strategy for treating AML.


Assuntos
Antineoplásicos , Leucemia Mieloide Aguda , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/uso terapêutico , Linhagem Celular Tumoral , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/metabolismo , Proteólise , Proteína Supressora de Tumor p53/metabolismo
2.
J Am Chem Soc ; 143(18): 7088-7095, 2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-33938219

RESUMO

Here, we report the first asymmetric total synthesis of (+)-talassimidine and (+)-talassamine, two hetidine-type C20-diterpenoid alkaloids. A highly regio- and diastereoselective 1,3-dipolar cycloaddition of an azomethine ylide yielded a chiral tetracyclic intermediate in high enantiopurity, thus providing the structural basis for asymmetric assembly of the hexacyclic hetidine skeleton. In this key step, the introduction of a single chiral center induces four new continuous chiral centers. Another key transformation is the dearomative cyclopropanation of the benzene ring and subsequent SN2-like ring opening of the resultant cyclopropane ring with water as a nucleophile, which not only establishes the B ring but also precisely installs the difficult-to-achieve equatorial C7-OH group.


Assuntos
Alcaloides/síntese química , Diterpenos/síntese química , Alcaloides/química , Diterpenos/química , Conformação Molecular
3.
Plant Physiol ; 182(1): 658-668, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31659126

RESUMO

Gibberellin (GA) is known to play an important role in low red/far-red (R:FR) light ratio-mediated hypocotyl and petiole elongation in Arabidopsis (Arabidopsis thaliana). However, the regulatory relationship between low R:FR and GAs remains unclear, especially in gymnosperms. To increase our understanding of the molecular basis of low R:FR-mediated shoot elongation in pines and to determine whether there is an association between low R:FR and GAs action, we explored the morphological and transcriptomic changes triggered by low R:FR, GAs, and paclobutrazol (PAC), a GAs biosynthesis inhibitor, in Pinus tabuliformis seedlings. Transcriptome profiles revealed that low R:FR conditions and GAs have a common set of transcriptional targets in P. tabuliformis We provide evidence that the effect of low R:FR on shoot elongation in P. tabuliformis is at least partially modulated by GAs accumulation, which can be largely attenuated by PAC. GAs are also involved in the cross talk between different phytohormones in the low R:FR response. A GA biosynthesis gene, encoding ent-kaurenoic acid oxidase (KAO), was strongly stimulated by low R:FR without being affected by GAs feedback regulation or the photoperiod. We show that GA signaling is required for low R:FR-induced shoot elongation in P tabuliformis seedlings, and that there are different regulatory targets for low R:FR-mediated GA biosynthesis between conifers and angiosperms.


Assuntos
Giberelinas/metabolismo , Luz , Pinus/metabolismo , Plântula/metabolismo , Pinus/efeitos da radiação , Plântula/efeitos da radiação , Transdução de Sinais/efeitos da radiação
4.
Int J Mol Sci ; 22(17)2021 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-34502511

RESUMO

Drought stress has an extensive impact on regulating various physiological, metabolic, and molecular responses. In the present study, the Pinus tabuliformis transcriptome was studied to evaluate the drought-responsive genes using RNA- Sequencing approache. The results depicted that photosynthetic rate and H2O conductance started to decline under drought but recovered 24 h after re-watering; however, the intercellular CO2 concentration (Ci) increased with the onset of drought. We identified 84 drought-responsive transcription factors, 62 protein kinases, 17 transcriptional regulators, and 10 network hub genes. Additionally, we observed the expression patterns of several important gene families, including 2192 genes positively expressed in all 48 samples, and 40 genes were commonly co-expressed in all drought and recovery stages compared with the control samples. The drought-responsive transcriptome was conserved mainly between P. tabuliformis and A. thaliana, as 70% (6163) genes had a homologous in arabidopsis, out of which 52% homologous (3178 genes corresponding to 2086 genes in Arabidopsis) were also drought response genes in arabidopsis. The collaborative network exhibited 10 core hub genes integrating with ABA-dependent and independent pathways closely conserved with the ABA signaling pathway in the transcription factors module. PtNCED3 from the ABA family genes had shown significantly different expression patterns under control, mild, prolonged drought, and recovery stages. We found the expression pattern was considerably increased with the prolonged drought condition. PtNCED3 highly expressed in all drought-tested samples; more interestingly, expression pattern was higher under mild and prolonged drought. PtNCED3 is reported as one of the important regulating enzymes in ABA synthesis. The continuous accumulation of ABA in leaves increased resistance against drought was due to accumulation of PtNCED3 under drought stress in the pine needles.


Assuntos
Regulação da Expressão Gênica de Plantas/genética , Pinus/genética , Estresse Fisiológico/genética , Ácido Abscísico/metabolismo , Arabidopsis/genética , Secas , Expressão Gênica/genética , Perfilação da Expressão Gênica/métodos , Folhas de Planta/metabolismo , Análise de Sequência de RNA/métodos , Fatores de Transcrição/metabolismo , Transcriptoma/genética
5.
BMC Genomics ; 21(1): 504, 2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32698817

RESUMO

BACKGROUND: Seasonal flowering time is an ecologically and economically important trait in temperate trees. Previous studies have shown that temperature in many tree species plays a pivotal role in regulating flowering time. However, genetic control of flowering time is not synchronised in different individual trees under comparable temperature conditions, the underlying molecular mechanism is mainly to be investigated. RESULTS: In the present study, we analysed the transcript abundance in male cones and needles from six early pollen-shedding trees (EPs) and six neighbouring late pollen-shedding trees (LPs) in Pinus tabuliformis at three consecutive time points in early spring. We found that the EPs and LPs had distinct preferred transcriptional modules in their male cones and, interestingly, the expression pattern was also consistently maintained in needles even during the winter dormancy period. Additionally, the preferred pattern in EPs was also adopted by other fast-growing tissues, such as elongating new shoots. Enhancement of nucleic acid synthesis and stress resistance pathways under cold conditions can facilitate rapid growth and maintain higher transcriptional activity. CONCLUSIONS: During the cold winter and early spring seasons, the EPs were more sensitive to relatively warmer temperatures and showed higher transcriptomic activity than the LPs, indicating that EPs required less heat accumulation for pollen shedding than LPs. These results provided a transcriptomic-wide understanding of the temporal regulation of pollen shedding in pines.


Assuntos
Pinus , Perfilação da Expressão Gênica , Masculino , Pinus/genética , Pólen/genética , Estações do Ano , Árvores
6.
3 Biotech ; 14(9): 204, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39161880

RESUMO

Heat shock protein 90 (HSP90) is important for many organisms, including plants. Based on the whole genome information, the gene number, gene structure, evolutionary relationship, protein structure, and active site of the HSP90 gene family in Rosa chinensis and Rubus idaeus were determined, and the expression of the HSP90 gene under salt, and drought stresses in two rose varieties Wangxifeng and Sweet Avalanche were analyzed. Six and eight HSP90 genes were identified from R. chinensis and Ru. idaeus, respectively. Phylogenetic analysis revealed that the analyzed genes were divided into two Groups and four subgroups (Classes 1a, 1b, 2a, and 2b). Although members within the same classes displayed highly similar gene structures, while the gene structures and conserved domains of Group 1 (Class 1a and 1b) and the Group 2 (Class 2a and 2b) are different. Tandem and segmental duplication genes were found in Ru. idaeus, but not in R. chinensis, perhaps explaining the difference in HSP90 gene quantity in the two analyzed species. Analysis of cis-acting elements revealed abundant abiotic stress, photolight-response, and hormone-response elements in R. chinensis HSP90s. qRT-PCR analysis suggested that RcHSP90-1-1, RcHSP90-5-1 and RcHSP90-6-1 in Sweet Avalanche and Wangxifeng varieties played important regulatory roles under salt and drought stress. The analysis of protein structure and active sites indicate that the potential different roles of RcHSP90-1-1, RcHSP90-5-1, and RcHSP90-6-1 in salt and drought stresses may come from the differences of corresponding protein structures and activation sites. These data will provide information for the breeding of rose varieties with high stress resistance. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-024-04052-0.

7.
Org Lett ; 26(33): 6950-6954, 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-38980313

RESUMO

Tricyclic 6-7-6 and 6-8-6 carbon ring systems are present in numerous biologically active natural molecules. However, simple and efficient synthetic approaches to these scaffolds remain challenging. Herein, we report a versatile strategy for constructing these ring systems via Fe(NO3)3-triggered radical arylation of arenes starting from cyclopropanols. This synthetic utility has been demonstrated in the synthesis of the natural product N-acetylcolchinol-O-methyl ether.

8.
Eur J Med Chem ; 271: 116395, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38626523

RESUMO

The transforming growth factor ß1 (TGFß1)/SMAD signaling pathway regulates many vital physiological processes. The development of potent inhibitors targeting activin receptor-like kinase 5 (ALK5) would provide potential treatment reagents for various diseases. A significant number of ALK5 inhibitors have been discovered, and they are currently undergoing clinical evaluation at various stages. However, the clinical demands were far from being met. In this study, we utilized an alternative conformation-similarity-based virtual screening (CSVS) combined with a fragment-based drug designing (FBDD) strategy to efficiently discover a potent and active hit with a novel chemical scaffold. After structural optimization in the principle of group replacement, compound 57 was identified as the most promising ALK5 inhibitor. Compound 57 demonstrated significant inhibitory effects against the TGF-ß1/SMAD signaling pathway. It could markedly attenuate the production of extracellular matrix (ECM) and deposition of collagen. Also, the lead compound showed adequate pharmacokinetic (PK) properties and good in vivo tolerance. Moreover, treatment with compound 57 in two different xerograph models showed significant inhibitory effects on the growth of pancreatic cancer cells. These results suggested that lead compound 57 refers as a promising ALK5 inhibitor both in vitro and in vivo, which merits further validation.


Assuntos
Desenho de Fármacos , Inibidores de Proteínas Quinases , Pirazóis , Pirimidinas , Receptor do Fator de Crescimento Transformador beta Tipo I , Receptor do Fator de Crescimento Transformador beta Tipo I/antagonistas & inibidores , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo , Humanos , Pirazóis/farmacologia , Pirazóis/química , Pirazóis/síntese química , Pirimidinas/farmacologia , Pirimidinas/química , Pirimidinas/síntese química , Relação Estrutura-Atividade , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Animais , Estrutura Molecular , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta1/antagonistas & inibidores , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Camundongos , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Receptores de Fatores de Crescimento Transformadores beta/antagonistas & inibidores , Receptores de Fatores de Crescimento Transformadores beta/metabolismo
9.
Cancer Lett ; 594: 216980, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38797229

RESUMO

Acute myeloid leukemia (AML) is frequently linked to genetic abnormalities, with the t (8; 21) translocation, resulting in the production of a fusion oncoprotein AML1-ETO (AE), being a prevalent occurrence. This protein plays a pivotal role in t (8; 21) AML's onset, advancement, and recurrence, making it a therapeutic target. However, the development of drug molecules targeting AML1-ETO are markedly insufficient, especially used in clinical treatment. In this study, it was uncovered that Neratinib could significantly downregulate AML1-ETO protein level, subsequently promoting differentiation of t (8; 21) AML cells. Based on "differentiated active" probes, Neratinib was identified as a functional inhibitor against HNRNPA3 through covalent binding. The further studies demonstrated that HNRNPA3 function as a putative m6A reader responsible for recognizing and regulating the alternative splicing of AML-ETO pre-mRNA. These findings not only contribute to a novel insight to the mechanism governing post-transcriptional modification of AML1-ETO transcript, but also suggest that Neratinib would be promising therapeutic potential for t (8; 21) AML treatment.


Assuntos
Diferenciação Celular , Subunidade alfa 2 de Fator de Ligação ao Core , Leucemia Mieloide Aguda , Proteínas de Fusão Oncogênica , Quinolinas , Proteína 1 Parceira de Translocação de RUNX1 , Humanos , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Quinolinas/farmacologia , Diferenciação Celular/efeitos dos fármacos , Proteína 1 Parceira de Translocação de RUNX1/genética , Proteína 1 Parceira de Translocação de RUNX1/metabolismo , Precursores de RNA/metabolismo , Precursores de RNA/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/genética , Translocação Genética/efeitos dos fármacos , Adenosina/análogos & derivados , Adenosina/metabolismo , Adenosina/farmacologia , Processamento Alternativo/efeitos dos fármacos , Linhagem Celular Tumoral , Animais , Camundongos
10.
Nat Chem ; 15(8): 1074-1082, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37365338

RESUMO

Bridged frameworks are of high chemical and biological significance, being ubiquitous in pharmaceutical molecules and natural products. Specific structures are usually preformed to build these rigid segments at the middle or late stage in the synthesis of polycyclic molecules, resulting in decreased synthetic efficiency and target-specific syntheses. As a logically distinct synthetic strategy, we constructed an allene/ketone-equipped morphan core at the outset through an enantioselective α-allenylation of ketones. Experimental and theoretical results revealed that the high reactivity and enantioselectivity of this reaction are attributed to the cooperative effects of the organocatalyst and metal catalyst. The bridged backbone generated was employed as a structural platform to guide and facilitate the assembly of up to five fusing rings, and the allene and ketone groups thereon were used to precisely install various functionalities at C16 and C20 at the late stage, leading to a concise, collective total synthesis of nine strychnan alkaloids.

11.
Org Lett ; 25(12): 2058-2062, 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-36930849

RESUMO

A Fe(NO3)3-mediated ring-opening arylation of cyclopropanol with the electron-rich pyrrole has been developed, which might proceed through oxidative radical ring opening of cyclopropanol followed by cyclization to the pyrrole motif and then aromatization. This method enables direct arylation of cyclopropanol without prefunctionalization and thus allows rapid access to a diverse array of chiral 5,6,7,8-tetrahydroindolizines from easily available chiral amino acid esters. The synthetic utility has been demonstrated by the asymmetric synthesis of alklaoids (-)-indolizidine 167B, (+)-indolizidine 209D, (+)-monomorine I, and a natural product analogue.

12.
J Med Chem ; 64(17): 12537-12547, 2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34351142

RESUMO

Triple-negative breast cancer (TNBC) has been considered the most aggressive and mortal breast cancer. Thus far, it remains an important challenge to develop TNBC targeted therapy. As revealed from numerous recent studies, ANXA2 may be a potential target to treat TNBC. In the present study, a natural product 5α-epoxyalantolactone (5α-EAL) was discovered as an anti-breast cancer stem cells (BCSCs) lead compound. Furthermore, 5α-EAL was found to be able to notably suppress the function of ANXA2 by covalently targeting cysteine 9 (Cys9) of ANXA2. To the best of our knowledge, 5α-EAL was recognized as the first small molecule functional inhibitor of ANXA2. It could significantly inhibit the formation of the heterotetrameric complex of ANXA2 and S100A10, which is capable of transporting E-cadherin (E-Ca) to the membrane. The above findings may be used as a possible strategy to develop novel anti-TNBC therapies targeting ANXA2.


Assuntos
Anexina A2/metabolismo , Antineoplásicos/uso terapêutico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Lactonas/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Anexina A2/genética , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Humanos , Lactonas/química , Neoplasias Hepáticas/prevenção & controle , Neoplasias Hepáticas/secundário , Neoplasias Pulmonares/prevenção & controle , Neoplasias Pulmonares/secundário , Estrutura Molecular , Neoplasias de Mama Triplo Negativas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Plant Methods ; 16: 52, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32308730

RESUMO

BACKGROUND: Functional genomic studies using genetics approaches of conifers are hampered by the complex and enormous genome, long vegetative growth period, and exertion in genetic transformation. Thus, the research carried out on gene function in Pinus tabuliformis is typically performed by heterologous expression based on the model plant Arabidopsis. However, due to the evolutionary and vast diversification from non-flowering (gymnosperms) to flowering (angiosperms) plants, several key differences may alter the underlying genetic concerns and the analysis of variants. Therefore, it is essential to develop an efficient genetic transformation and gene function identification protocol for P. tabuliformis. RESULTS: In the present study we established a highly efficient transgene Agrobacterium-mediated transient expression system for P. tabuliformis. Using a ß-glucuronidase gene (GUS) as a reporter gene expression, the highest transformation efficiency (70.1%) was obtained by co-cultivation with Agrobacterium strain GV3101 at an optical density at 600 nm of 0.8, with 150 µM acetosyringone for 30 min followed by 3 days in the dark at 23 ± 1 °C. This protocol would be applied to other conifers; GUS staining was observed 24 h post-infection. CONCLUSIONS: We report a simple, fast, and resilient system for transient Agrobacterium-mediated transformation high-level expression of target genes in P. tabuliformis, which will also improve transformation efficiency in other conifer species.

14.
Tree Physiol ; 39(7): 1173-1186, 2019 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-31073594

RESUMO

It has long been known that the pollen shedding time in pine trees is correlated with temperature, but the molecular basis for this has remained largely unknown. To better understand the mechanisms driving temperature response and to identify the hub regulators of pollen shedding time regulation in Pinus tabuliformis Carr., we identified a set of temperature-sensitive genes by carrying out a comparative transcriptome analysis using six early pollen shedding trees (EPs) and six late pollen shedding trees (LPs) during mid-winter and at three consecutive time points in early spring. We carried out a weighted gene co-expression network analysis and constructed a transcription factor (TF) collaborative network, merging the common but differentially expressed TFs of the EPs and LPs into a joint network. We found five hub genes in the core TF module whose expression was rapidly induced by low temperatures. The transcriptional activity of this TF module was strongly associated with pollen shedding time, and likely to produce the fine balance between cold hardiness and growth activity in early spring. We confirmed the key role of temperature in regulating flowering time and identified a transcription factor module associated with pollen shedding time in P. tabuliformis. This suggests that repression of growth activity by repressors is the main mechanism balancing growth and cold hardiness in pine trees in early spring. Our results provide new insights into the molecular mechanisms regulating seasonal flowering time in pines.


Assuntos
Pinus , Fatores de Transcrição , Pólen , Temperatura , Transcriptoma
15.
Org Lett ; 20(5): 1350-1354, 2018 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-29446637

RESUMO

This study developed a facile and efficient synthetic strategy to construct quaternary chiral centers at the α-position of imines and ketones. High regioselectivity and diastereoselectivity were achieved through the synergetic effect of electron-withdrawing directing groups and N-tert-butyl sulfinamide as chiral auxiliaries. Either of them could be removed under the optimized conditions without any epimerization.

16.
Eur J Med Chem ; 156: 21-42, 2018 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-30006166

RESUMO

Cancer stem cells (CSCs) are responsible for carcinogenesis, cancer progression, relapse, metastasis and drug resistance. Therefore, the development of drug molecules targeting CSCs plays a vital role in medicinal researching field. However, there are extremely rare molecules that selectively ablate CSCs. The research and development of drugs targeting CSCs is limited due to a lack of anti-CSCs lead compounds. In this study, an anti-CSCs lead compound 35b was discovered, which was derived from the natural chemical scaffold of Symplostatin 4. This compound exhibited a significantly suppressive effect on tumor growth both in vitro and in vivo. Additionally, 35b could significantly reduce the number of melanoma tumor spheres and decrease the percentage of ALDH+ melanoma cells. Further mechanism study illustrated that compound 35b could eliminate the melanoma CSCs by efficiently blocking Wnt/ß-catenin signaling pathway. Collectively, our findings would provide a novel chemical scaffold and alternative idea of molecular design for development of anti-CSCs drugs.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Células-Tronco Neoplásicas/efeitos dos fármacos , Peptídeos/química , Peptídeos/farmacologia , Via de Sinalização Wnt/efeitos dos fármacos , Animais , Peptídeos Catiônicos Antimicrobianos , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Descoberta de Drogas , Humanos , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Melanoma/patologia , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Camundongos Endogâmicos C57BL , Invasividade Neoplásica/patologia , Invasividade Neoplásica/prevenção & controle , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Peptídeos/uso terapêutico
17.
Eur J Med Chem ; 157: 229-247, 2018 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-30096654

RESUMO

In this study, anti-IPF lead compounds 42 and 44, derived from natural sesquiterpene lactones Isoalantolactone and alantolactone, were discovered by screening from a high-throughput TGF-ß1 reporter luciferase assay. Notably, they could reduce the myofibroblast activation and extracellular matrix deposition both in vitro and in vivo. Additionally, compounds 42 and 44 could significantly attenuate bleomycin-induced pulmonary fibrosis in mice. Further validation of pharmacokinetics study and toxicity evaluation indicated that compound 44 might be a promising anti-IPF drug candidate.


Assuntos
Descoberta de Drogas , Fibrose Pulmonar Idiopática/tratamento farmacológico , Lactonas/farmacologia , Sesquiterpenos de Eudesmano/farmacologia , Sesquiterpenos/farmacologia , Fator de Crescimento Transformador beta1/antagonistas & inibidores , Animais , Bleomicina , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Fibroblastos/efeitos dos fármacos , Ensaios de Triagem em Larga Escala , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/metabolismo , Lactonas/síntese química , Lactonas/química , Camundongos , Estrutura Molecular , Células NIH 3T3 , Sesquiterpenos/síntese química , Sesquiterpenos/química , Sesquiterpenos de Eudesmano/síntese química , Sesquiterpenos de Eudesmano/química , Relação Estrutura-Atividade , Fator de Crescimento Transformador beta1/metabolismo
18.
J Med Chem ; 61(23): 10814-10833, 2018 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-30433783

RESUMO

Cancer stem cells (CSCs) have been reported to be involved in tumorigenesis, tumor recurrence, cancer invasion, metastasis, and drug-resistance. Therefore, the development of drug molecules targeting CSCs has become an attractive therapeutic approach. However, the molecules which can selectively ablate CSCs are extremely rare. To explore the leading compounds targeting CSCs, 52 analogues of triterpenoic acids were synthesized in this study, whose biological activities were evaluated. On the basis of the results of tumorsphere assay, two compounds 48 and 51, derived from oleanolic acid, exhibited suppressive effect on elimination of different type of CSCs. Meanwhile, compounds 48 and 51 could significantly inhibit the growth of several tumors both in vitro and in vivo. Furthermore, treatment of cancer cells with both of two compounds would dramatically increase the level of ROS, which might eliminate the CSCs. Collectively, the leading compounds 48 and 51 were promising anti-CSCs agents that merited further validation as a novel class of chemotherapeutics.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Produtos Biológicos/química , Desenho de Fármacos , Células-Tronco Neoplásicas/efeitos dos fármacos , Triterpenos/química , Triterpenos/farmacologia , Antineoplásicos/síntese química , Apoptose/efeitos dos fármacos , Caspases/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Química Sintética , Ensaios de Seleção de Medicamentos Antitumorais , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Humanos , Células-Tronco Neoplásicas/patologia , Espécies Reativas de Oxigênio/metabolismo , Triterpenos/síntese química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA