Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Apoptosis ; 29(7-8): 1161-1184, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38743191

RESUMO

Lenvatinib is a commonly used first-line drug for the treatment of advanced hepatocellular carcinoma (HCC). However, its clinical efficacy is limited due to the drug resistance. EVA1A was a newly identified tumor suppressor, nevertheless, the impact of EVA1A on resistance to lenvatinib treatment in HCC and the potential molecular mechanisms remain unknown. In this study, the expression of EVA1A in HCC lenvatinib-resistant cells is decreased and its low expression was associated with a poor prognosis of HCC. Overexpression of EVA1A reversed lenvatinib resistance in vitro and in vivo, as demonstrated by its ability to promote cell apoptosis and inhibit cell proliferation, invasion, migration, EMT, and tumor growth. Silencing EVA1A in lenvatinib-sensitive parental HCC cells exerted the opposite effect and induced resistance to lenvatinib. Mechanistically, upregulated EVA1A inhibited the PI3K/AKT/MDM2 signaling pathway, resulting in a reduced interaction between MDM2 and p53, thereby stabilizing p53 and enhancing its antitumor activity. In addition, upregulated EVA1A suppressed the PI3K/AKT/mTOR signaling pathway and promoted autophagy, leading to the degradation of mutant p53 and attenuating its oncogenic impact. On the contrary, loss of EVA1A activated the PI3K/AKT/MDM2 signaling pathway and inhibited autophagy, promoting p53 proteasomal degradation and mutant p53 accumulation respectively. These findings establish a crucial role of EVA1A loss in driving lenvatinib resistance involving a mechanism of modulating PI3K/AKT/p53 signaling axis and suggest that upregulating EVA1A is a promising therapeutic strategy for alleviating resistance to lenvatinib, thereby improving the efficacy of HCC treatment.


Assuntos
Carcinoma Hepatocelular , Resistencia a Medicamentos Antineoplásicos , Neoplasias Hepáticas , Compostos de Fenilureia , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Quinolinas , Transdução de Sinais , Proteína Supressora de Tumor p53 , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Quinolinas/farmacologia , Quinolinas/uso terapêutico , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Compostos de Fenilureia/farmacologia , Compostos de Fenilureia/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/genética , Transdução de Sinais/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Animais , Linhagem Celular Tumoral , Camundongos , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Camundongos Nus , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Masculino , Ensaios Antitumorais Modelo de Xenoenxerto , Camundongos Endogâmicos BALB C , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/genética , Feminino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA