Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 451
Filtrar
1.
Nat Immunol ; 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39375550

RESUMO

Autoactivation of lineage-determining transcription factors mediates bistable expression, generating distinct cell phenotypes essential for complex body plans. Classical type 1 dendritic cell (cDC1) and type 2 dendritic cell (cDC2) subsets provide nonredundant functions for defense against distinct immune challenges. Interferon regulatory factor 8 (IRF8), the cDC1 lineage-determining transcription factor, undergoes autoactivation in cDC1 progenitors to establish cDC1 identity, yet its expression is downregulated during cDC2 differentiation by an unknown mechanism. This study reveals that the Irf8 +32-kb enhancer, responsible for IRF8 autoactivation, is naturally suboptimized with low-affinity IRF8 binding sites. Introducing multiple high-affinity IRF8 sites into the Irf8 +32-kb enhancer causes a gain-of-function effect, leading to erroneous IRF8 autoactivation in specified cDC2 progenitors, redirecting them toward cDC1 and a novel hybrid DC subset with mixed-lineage phenotypes. Further, this also causes a loss-of-function effect, reducing Irf8 expression in cDC1s. These developmental alterations critically impair both cDC1-dependent and cDC2-dependent arms of immunity. Collectively, our findings underscore the significance of enhancer suboptimization in the developmental segregation of cDCs required for normal immune function.

2.
Nat Immunol ; 23(11): 1536-1550, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36271147

RESUMO

CD40 signaling in classical type 1 dendritic cells (cDC1s) is required for CD8 T cell-mediated tumor rejection, but the underlying mechanisms are incompletely understood. Here, we identified CD40-induced genes in cDC1s, including Cd70, Tnfsf9, Ptgs2 and Bcl2l1, and examined their contributions to anti-tumor immunity. cDC1-specific inactivation of CD70 and COX-2, and global CD27 inactivation, only partially impaired tumor rejection or tumor-specific CD8 T cell expansion. Loss of 4-1BB, alone or in Cd27-/- mice, did not further impair anti-tumor immunity. However, cDC1-specific CD40 inactivation reduced cDC1 mitochondrial transmembrane potential and increased caspase activation in tumor-draining lymph nodes, reducing migratory cDC1 numbers in vivo. Similar impairments occurred during in vitro antigen presentation by Cd40-/- cDC1s to CD8+ T cells, which were reversed by re-expression of Bcl2l1. Thus, CD40 signaling in cDC1s not only induces costimulatory ligands for CD8+ T cells but also induces Bcl2l1 that sustains cDC1 survival during priming of anti-tumor responses.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias , Camundongos , Animais , Antígenos CD40/genética , Apresentação de Antígeno , Células Dendríticas , Camundongos Endogâmicos C57BL
3.
Annu Rev Cell Dev Biol ; 35: 381-406, 2019 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-31283378

RESUMO

Innate immunity and adaptive immunity consist of highly specialized immune lineages that depend on transcription factors for both function and development. In this review, we dissect the similarities between two innate lineages, innate lymphoid cells (ILCs) and dendritic cells (DCs), and an adaptive immune lineage, T cells. ILCs, DCs, and T cells make up four functional immune modules and interact in concert to produce a specified immune response. These three immune lineages also share transcriptional networks governing the development of each lineage, and we discuss the similarities between ILCs and DCs in this review.


Assuntos
Imunidade Adaptativa , Células Dendríticas/imunologia , Redes Reguladoras de Genes , Imunidade Inata/genética , Linfócitos/imunologia , Animais , Diferenciação Celular/imunologia , Citocinas/metabolismo , Regulação da Expressão Gênica/imunologia , Humanos , Linfócitos T/imunologia , Linfócitos T/microbiologia , Linfócitos T/parasitologia , Linfócitos T/virologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
Nat Immunol ; 20(9): 1174-1185, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31406377

RESUMO

Classical type 1 dendritic cells (cDC1s) are required for antiviral and antitumor immunity, which necessitates an understanding of their development. Development of the cDC1 progenitor requires an E-protein-dependent enhancer located 41 kilobases downstream of the transcription start site of the transcription factor Irf8 (+41-kb Irf8 enhancer), but its maturation instead requires the Batf3-dependent +32-kb Irf8 enhancer. To understand this switch, we performed single-cell RNA sequencing of the common dendritic cell progenitor (CDP) and identified a cluster of cells that expressed transcription factors that influence cDC1 development, such as Nfil3, Id2 and Zeb2. Genetic epistasis among these factors revealed that Nfil3 expression is required for the transition from Zeb2hi and Id2lo CDPs to Zeb2lo and Id2hi CDPs, which represent the earliest committed cDC1 progenitors. This genetic circuit blocks E-protein activity to exclude plasmacytoid dendritic cell potential and explains the switch in Irf8 enhancer usage during cDC1 development.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Células Dendríticas/citologia , Elementos Facilitadores Genéticos/genética , Proteína 2 Inibidora de Diferenciação/metabolismo , Fatores Reguladores de Interferon/metabolismo , Homeobox 2 de Ligação a E-box com Dedos de Zinco/metabolismo , Animais , Diferenciação Celular/imunologia , Células Cultivadas , Regulação da Expressão Gênica no Desenvolvimento/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Repressoras/metabolismo , Células-Tronco/citologia
5.
Nat Immunol ; 20(9): 1161-1173, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31406378

RESUMO

Induction of the transcription factor Irf8 in the common dendritic cell progenitor (CDP) is required for classical type 1 dendritic cell (cDC1) fate specification, but the mechanisms controlling this induction are unclear. In the present study Irf8 enhancers were identified via chromatin profiling of dendritic cells and CRISPR/Cas9 genome editing was used to assess their roles in Irf8 regulation. An enhancer 32 kilobases (kb) downstream of the Irf8 transcriptional start site (+32-kb Irf8) that was active in mature cDC1s was required for the development of this lineage, but not for its specification. Instead, a +41-kb Irf8 enhancer, previously thought to be active only in plasmacytoid dendritic cells, was found to also be transiently accessible in cDC1 progenitors, and deleting this enhancer prevented the induction of Irf8 in CDPs and abolished cDC1 specification. Thus, cryptic activation of the +41-kb Irf8 enhancer in dendritic cell progenitors is responsible for cDC1 fate specification.


Assuntos
Células Dendríticas/citologia , Elementos Facilitadores Genéticos/genética , Fatores Reguladores de Interferon/metabolismo , Macrófagos/citologia , Monócitos/citologia , Animais , Sistemas CRISPR-Cas/genética , Diferenciação Celular , Linhagem da Célula , Células Dendríticas/imunologia , Regulação da Expressão Gênica , Fatores Reguladores de Interferon/genética , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/metabolismo , Células-Tronco/citologia , Células Tumorais Cultivadas
6.
Genes Dev ; 37(7-8): 291-302, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36990511

RESUMO

Individual elements within a superenhancer can act in a cooperative or temporal manner, but the underlying mechanisms remain obscure. We recently identified an Irf8 superenhancer, within which different elements act at distinct stages of type 1 classical dendritic cell (cDC1) development. The +41-kb Irf8 enhancer is required for pre-cDC1 specification, while the +32-kb Irf8 enhancer acts to support subsequent cDC1 maturation. Here, we found that compound heterozygous Δ32/Δ41 mice, lacking the +32- and +41-kb enhancers on different chromosomes, show normal pre-cDC1 specification but, surprisingly, completely lack mature cDC1 development, suggesting cis dependence of the +32-kb enhancer on the +41-kb enhancer. Transcription of the +32-kb Irf8 enhancer-associated long noncoding RNA (lncRNA) Gm39266 is also dependent on the +41-kb enhancer. However, cDC1 development in mice remained intact when Gm39266 transcripts were eliminated by CRISPR/Cas9-mediated deletion of lncRNA promoters and when transcription across the +32-kb enhancer was blocked by premature polyadenylation. We showed that chromatin accessibility and BATF3 binding at the +32-kb enhancer were dependent on a functional +41-kb enhancer located in cis Thus, the +41-kb Irf8 enhancer controls the subsequent activation of the +32-kb Irf8 enhancer in a manner that is independent of associated lncRNA transcription.


Assuntos
RNA Longo não Codificante , Animais , Camundongos , Elementos Facilitadores Genéticos , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , Regiões Promotoras Genéticas
7.
Immunity ; 54(7): 1417-1432.e7, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34004142

RESUMO

The transcriptional repressor ZEB2 regulates development of many cell fates among somatic, neural, and hematopoietic lineages, but the basis for its requirement in these diverse lineages is unclear. Here, we identified a 400-basepair (bp) region located 165 kilobases (kb) upstream of the Zeb2 transcriptional start site (TSS) that binds the E proteins at several E-box motifs and was active in hematopoietic lineages. Germline deletion of this 400-bp region (Zeb2Δ-165mice) specifically prevented Zeb2 expression in hematopoietic stem cell (HSC)-derived lineages. Zeb2Δ-165 mice lacked development of plasmacytoid dendritic cells (pDCs), monocytes, and B cells. All macrophages in Zeb2Δ-165 mice were exclusively of embryonic origin. Using single-cell chromatin profiling, we identified a second Zeb2 enhancer located at +164-kb that was selectively active in embryonically derived lineages, but not HSC-derived ones. Thus, Zeb2 expression in adult, but not embryonic, hematopoiesis is selectively controlled by the -165-kb Zeb2 enhancer.


Assuntos
Elementos Facilitadores Genéticos/genética , Hematopoese/genética , Transcrição Gênica/genética , Homeobox 2 de Ligação a E-box com Dedos de Zinco/genética , Animais , Diferenciação Celular/genética , Linhagem da Célula/genética , Cromatina/genética , Células Dendríticas/fisiologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/fisiologia
8.
Nature ; 632(8023): 182-191, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39048822

RESUMO

CD4+ T cells can either enhance or inhibit tumour immunity. Although regulatory T cells have long been known to impede antitumour responses1-5, other CD4+ T cells have recently been implicated in inhibiting this response6,7. Yet, the nature and function of the latter remain unclear. Here, using vaccines containing MHC class I (MHC-I) neoantigens (neoAgs) and different doses of tumour-derived MHC-II neoAgs, we discovered that whereas the inclusion of vaccines with low doses of MHC-II-restricted peptides (LDVax) promoted tumour rejection, vaccines containing high doses of the same MHC-II neoAgs (HDVax) inhibited rejection. Characterization of the inhibitory cells induced by HDVax identified them as type 1 regulatory T (Tr1) cells expressing IL-10, granzyme B, perforin, CCL5 and LILRB4. Tumour-specific Tr1 cells suppressed tumour rejection induced by anti-PD1, LDVax or adoptively transferred tumour-specific effector T cells. Mechanistically, HDVax-induced Tr1 cells selectively killed MHC-II tumour antigen-presenting type 1 conventional dendritic cells (cDC1s), leading to low numbers of cDC1s in tumours. We then documented modalities to overcome this inhibition, specifically via anti-LILRB4 blockade, using a CD8-directed IL-2 mutein, or targeted loss of cDC2/monocytes. Collectively, these data show that cytotoxic Tr1 cells, which maintain peripheral tolerance, also inhibit antitumour responses and thereby function to impede immune control of cancer.


Assuntos
Antígenos de Neoplasias , Linfócitos T CD4-Positivos , Citotoxicidade Imunológica , Imunoterapia , Neoplasias , Linfócitos T Reguladores , Animais , Feminino , Humanos , Masculino , Camundongos , Antígenos de Neoplasias/imunologia , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/uso terapêutico , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linhagem Celular Tumoral , Quimiocina CCL5/metabolismo , Células Dendríticas/imunologia , Granzimas/metabolismo , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Interleucina-10/metabolismo , Interleucina-10/imunologia , Camundongos Endogâmicos C57BL , Neoplasias/imunologia , Neoplasias/terapia , Linfócitos T Reguladores/imunologia , Receptores Imunológicos/antagonistas & inibidores , Glicoproteínas de Membrana/antagonistas & inibidores , Tolerância Imunológica , Linfócitos T CD8-Positivos/imunologia
9.
Immunity ; 53(4): 759-774.e9, 2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-32795402

RESUMO

Development and function of conventional dendritic cell (cDC) subsets, cDC1 and cDC2, depend on transcription factors (TFs) IRF8 and IRF4, respectively. Since IRF8 and IRF4 can each interact with TF BATF3 at AP1-IRF composite elements (AICEs) and with TF PU.1 at Ets-IRF composite elements (EICEs), it is unclear how these factors exert divergent actions. Here, we determined the basis for distinct effects of IRF8 and IRF4 in cDC development. Genes expressed commonly by cDC1 and cDC2 used EICE-dependent enhancers that were redundantly activated by low amounts of either IRF4 or IRF8. By contrast, cDC1-specific genes relied on AICE-dependent enhancers, which required high IRF concentrations, but were activated by either IRF4 or IRF8. IRF8 was specifically required only by a minority of cDC1-specific genes, such as Xcr1, which could distinguish between IRF8 and IRF4 DNA-binding domains. Thus, these results explain how BATF3-dependent Irf8 autoactivation underlies emergence of the cDC1-specific transcriptional program.


Assuntos
Células Dendríticas/metabolismo , Elementos Facilitadores Genéticos/genética , Fatores Reguladores de Interferon/genética , Animais , Regulação da Expressão Gênica/genética , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Quimiocinas/genética , Transcrição Gênica/genética
10.
Nature ; 607(7917): 142-148, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35732734

RESUMO

The divergence of the common dendritic cell progenitor1-3 (CDP) into the conventional type 1 and type 2 dendritic cell (cDC1 and cDC2, respectively) lineages4,5 is poorly understood. Some transcription factors act in the commitment of already specified progenitors-such as BATF3, which stabilizes Irf8 autoactivation at the +32 kb Irf8 enhancer4,6-but the mechanisms controlling the initial divergence of CDPs remain unknown. Here we report the transcriptional basis of CDP divergence and describe the first requirements for pre-cDC2 specification. Genetic epistasis analysis7 suggested that Nfil3 acts upstream of Id2, Batf3 and Zeb2 in cDC1 development but did not reveal its mechanism or targets. Analysis of newly generated NFIL3 reporter mice showed extremely transient NFIL3 expression during cDC1 specification. CUT&RUN and chromatin immunoprecipitation followed by sequencing identified endogenous NFIL3 binding in the -165 kb Zeb2 enhancer8 at three sites that also bind the CCAAT-enhancer-binding proteins C/EBPα and C/EBPß. In vivo mutational analysis using CRISPR-Cas9 targeting showed that these NFIL3-C/EBP sites are functionally redundant, with C/EBPs supporting and NFIL3 repressing Zeb2 expression at these sites. A triple mutation of all three NFIL3-C/EBP sites ablated Zeb2 expression in myeloid, but not lymphoid progenitors, causing the complete loss of pre-cDC2 specification and mature cDC2 development in vivo. These mice did not generate T helper 2 (TH2) cell responses against Heligmosomoides polygyrus infection, consistent with cDC2 supporting TH2 responses to helminths9-11. Thus, CDP divergence into cDC1 or cDC2 is controlled by competition between NFIL3 and C/EBPs at the -165 kb Zeb2 enhancer.


Assuntos
Diferenciação Celular , Células Dendríticas , Elementos Facilitadores Genéticos , Mutação , Homeobox 2 de Ligação a E-box com Dedos de Zinco , Animais , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Diferenciação Celular/genética , Células Dendríticas/classificação , Células Dendríticas/citologia , Células Dendríticas/patologia , Elementos Facilitadores Genéticos/genética , Epistasia Genética , Proteína 2 Inibidora de Diferenciação , Linfócitos/citologia , Camundongos , Células Mieloides/citologia , Nematospiroides dubius/imunologia , Proteínas Repressoras , Células Th2/citologia , Células Th2/imunologia , Homeobox 2 de Ligação a E-box com Dedos de Zinco/genética
11.
Proc Natl Acad Sci U S A ; 121(15): e2315659121, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38564635

RESUMO

Monocytes comprise two major subsets, Ly6Chi classical monocytes and Ly6Clo nonclassical monocytes. Notch2 signaling in Ly6Chi monocytes triggers transition to Ly6Clo monocytes, which require Nr4a1, Bcl6, Irf2, and Cebpb. By comparison, less is known about transcriptional requirements for Ly6Chi monocytes. We find transcription factor CCAAT/enhancer-binding protein alpha (C/EBPα) is highly expressed in Ly6Chi monocytes, but down-regulated in Ly6Clo monocytes. A few previous studies described the requirement of C/EBPα in the development of neutrophils and eosinophils. However, the role of C/EBPα for in vivo monocyte development has not been understood. We deleted the Cebpa +37 kb enhancer in mice, eliminating hematopoietic expression of C/EBPα, reproducing the expected neutrophil defect. Surprisingly, we also found a severe and selective loss of Ly6Chi monocytes, while preserving Ly6Clo monocytes. We find that BM progenitors from Cebpa +37-/- mice rapidly progress through the monocyte progenitor stage to develop directly into Ly6Clo monocytes even in the absence of Notch2 signaling. These results identify a previously unrecognized role for C/EBPα in maintaining Ly6Chi monocyte identity.


Assuntos
Regulação da Expressão Gênica , Monócitos , Animais , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/metabolismo , Fatores de Transcrição/metabolismo
12.
Brief Bioinform ; 25(4)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38819254

RESUMO

Single-cell RNA sequencing has revealed cellular heterogeneity in complex tissues, notably benefiting research on diseases such as cancer. However, the integration of single-cell data from small samples with extensive clinical features in bulk data remains underexplored. In this study, we introduce PIPET, an algorithmic method for predicting relevant subpopulations in single-cell data based on multivariate phenotypic information from bulk data. PIPET generates feature vectors for each phenotype from differentially expressed genes in bulk data and then identifies relevant cellular subpopulations by assessing the similarity between single-cell data and these vectors. Subsequently, phenotype-related cell states can be analyzed based on these subpopulations. In simulated datasets, PIPET showed robust performance in predicting multiclassification cellular subpopulations. Application of PIPET to lung adenocarcinoma single-cell RNA sequencing data revealed cellular subpopulations with poor survival and associations with TP53 mutations. Similarly, in breast cancer single-cell data, PIPET identified cellular subpopulations associated with the PAM50 clinical subtypes and triple-negative breast cancer subtypes. Overall, PIPET effectively identified relevant cellular subpopulations in single-cell data, guided by phenotypic information from bulk data. This approach comprehensively delineates the molecular characteristics of each cellular subpopulation, offering insights into disease-related subpopulations and guiding personalized treatment strategies.


Assuntos
Algoritmos , Fenótipo , Análise de Célula Única , Análise de Célula Única/métodos , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Análise de Sequência de RNA/métodos , Biologia Computacional/métodos , Mutação , Feminino , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia
13.
Nature ; 584(7822): 624-629, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32788723

RESUMO

Conventional type 1 dendritic cells (cDC1)1 are thought to perform antigen cross-presentation, which is required to prime CD8+ T cells2,3, whereas cDC2 are specialized for priming CD4+ T cells4,5. CD4+ T cells are also considered to help CD8+ T cell responses through a variety of mechanisms6-11, including a process whereby CD4+ T cells 'license' cDC1 for CD8+ T cell priming12. However, this model has not been directly tested in vivo or in the setting of help-dependent tumour rejection. Here we generated an Xcr1Cre mouse strain to evaluate the cellular interactions that mediate tumour rejection in a model requiring CD4+ and CD8+ T cells. As expected, tumour rejection required cDC1 and CD8+ T cell priming required the expression of major histocompatibility class I molecules by cDC1. Unexpectedly, early priming of CD4+ T cells against tumour-derived antigens also required cDC1, and this was not simply because they transport antigens to lymph nodes for processing by cDC2, as selective deletion of major histocompatibility class II molecules in cDC1 also prevented early CD4+ T cell priming. Furthermore, deletion of either major histocompatibility class II or CD40 in cDC1 impaired tumour rejection, consistent with a role for cognate CD4+ T cell interactions and CD40 signalling in cDC1 licensing. Finally, CD40 signalling in cDC1 was critical not only for CD8+ T cell priming, but also for initial CD4+ T cell activation. Thus, in the setting of tumour-derived antigens, cDC1 function as an autonomous platform capable of antigen processing and priming for both CD4+ and CD8+ T cells and of the direct orchestration of their cross-talk that is required for optimal anti-tumour immunity.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Apresentação Cruzada , Células Dendríticas/imunologia , Neoplasias/imunologia , Animais , Apresentação de Antígeno/imunologia , Linfócitos T CD4-Positivos/citologia , Antígenos CD40/imunologia , Antígenos CD40/metabolismo , Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/citologia , Células Dendríticas/metabolismo , Feminino , Antígenos de Histocompatibilidade Classe II/imunologia , Camundongos , Transdução de Sinais
14.
Proc Natl Acad Sci U S A ; 120(35): e2220853120, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37607223

RESUMO

Ly6Clo monocytes are a myeloid subset that specializes in the surveillance of vascular endothelium. Ly6Clo monocytes have been shown to derive from Ly6Chi monocytes. NOTCH2 signaling has been implicated as a trigger for Ly6Clo monocyte development, but the basis for this effect is unclear. Here, we examined the impact of NOTCH2 signaling of myeloid progenitors on the development of Ly6Clo monocytes in vitro. NOTCH2 signaling induced by delta-like ligand 1 (DLL1) efficiently induced the transition of Ly6Chi TREML4- monocytes into Ly6Clo TREML4+ monocytes. We further identified two additional transcriptional requirements for development of Ly6Clo monocytes. Deletion of BCL6 from myeloid progenitors abrogated development of Ly6Clo monocytes. IRF2 was also required for Ly6Clo monocyte development in a cell-intrinsic manner. DLL1-induced in vitro transition into Ly6Clo TREML4+ monocytes required IRF2 but unexpectedly could occur in the absence of NUR77 or BCL6. These results imply a transcriptional hierarchy for these factors in controlling Ly6Clo monocyte development.


Assuntos
Endotélio Vascular , Monócitos , Hematopoese , Transdução de Sinais
15.
Proc Natl Acad Sci U S A ; 120(13): e2219956120, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36940342

RESUMO

The events that initiate autoimmune diabetes in nonobese diabetic (NOD) mice remain poorly understood. CD4+ and CD8+ T cells are both required to develop disease, but their relative roles in initiating disease are unclear. To test whether CD4+ T cell infiltration into islets requires damage to ß cells induced by autoreactive CD8+ T cells, we inactivated Wdfy4 in nonobese diabetic (NOD) mice (NOD.Wdfy4-/--) using CRISPR/Cas9 targeting to eliminate cross-presentation by type 1 conventional dendritic cells (cDC1s). Similar to C57BL/6 Wdfy4-/- mice, cDC1 in NOD.Wdfy4-/- mice are unable to cross-present cell-associated antigens to prime CD8+ T cells, while cDC1 from heterozygous NOD.Wdfy4+/- mice cross-present normally. Further, NOD.Wdfy4-/- mice fail to develop diabetes while heterozygous NOD.Wdfy4+/- mice develop diabetes similarly to wild-type NOD mice. NOD.Wdfy4-/- mice remain capable of processing and presenting major histocompatibility complex class II (MHC-II)-restricted autoantigens and can activate ß cell-specific CD4+ T cells in lymph nodes. However, disease in these mice does not progress beyond peri-islet inflammation. These results indicate that the priming of autoreactive CD8+ T cells in NOD mice requires cross-presentation by cDC1. Further, autoreactive CD8+ T cells appear to be required not only to develop diabetes, but to recruit autoreactive CD4+ T cells into islets of NOD mice, perhaps in response to progressive ß cell damage.


Assuntos
Diabetes Mellitus Tipo 1 , Ilhotas Pancreáticas , Camundongos , Animais , Camundongos Endogâmicos NOD , Linfócitos T CD8-Positivos , Camundongos Endogâmicos C57BL , Antígenos de Histocompatibilidade Classe II
16.
Plant Physiol ; 195(2): 1347-1364, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38488068

RESUMO

Potato (Solanum tuberosum L.) is cultivated worldwide for its underground tubers, which provide an important part of human nutrition and serve as a model system for belowground storage organ formation. Similar to flowering, stolon-expressed FLOWERING LOCUS T-like (FT-like) protein SELF-PRUNING 6A (StSP6A) plays an instrumental role in tuberization by binding to the bZIP transcription factors StABI5-like 1 (StABL1) and StFD-like 1 (StFDL1), causing transcriptional reprogramming at the stolon subapical apices. However, the molecular mechanism regulating the widely conserved FT-bZIP interactions remains largely unexplored. Here, we identified a TCP transcription factor StAST1 (StABL1 and StSP6A-associated TCP protein 1) binding to both StSP6A and StABL1. StAST1 is specifically expressed in the vascular tissue of leaves and developing stolons. Silencing of StAST1 leads to accelerated tuberization and a shortened life cycle. Molecular dissection reveals that the interaction of StAST1 with StSP6A and StABL1 attenuates the formation of the alternative tuberigen activation complex (aTAC). We also observed StAST1 directly activates the expression of potato GA 20-oxidase gene (StGA20ox1) to regulate GA responses. These results demonstrate StAST1 functions as a tuberization repressor by regulating plant hormone levels; our findings also suggest a mechanism by which the widely conserved FT-FD genetic module is fine-tuned.


Assuntos
Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Tubérculos , Solanum tuberosum , Fatores de Transcrição , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Solanum tuberosum/fisiologia , Solanum tuberosum/crescimento & desenvolvimento , Tubérculos/genética , Tubérculos/crescimento & desenvolvimento , Tubérculos/metabolismo , Tubérculos/fisiologia , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética
17.
Immunity ; 45(3): 555-569, 2016 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-27637147

RESUMO

During viral infection, sensing of cytosolic DNA by the cyclic GMP-AMP synthase (cGAS) activates the adaptor protein STING and triggers an antiviral response. Little is known about the mechanisms that determine the kinetics of activation and deactivation of the cGAS-STING pathway, ensuring effective but controlled innate antiviral responses. Here we found that the ubiquitin ligase Trim38 targets cGas for sumoylation in uninfected cells and during the early phase of viral infection. Sumoylation of cGas prevented its polyubiquitination and degradation. Trim38 also sumoylated Sting during the early phase of viral infection, promoting both Sting activation and protein stability. In the late phase of infection, cGas and Sting were desumoylated by Senp2 and subsequently degraded via proteasomal and chaperone-mediated autophagy pathways, respectively. Our findings reveal an essential role for Trim38 in the innate immune response to DNA virus and provide insight into the mechanisms that ensure optimal activation and deactivation of the cGAS-STING pathway.


Assuntos
Vírus de DNA/imunologia , DNA/metabolismo , Nucleotídeos Cíclicos/metabolismo , Nucleotidiltransferases/metabolismo , Sumoilação/fisiologia , Viroses/metabolismo , Animais , Proteínas de Transporte/metabolismo , Cisteína Endopeptidases/metabolismo , Imunidade Inata/imunologia , Cinética , Proteínas de Membrana/metabolismo , Camundongos , Complexo de Endopeptidases do Proteassoma/metabolismo , Transdução de Sinais/imunologia , Transdução de Sinais/fisiologia , Sumoilação/imunologia , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases , Ubiquitinação/imunologia , Ubiquitinação/fisiologia
19.
Gut ; 73(4): 668-681, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-37973365

RESUMO

OBJECTIVES: Chronic hepatitis B (CHB) caused by HBV infection greatly increases the risk of liver cirrhosis and hepatocellular carcinoma. Hepatitis B surface antigen (HBsAg) plays critical roles in the pathogenesis of CHB. HBsAg loss is the key indicator for cure of CHB, but is rarely achieved by current approved anti-HBV drugs. Therefore, novel anti-HBV strategies are urgently needed to achieve sustained HBsAg loss. DESIGN: We developed multiple chimeric antigen receptors (CARs) based on single-chain variable fragments (scFvs, namely MA18/7-scFv and G12-scFv), respectively, targeting HBV large and small envelope proteins. Their impacts on HBsAg secretion and HBV infection, and the underlying mechanisms, were extensively investigated using various cell culture models and HBV mouse models. RESULTS: After secretory signal peptide mediated translocation into endoplasmic reticulum (ER) and secretory pathway, MA18/7-scFv and CARs blocked HBV infection and virion secretion. G12-scFv preferentially inhibited virion secretion, while both its CAR formats and crystallisable fragment (Fc)-attached versions blocked HBsAg secretion. G12-scFv and G12-CAR arrested HBV envelope proteins mainly in ER and potently inhibited HBV budding. Furthermore, G12-scFv-Fc and G12-CAR-Fc strongly suppressed serum HBsAg up to 130-fold in HBV mouse models. The inhibitory effect lasted for at least 8 weeks when delivered by an adeno-associated virus vector. CONCLUSION: CARs possess direct antiviral activity, besides the well-known application in T-cell therapy. Fc attached G12-scFv and G12-CARs could provide a novel approach for reducing circulating HBsAg.


Assuntos
Hepatite B Crônica , Hepatite B , Neoplasias Hepáticas , Receptores de Antígenos Quiméricos , Camundongos , Animais , Antígenos de Superfície da Hepatite B , Vírus da Hepatite B/genética , Retículo Endoplasmático/metabolismo
20.
Plant J ; 113(2): 342-356, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36444716

RESUMO

Transitory starch and vacuolar sugars function as highly dynamic pools of instantly accessible metabolites in plant leaf cells. Their metabolic regulation is critical for plant survival. The tonoplast sugar transporters (TSTs), responsible for sugar uptake into vacuoles, regulate cellular sugar partitioning and vacuolar sugar accumulation. However, whether TSTs are involved in leaf transient starch turnover and plant growth is unclear. Here, we found that suppressing StTST3.1 resulted in growth retardation and pale green leaves in potato plants. StTST3.1-silenced plants displayed abnormal chloroplasts and impaired photosynthetic performance. The subcellular localization assay and the oscillation expression patterns revealed that StTST3.1 encoded a tonoplast-localized protein and responded to photoperiod. Moreover, RNA-seq analyses identified that starch synthase (SS2 and SS6) and glucan water, dikinase (GWD), were downregulated in StTST3.1-silenced lines. Correspondingly, the capacity for starch synthesis and degradation was decreased in StTST3.1-silenced lines. Surprisingly, StTST3.1-silenced leaves accumulated exceptionally high levels of maltose but low levels of sucrose and hexose. Additionally, chlorophyll content was reduced in StTST3.1-silenced leaves. Analysis of chlorophyll metabolic pathways found that Non-Yellow Coloring 1 (NYC1)-like (NOL), encoding a chloroplast-localized key enzyme that catalyzes the initial step of chlorophyll b degradation, was upregulated in StTST3.1-silenced leaves. Transient overexpression of StNOL accelerated chlorophyll b degradation in tobacco leaves. Our results indicated that StTST3.1 is involved in transitory starch turnover and chlorophyll metabolism, thereby playing a critical role in normal potato plant growth.


Assuntos
Solanum tuberosum , Amido , Amido/metabolismo , Vacúolos/metabolismo , Plantas/metabolismo , Folhas de Planta/metabolismo , Clorofila/metabolismo , Maltose/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA