Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Methods ; 14(6): 629-635, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28417999

RESUMO

Millions of cis-regulatory elements are predicted to be present in the human genome, but direct evidence for their biological function is scarce. Here we report a high-throughput method, cis-regulatory element scan by tiling-deletion and sequencing (CREST-seq), for the unbiased discovery and functional assessment of cis-regulatory sequences in the genome. We used it to interrogate the 2-Mb POU5F1 locus in human embryonic stem cells, and identified 45 cis-regulatory elements. A majority of these elements have active chromatin marks, DNase hypersensitivity, and occupancy by multiple transcription factors, which confirms the utility of chromatin signatures in cis-element mapping. Notably, 17 of them are previously annotated promoters of functionally unrelated genes, and like typical enhancers, they form extensive spatial contacts with the POU5F1 promoter. These results point to the commonality of enhancer-like promoters in the human genome.


Assuntos
Mapeamento Cromossômico/métodos , Testes Genéticos/métodos , Sequências Reguladoras de Ácido Nucleico/genética , Algoritmos , Células Cultivadas , Células-Tronco Embrionárias/fisiologia , Regulação da Expressão Gênica/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Análise de Sequência de DNA , Análise de Célula Única
2.
Genome Biol ; 20(1): 255, 2019 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-31779666

RESUMO

BACKGROUND: The 3-dimensional (3D) conformation of chromatin inside the nucleus is integral to a variety of nuclear processes including transcriptional regulation, DNA replication, and DNA damage repair. Aberrations in 3D chromatin conformation have been implicated in developmental abnormalities and cancer. Despite the importance of 3D chromatin conformation to cellular function and human health, little is known about how 3D chromatin conformation varies in the human population, or whether DNA sequence variation between individuals influences 3D chromatin conformation. RESULTS: To address these questions, we perform Hi-C on lymphoblastoid cell lines from 20 individuals. We identify thousands of regions across the genome where 3D chromatin conformation varies between individuals and find that this variation is often accompanied by variation in gene expression, histone modifications, and transcription factor binding. Moreover, we find that DNA sequence variation influences several features of 3D chromatin conformation including loop strength, contact insulation, contact directionality, and density of local cis contacts. We map hundreds of quantitative trait loci associated with 3D chromatin features and find evidence that some of these same variants are associated at modest levels with other molecular phenotypes as well as complex disease risk. CONCLUSION: Our results demonstrate that common DNA sequence variants can influence 3D chromatin conformation, pointing to a more pervasive role for 3D chromatin conformation in human phenotypic variation than previously recognized.


Assuntos
Sequência de Bases , Variação Genética , Genoma Humano , Conformação de Ácido Nucleico , Epigenoma , Humanos , Locos de Características Quantitativas , Transcriptoma
3.
Nat Genet ; 51(10): 1442-1449, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31501517

RESUMO

A large number of putative cis-regulatory sequences have been annotated in the human genome, but the genes they control remain poorly defined. To bridge this gap, we generate maps of long-range chromatin interactions centered on 18,943 well-annotated promoters for protein-coding genes in 27 human cell/tissue types. We use this information to infer the target genes of 70,329 candidate regulatory elements and suggest potential regulatory function for 27,325 noncoding sequence variants associated with 2,117 physiological traits and diseases. Integrative analysis of these promoter-centered interactome maps reveals widespread enhancer-like promoters involved in gene regulation and common molecular pathways underlying distinct groups of human traits and diseases.


Assuntos
Cromatina/metabolismo , Regulação da Expressão Gênica , Genoma Humano , Regiões Promotoras Genéticas , Sequências Reguladoras de Ácido Nucleico , Fatores de Transcrição/metabolismo , Cromatina/genética , Genômica , Humanos , Fatores de Transcrição/genética
4.
Cell Res ; 28(2): 204-220, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29313530

RESUMO

Long-range chromatin interactions between enhancers and promoters are essential for transcription of many developmentally controlled genes in mammals and other metazoans. Currently, the exact mechanisms that connect distal enhancers to their specific target promoters remain to be fully elucidated. Here, we show that the enhancer-specific histone H3 lysine 4 monomethylation (H3K4me1) and the histone methyltransferases MLL3 and MLL4 (MLL3/4) play an active role in this process. We demonstrate that in differentiating mouse embryonic stem cells, MLL3/4-dependent deposition of H3K4me1 at enhancers correlates with increased levels of chromatin interactions, whereas loss of this histone modification leads to reduced levels of chromatin interactions and defects in gene activation during differentiation. H3K4me1 facilitates recruitment of the Cohesin complex, a known regulator of chromatin organization, to chromatin in vitro and in vivo, providing a potential mechanism for MLL3/4 to promote chromatin interactions between enhancers and promoters. Taken together, our results support a role for MLL3/4-dependent H3K4me1 in orchestrating long-range chromatin interactions at enhancers in mammalian cells.


Assuntos
Cromatina/metabolismo , Elementos Facilitadores Genéticos/fisiologia , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Animais , Proteínas de Ciclo Celular/metabolismo , Diferenciação Celular/fisiologia , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/metabolismo , Células-Tronco Embrionárias/metabolismo , Expressão Gênica/fisiologia , Hibridização in Situ Fluorescente , Metilação , Camundongos , Regiões Promotoras Genéticas/fisiologia , Fatores de Transcrição SOXB1/metabolismo , Análise de Sequência de RNA , Coesinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA