Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 23(5): 2000-2008, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36826387

RESUMO

Next generation displays based on quantum dot light-emitting diodes (QLEDs) require robust patterning methods for quantum dot layers. However, existing patterning methods mostly yield QLEDs with performance far inferior to the state-of-the-art individual devices. Here, we report a light-triggered, carbocation-enabled ligand stripping (CELS) approach to pattern QLEDs with high efficiency and stability. During CELS, photogenerated carbocations from triphenylmethyl chlorides remove native ligands of quantum dots, thereby producing patterns at microscale precision. Chloride anions passivate surface defects and endow patterned quantum dots with preserved photoluminescent quantum yields. It works for both cadmium-based and heavy-metal-free quantum dots. CELS-patterned QLEDs show remarkable external quantum efficiencies (19.1%, 17.5%, 12.0% for red, green, blue, respectively) and a long operation lifetime (T95 at 1000 nits up to 8700 h). Both are among the highest for patterned QLEDs and approach the records for nonpatterned devices, which makes CELS promising for building high-performance QLED displays and related integrated devices.

2.
Angew Chem Int Ed Engl ; 61(23): e202202633, 2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35319804

RESUMO

Surface chemistry mediated direct optical patterning represents an emerging strategy for incorporating colloidal nanocrystals (NCs) in integrated optoelectronic platforms including displays and image sensors. However, the role of photochemistry of crosslinkers and other photoactive species in patterning remains elusive. Here we show the design of nitrene- and carbene-based photocrosslinkers can strongly affect the patterning capabilities and photophysical properties of NCs, especially quantum dots (QDs). Their role beyond physical linkers stems from structure-dictated electronic configuration, energy alignment and associated reaction kinetics and thermodynamics. Patterned QD layers with designed carbene-based crosslinkers fully preserve their photoluminescent and electroluminescent properties. Patterned light emitting diodes (QLEDs) show a maximum external quantum efficiency of ≈12 % and lifetime over 4800 h, among the highest for reported patterned QLEDs. These results would guide the rational design of photoactive species in NC patterning and create new possibilities in the monolithic integration of NCs in high-performance device platforms.

3.
Adv Exp Med Biol ; 1093: 65-71, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30306472

RESUMO

In this chapter, we present a multi-object model-based multi-atlas segmentation constrained grid cut method for automatic segmentation of lumbar vertebrae from a given lumbar spinal CT image. More specifically, our automatic lumbar vertebrae segmentation method consists of two steps: affine atlas-target registration-based label fusion and bone-sheetness assisted multi-label grid cut which has the inherent advantage of automatic separation of the five lumbar vertebrae from each other. We evaluate our method on 21 clinical lumbar spinal CT images with the associated manual segmentation and conduct a leave-one-out study. Our method achieved an average Dice coefficient of 93.9 ± 1.0% and an average symmetric surface distance of 0.41 ± 0.08 mm.


Assuntos
Processamento de Imagem Assistida por Computador , Vértebras Lombares/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Algoritmos , Humanos
4.
Nano Lett ; 17(3): 2094-2101, 2017 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-28191964

RESUMO

GaAs is one of the most important semiconductors. However, colloidal GaAs nanocrystals remain largely unexplored because of the difficulties with their synthesis. Traditional synthetic routes either fail to produce pure GaAs phase or result in materials whose optical properties are very different from the behavior expected for quantum dots of direct-gap semiconductors. In this work, we demonstrate a variety of synthetic routes toward crystalline GaAs NCs. By using a combination of Raman, EXAFS, transient absorption, and EPR spectroscopies, we conclude that unusual optical properties of colloidal GaAs NCs can be related to the presence of Ga vacancies and lattice disorder. These defects do not manifest themselves in TEM images and powder X-ray diffraction patterns but are responsible for the lack of absorption features even in apparently crystalline GaAs nanoparticles. We introduce a novel molten salt based annealing approach to alleviate these structural defects and show the emergence of size-dependent excitonic transitions in colloidal GaAs quantum dots.

5.
J Am Chem Soc ; 139(19): 6644-6653, 2017 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-28431206

RESUMO

The use of semiconductor nanocrystal quantum dots (QDs) in optoelectronic devices typically requires postsynthetic chemical surface treatments to enhance electronic coupling between QDs and allow for efficient charge transport in QD films. Despite their importance in solar cells and infrared (IR) light-emitting diodes and photodetectors, advances in these chemical treatments for lead chalcogenide (PbE; E = S, Se, Te) QDs have lagged behind those of, for instance, II-VI semiconductor QDs. Here, we introduce a method for fast and effective ligand exchange for PbE QDs in solution, resulting in QDs completely passivated by a wide range of small anionic ligands. Due to electrostatic stabilization, these QDs are readily dispersible in polar solvents, in which they form highly concentrated solutions that remain stable for months. QDs of all three Pb chalcogenides retain their photoluminescence, allowing for a detailed study of the effect of the surface ionic double layer on electronic passivation of QD surfaces, which we find can be explained using the hard/soft acid-base theory. Importantly, we prepare highly conductive films of PbS, PbSe, and PbTe QDs by directly casting from solution without further chemical treatment, as determined by field-effect transistor measurements. This method allows for precise control over the surface chemistry, and therefore the transport properties of deposited films. It also permits single-step deposition of films of unprecedented thickness via continuous processing techniques, as we demonstrate by preparing a dense, smooth, 5.3-µm-thick PbSe QD film via doctor-blading. As such, it offers important advantages over laborious layer-by-layer methods for solar cells and photodetectors, while opening the door to new possibilities in ionizing-radiation detectors.

6.
Nano Lett ; 16(4): 2349-62, 2016 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-26882294

RESUMO

Organic-inorganic lead-halide perovskites have been the subject of recent intense interest due to their unusually strong photovoltaic performance. A new addition to the perovskite family is all-inorganic Cs-Pb-halide perovskite nanocrystals, or quantum dots, fabricated via a moderate-temperature colloidal synthesis. While being only recently introduced to the research community, these nanomaterials have already shown promise for a range of applications from color-converting phosphors and light-emitting diodes to lasers, and even room-temperature single-photon sources. Knowledge of the optical properties of perovskite quantum dots still remains vastly incomplete. Here we apply various time-resolved spectroscopic techniques to conduct a comprehensive study of spectral and dynamical characteristics of single- and multiexciton states in CsPbX3 nanocrystals with X being either Br, I, or their mixture. Specifically, we measure exciton radiative lifetimes, absorption cross-sections, and derive the degeneracies of the band-edge electron and hole states. We also characterize the rates of intraband cooling and nonradiative Auger recombination and evaluate the strength of exciton-exciton coupling. The overall conclusion of this work is that spectroscopic properties of Cs-Pb-halide quantum dots are largely similar to those of quantum dots of more traditional semiconductors such as CdSe and PbSe. At the same time, we observe some distinctions including, for example, an appreciable effect of the halide identity on radiative lifetimes, considerably shorter biexciton Auger lifetimes, and apparent deviation of their size dependence from the "universal volume scaling" previously observed for many traditional nanocrystal systems. The high efficiency of Auger decay in perovskite quantum dots is detrimental to their prospective applications in light-emitting devices and lasers. This points toward the need for the development of approaches for effective suppression of Auger recombination in these nanomaterials, using perhaps insights gained from previous studies of II-VI nanocrystals.

7.
J Am Chem Soc ; 138(45): 14954-14961, 2016 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-27756131

RESUMO

Impurity doping has been widely used to endow semiconductor nanocrystals with novel optical, electronic, and magnetic functionalities. Here, we introduce a new family of doped NCs offering unique insights into the chemical mechanism of doping, as well as into the fundamental interactions between the dopant and the semiconductor host. Specifically, by elucidating the role of relative bond strengths within the precursor and the host lattice, we develop an effective approach for incorporating manganese (Mn) ions into nanocrystals of lead-halide perovskites (CsPbX3, where X = Cl, Br, or I). In a key enabling step not possible in, for example, II-VI nanocrystals, we use gentle chemical means to finely and reversibly tune the nanocrystal band gap over a wide range of energies (1.8-3.1 eV) via postsynthetic anion exchange. We observe a dramatic effect of halide identity on relative intensities of intrinsic band-edge and Mn emission bands, which we ascribe to the influence of the energy difference between the corresponding transitions on the characteristics of energy transfer between the Mn ion and the semiconductor host.

8.
Nano Lett ; 15(10): 6309-17, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26280943

RESUMO

Crystalline silicon-based complementary metal-oxide-semiconductor transistors have become a dominant platform for today's electronics. For such devices, expensive and complicated vacuum processes are used in the preparation of active layers. This increases cost and restricts the scope of applications. Here, we demonstrate high-performance solution-processed CdSe nanocrystal (NC) field-effect transistors (FETs) that exhibit very high carrier mobilities (over 400 cm(2)/(V s)). This is comparable to the carrier mobilities of crystalline silicon-based transistors. Furthermore, our NC FETs exhibit high operational stability and MHz switching speeds. These NC FETs are prepared by spin coating colloidal solutions of CdSe NCs capped with molecular solders [Cd2Se3](2-) onto various oxide gate dielectrics followed by thermal annealing. We show that the nature of gate dielectrics plays an important role in soldered CdSe NC FETs. The capacitance of dielectrics and the NC electronic structure near gate dielectric affect the distribution of localized traps and trap filling, determining carrier mobility and operational stability of the NC FETs. We expand the application of the NC soldering process to core-shell NCs consisting of a III-V InAs core and a CdSe shell with composition-matched [Cd2Se3](2-) molecular solders. Soldering CdSe shells forms nanoheterostructured material that combines high electron mobility and near-IR photoresponse.

9.
J Nanosci Nanotechnol ; 15(1): 164-71, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26328322

RESUMO

PH and temperature double responsive semi-IPN hydrogels consisting of poly(dimethylaminoethyl methacrylate) (PDMAEMA) network crosslinked by nano-sized inorganic clay and linear carboxymethyl chitosan (CMCS) were synthesized by in situ, free radical polymerization in aqueous solution. The effect of the mass and carboxymethyl substitution of CMCS on the responsiveness, swelling/deswelling and drug release characteristic of gels were investigated. Comparing to the gels without CMCS, the resulting gels (named as C-NC gels) showed similar LCST and temperature response behavior. However, with the increase of added CMCS, the swelling ratio of gels decreased considerably around the isoelectric point (IEP) of CMCS, while increased in both strong acidic and alkaline condition. The deswelling rate was improved significantly when the content of CMCS is high. In drug load and release test by using theophylline as target, the C-NC gels exhibited an excellent load ability and controlled-release in simulated human intestinal and stomachic condition. Additionally, all properties of gels were affected by the DS of added CMCS due to the different ratio and interaction of negative and positive ions in gels.


Assuntos
Silicatos de Alumínio/química , Quitosana/análogos & derivados , Hidrogéis/química , Metacrilatos/química , Nanopartículas/química , Nylons/química , Quitosana/química , Argila , Temperatura , Teofilina/farmacocinética
10.
Nano Lett ; 14(2): 653-62, 2014 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-24467484

RESUMO

We report on the temperature-dependent Hall effect characteristics of nanocrystal (NC) arrays prepared from colloidal InAs NCs capped with metal chalcogenide complex (MCC) ligands (In2Se4(2-) and Cu7S4(-)). Our study demonstrates that Hall effect measurements are a powerful way of exploring the fundamental properties of NC solids. We found that solution-cast 5.3 nm InAs NC films capped with copper sulfide MCC ligands exhibited high Hall mobility values over 16 cm(2)/(V s). We also showed that the nature of MCC ligands can control doping in NC solids. The comparative study of the temperature-dependent Hall and field-effect mobility values provides valuable insights concerning the charge transport mechanism and points to the transition from a weak to a strong coupling regime in all-inorganic InAs NC solids.

11.
Biochem Biophys Res Commun ; 443(2): 406-12, 2014 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-24309100

RESUMO

Colorectal cancer is a major contributor of cancer-related mortality. The mammalian target or rapamycin (mTOR) signaling is frequently hyper-activated in colorectal cancers, promoting cancer progression and chemo-resistance. In the current study, we investigated the anti-colorectal cancer effect of a novel mTOR complex 1 (mTORC1) and mTORC2 dual inhibitor: AZD-2014. In cultured colorectal cancer cell lines, AZD-2014 significantly inhibited cancer cell growth without inducing significant cell apoptosis. AZD-2014 blocked activation of both mTORC1 (S6K and S6 phosphorylation) and mTORC2 (Akt Ser 473 phosphorylation), and activated autophagy in colorectal cancer cells. Meanwhile, autophagy inhibition by 3-methyaldenine (3-MA) and hydroxychloroquine, as well as by siRNA knocking down of Beclin-1 or ATG-7, inhibited AZD-2014-induced cytotoxicity, while the apoptosis inhibitor had no rescue effect. In vivo, AZD-2014 oral administration significantly inhibited the growth of HT-29 cell xenograft in SCID mice, and the mice survival was dramatically improved. At the same time, in xenografted tumors administrated with AZD-2014, the activation of mTORC1 and mTORC2 were largely inhibited, and autophagic markers were significantly increased. Thus, AZD-2014 inhibits colorectal cancer cell growth both in vivo and in vitro. Our results suggest that AZD-2014 may be further investigated for colorectal cancer therapy in clinical trials.


Assuntos
Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Complexos Multiproteicos/antagonistas & inibidores , Complexos Multiproteicos/metabolismo , Inibidores de Proteínas Quinases/uso terapêutico , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo , Animais , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/patologia , Células HT29 , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina , Alvo Mecanístico do Complexo 2 de Rapamicina , Camundongos , Camundongos SCID , Resultado do Tratamento
12.
Int J Oral Sci ; 16(1): 34, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719817

RESUMO

Accurate segmentation of oral surgery-related tissues from cone beam computed tomography (CBCT) images can significantly accelerate treatment planning and improve surgical accuracy. In this paper, we propose a fully automated tissue segmentation system for dental implant surgery. Specifically, we propose an image preprocessing method based on data distribution histograms, which can adaptively process CBCT images with different parameters. Based on this, we use the bone segmentation network to obtain the segmentation results of alveolar bone, teeth, and maxillary sinus. We use the tooth and mandibular regions as the ROI regions of tooth segmentation and mandibular nerve tube segmentation to achieve the corresponding tasks. The tooth segmentation results can obtain the order information of the dentition. The corresponding experimental results show that our method can achieve higher segmentation accuracy and efficiency compared to existing methods. Its average Dice scores on the tooth, alveolar bone, maxillary sinus, and mandibular canal segmentation tasks were 96.5%, 95.4%, 93.6%, and 94.8%, respectively. These results demonstrate that it can accelerate the development of digital dentistry.


Assuntos
Tomografia Computadorizada de Feixe Cônico , Tomografia Computadorizada de Feixe Cônico/métodos , Humanos , Processo Alveolar/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Inteligência Artificial , Seio Maxilar/diagnóstico por imagem , Seio Maxilar/cirurgia , Mandíbula/diagnóstico por imagem , Mandíbula/cirurgia , Dente/diagnóstico por imagem
13.
J Am Chem Soc ; 135(4): 1349-57, 2013 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-23267673

RESUMO

In this work, we synthesized InP and InAs nanocrystals (NCs) capped with different inorganic ligands, including various molecular metal chalcogenide complexes (MCCs) and chalcogenide ions. We found that MCCs and chalcogenide ions can quantitatively displace organic ligands from the surface of III-V NCs and serve as the inorganic capping groups for III-V NC surfaces. These inorganic ligands stabilize colloidal solutions of InP and InAs NCs in polar solvents and greatly facilitate charge transport between individual NCs. Charge transport studies revealed high electron mobility in the films of MCC-capped InP and InAs NCs. For example, we found that bridging InAs NCs with Cu(7)S(4)(-) MCC ligands can lead to very high electron mobility exceeding 15 cm(2)/(V s). In addition, we observed unprecedented ambipolar (positive/negative) photoresponse of MCC-capped InAs NC solids that changed sign depending on the ligand chemistry, illumination wavelength, and doping of the NC solid. For example, the sign of photoconductance of InAs NCs capped with Cu(7)S(4)(-) or Sn(2)S(6)(4-) ions converted from positive at 0.80 and 0.95 eV to negative at 1.27 and 1.91 eV. We propose an explanation of this unusually complex photoconductivity of InAs NC solids.


Assuntos
Arsenicais/química , Calcogênios/química , Elétrons , Índio/química , Nanopartículas/química , Fosfinas/química , Arsenicais/síntese química , Ligantes , Fosfinas/síntese química , Processos Fotoquímicos
14.
Mol Cell Biochem ; 378(1-2): 171-81, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23508272

RESUMO

Colorectal cancer is the second leading cause of cancer-related deaths. Drug resistance and/or off-target toxicity against normal cells limit the effectiveness of current chemotherapies for the treatment of colorectal cancer. In the current study, we studied the potential cytotoxic effects of short-chain and cell-permeable C6 ceramide in cultured colorectal cancer HT-29 cells and focused on the underlying mechanisms. We observed that C6 ceramide-induced HT-29 cell death and growth inhibition in a dose- and time-dependent manner. However, no significant apoptosis was observed in C6 ceramide-treated HT-29 cells. Our data support that autophagy contributed to C6 ceramide-induced cytotoxic effects, as autophagy inhibitors, 3-methyladenine (3-MA) and hydroxychloroquine, inhibited C6 ceramide's effect; however, autophagy activators, everolimus (RAD001) and temsirolimus, mimicked C6 ceramide effects and induced HT-29 cell death. Further, we indentified that AMP-activated protein kinase (AMPK)/Ulk1 signaling was required for autophagy induction by C6 ceramide, and AMPK silencing by a specific short hairpin RNA suppressed C6 ceramide-induced autophagy and cytotoxic effects. Reversely, forced activation of AMPK by its activator AICAR or by genetic manipulation caused autophagic death in HT-29 cells, which was inhibited by 3-MA. Our results suggest that autophagy, but not apoptosis, is a major contributor for C6 ceramide-induced cytotoxic effects in HT-29 cells, and activation of AMPK/Ulk1 is required for the process.


Assuntos
Proteínas Quinases Ativadas por AMP/fisiologia , Antineoplásicos/farmacologia , Autofagia/efeitos dos fármacos , Ceramidas/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacologia , Apoptose , Proteína Homóloga à Proteína-1 Relacionada à Autofagia , Sobrevivência Celular/efeitos dos fármacos , Neoplasias Colorretais , Ativação Enzimática/efeitos dos fármacos , Everolimo , Células HCT116 , Células HT29 , Humanos , Ribonucleotídeos/farmacologia , Transdução de Sinais , Sirolimo/análogos & derivados , Sirolimo/farmacologia
15.
J Nanosci Nanotechnol ; 13(3): 2136-46, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23755657

RESUMO

The preparation of a novel fast response thremosensitive hydrogel was investigated by incorporating nanosized octavinyl polyhedral oligomeric silsesquioxane (OvPOSS) particles into inorganic clay-crosslinked poly(N-isopropylacrylamide) (PNIPA) nanocomposites hydrogels (NC gels). The resulting hydrogels named as P-NC gels involving both the strategies of NC gels and double network gels (DN gels) were successfully synthesized via a two-step technique. The second PNIPA network crosslinked by OvPOSS were polymerized in the presence of the first clay-PNIPA network. The P-NC gels were characterized by FTIR, X-ray, DSC, UV/vis,spectra, SEM, mechanical properties and swelling behaviors measurements. The key factor for preparing homogenous P-NC gels with good transparency was the low concentration of OvPOSS (c(OvPOSS)) dispersed uniformly in polymer as a cross-linker. On the contrary, the high c(OvPOSS) led to the significant aggregation of the OvPOSS particles and thus resulted in the heterogeneity of gels. The SEM images of freeze-dried P-NC gels exhibited a highly interconnected microporous network structure, which could be adjusted by varying the amount of OvPOSS. The special porous morphology brought about an attractive faster swelling/deswelling rate than that of normal NC gels. All properties of P-NC gels displayed an obvious dependence on the concentration of incorporated OvPOSS. The excellent mechanical properties, tunable LCST, especially the fast deswelling rate make these hydrogels potential candidates for applications in drug release and other biological fields.

16.
Polymers (Basel) ; 15(2)2023 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-36679207

RESUMO

In micro injection molding, the cavity thickness and surface roughness are the main effects factors of polymer flow in the die designing and affect the quality of molded products significantly. In this study, the effects of cavity thickness and roughness of cavity surface were investigated mainly on polymer flow during molding and on the roughness of molded products. The parts were molded in the cavities with the thickness from 0.05 mm to 0.25 mm and surface roughness from Ra = 46.55 nm to Ra = 462.57 nm, respectively. The filling integrities and roughness replication ratio of molded parts were used to evaluate the statements of polymer flow and microstructure replication during micro injection molding, respectively. The results showed that the filling integrity changing trends in the thinner cavities were obviously different or even opposite to those in the thicker cavities with the changing of cavity surface roughness instead of single trend in the conventional studies. For each cavity surface roughness, the filling integrity showed an upward trend with the increasing cavity thickness. In different cavity thickness, the maximum gap of filling integrity was 23.76 mm, reaching 544.94% from 0.05 mm to 0.25 mm. Additionally, the surface roughness ratio was slightly smaller than one before, reaching the polymer surface roughness limit around Ra = 71.27 nm, which was decided by the nature of the polymer itself. This study proposed the references for the design and fabrication of mold cavities and parts, and saved time and cost in the actual product manufacturing.

17.
Int J Biol Macromol ; 250: 126078, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37532188

RESUMO

Conventional polyolefin separators are constrained by poor electrolyte wettability, inferior thermal stability, and low ionic conductivity, which seriously restrict their application in high-performance lithium-ion batteries (LIBs). Herein, cellulose nanofiber (CNF) as the matrix and tert-butyl alcohol (TBA) as the dispersion medium were used to prepare the pure CNF separators for LIBs by a facile filtration method. The effects of the drying temperature on the pore structure, electrolyte wettability, mechanical properties, thermal stability, and ionic conductivity of the separators were comprehensively investigated. The results showed that the freeze-dried separator at -80 °C with TBA as the dispersion medium (TBA-FD) had the best overall performance, with the porosity and electrolyte uptake up to 70.8 % and 296 %, respectively, as well as the ionic conductivity up to 1.90 mS/cm. The CNF separators had no apparent thermal shrinkage at 160 °C, illustrating good thermal stability. Moreover, the LiFePO4/lithium metal battery assembled with the TBA-HD (tert-butyl alcohol as the dispersion medium for heat-drying at 80 °C) and TBA-FD separators displayed superior cycling stability (with a capacity retention rate up to 97.5 % and 96.4 %, respectively) and rate performance. The pure CNF separators with good performance prepared by the facile method are greatly promising for high-performance LIBs.

18.
Carbohydr Polym ; 300: 120278, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36372500

RESUMO

A novel self-supported polysaccharide based hydrogel membrane was prepared by adding cellulose nanofiber (CNF) and micron-sized biochar (BC) into sodium alginate (SA) hydrogel with in-situ free water evaporation ("cooking") process and ionic crosslinking, in which the polyethylene glycol (PEG) was used as a pore-forming agent. Herein, CNF can not only enhance the mechanical property of the matrix, but also assist the homogeneous dispersion of BC. As a result, the prepared membrane had a maximum tensile strength of up to 5.69 MPa, which was more than 2-3 times higher than the previously reported self-supported hydrogel membranes. The flux reached 61.5 Lm-2 h-1 under 0.35 MPa pressure, and the anti-fouling property was also excellent due to its hydrophilicity. In filtration tests, the rejection of Cr (III) and Cr (VI) of 50 mg/l could reach 96.8 % and 91.4 %, respectively. Moreover, the mechanism behind the exceptional high rejection for both cationic and anionic heavy metal was delineated.


Assuntos
Alginatos , Metais Pesados , Hidrogéis , Filtração , Íons , Celulose
19.
Comput Methods Biomech Biomed Engin ; 26(13): 1523-1531, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36382359

RESUMO

Saliva blood mixed liquid (SBML) appears in oral surgery, such as scaling and root planning, and it affects surgical vision and causes discomfort to the patient. However, removing SBML, i.e. frequent aspiration of the mixed liquid, is a routine task involving heavy workload and interruption of oral surgery. Therefore, it is valuable to alternate the manual mode by autonomous robotic technique. The robotic system is designed consisting of an RGB-D camera, a manipulator, a disposable oral aspirator. An algorithm is developed for detection of SBML. Path planning method is also addressed for the distal end of the aspirator. A workflow for removing SBML is presented. 95% of the area of the SBML in the oral cavity was removed after liquid aspiration among a group of ten SBML aspiration experiments. This study provides the first result of the autonomous aspirating robot (AAR) for removing SBML in oral surgery, demonstrating that SBML can be removed by the autonomous robot, freeing stomatology surgeon from tedious work.


Assuntos
Procedimentos Cirúrgicos Bucais , Robótica , Humanos , Saliva
20.
J Am Chem Soc ; 134(50): 20258-61, 2012 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-23198950

RESUMO

We report the colloidal synthesis of monodisperse nanocrystals (NCs) of InSb, which is an important member of III-V semiconductor family. Colloidal InSb NC quantum dots showed well-resolved excitonic transitions in the near-infrared spectral range, with the optical band gaps tunable from ∼1.03 eV (1200 nm) to ∼0.71 eV (1750 nm) corresponding to 3.3 and 6.5 nm InSb NCs, respectively. We observed size-tunable band edge photoluminescence that could be significantly enhanced by growing InSb/CdSe or InSb/CdS core-shell nanostructures. Films of InSb NCs capped with S(2-) ions showed ambipolar charge transport.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA