RESUMO
Hybrid sterility restricts the utilization of superior heterosis of indica-japonica inter-subspecific hybrids. In this study, we report the identification of RHS12, a major locus controlling male gamete sterility in indica-japonica hybrid rice. We show that RHS12 consists of two genes (iORF3/DUYAO and iORF4/JIEYAO) that confer preferential transmission of the RHS12-i type male gamete into the progeny, thereby forming a natural gene drive. DUYAO encodes a mitochondrion-targeted protein that interacts with OsCOX11 to trigger cytotoxicity and cell death, whereas JIEYAO encodes a protein that reroutes DUYAO to the autophagosome for degradation via direct physical interaction, thereby detoxifying DUYAO. Evolutionary trajectory analysis reveals that this system likely formed de novo in the AA genome Oryza clade and contributed to reproductive isolation (RI) between different lineages of rice. Our combined results provide mechanistic insights into the genetic basis of RI as well as insights for strategic designs of hybrid rice breeding.
Assuntos
Tecnologia de Impulso Genético , Oryza , Hibridização Genética , Oryza/genética , Melhoramento Vegetal/métodos , Isolamento Reprodutivo , Infertilidade das PlantasRESUMO
Prokaryotic anti-phage immune systems use TIR and cGAS-like enzymes to produce 1''-3'-glycocyclic ADP-ribose (1''-3'-gcADPR) and cyclic dinucleotide (CDN) and cyclic trinucleotide (CTN) signalling molecules, respectively, which limit phage replication1-3. However, how phages neutralize these distinct and common systems is largely unclear. Here we show that the Thoeris anti-defence proteins Tad14 and Tad25 both achieve anti-cyclic-oligonucleotide-based anti-phage signalling system (anti-CBASS) activity by simultaneously sequestering CBASS cyclic oligonucleotides. Apart from binding to the Thoeris signals 1''-3'-gcADPR and 1''-2'-gcADPR, Tad1 also binds to numerous CBASS CDNs and CTNs with high affinity, inhibiting CBASS systems that use these molecules in vivo and in vitro. The hexameric Tad1 has six binding sites for CDNs or gcADPR, which are independent of the two high-affinity binding sites for CTNs. Tad2 forms a tetramer that also sequesters various CDNs in addition to gcADPR molecules, using distinct binding sites to simultaneously bind to these signals. Thus, Tad1 and Tad2 are both two-pronged inhibitors that, alongside anti-CBASS protein 2 (Acb26-8), establish a paradigm of phage proteins that use distinct binding sites to flexibly sequester a considerable breadth of cyclic nucleotides.
RESUMO
In the type III-E CRISPR-Cas system, a Cas effector (gRAMP) is associated with a TPR-CHAT to form Craspase (CRISPR-guided caspase). However, both the structural features of gRAMP and the immunity mechanism remain unknown for this system. Here, we report structures of gRAMP-crRNA and gRAMP:cRNA:target RNA as well as structures of Craspase and Craspase complexed with cognate target RNA (CTR) or non-cognate target RNA (NTR). Importantly, the 3' anti-tag region of NTR and CTR binds at two distinct channels in Craspase, and CTR with a non-complementary 3' anti-tag induces a marked conformational change of the TPR-CHAT, which allosterically activates its protease activity to cleave an ancillary protein Csx30. This cleavage then triggers an abortive infection as the antiviral strategy of the type III-E system. Together, our study provides crucial insights into both the catalytic mechanism of the gRAMP and the immunity mechanism of the type III-E system.
Assuntos
Proteínas Associadas a CRISPR , Proteínas Associadas a CRISPR/genética , RNA/metabolismo , Antivirais , Sistemas CRISPR-Cas , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismoRESUMO
CRISPR-Cas systems are bacterial anti-viral systems, and phages use anti-CRISPR proteins (Acrs) to inactivate these systems. Here, we report a novel mechanism by which AcrIF11 inhibits the type I-F CRISPR system. Our structural and biochemical studies demonstrate that AcrIF11 functions as a novel mono-ADP-ribosyltransferase (mART) to modify N250 of the Cas8f subunit, a residue required for recognition of the protospacer-adjacent motif, within the crRNA-guided surveillance (Csy) complex from Pseudomonas aeruginosa. The AcrIF11-mediated ADP-ribosylation of the Csy complex results in complete loss of its double-stranded DNA (dsDNA) binding activity. Biochemical studies show that AcrIF11 requires, besides Cas8f, the Cas7.6f subunit for binding to and modifying the Csy complex. Our study not only reveals an unprecedented mechanism of type I CRISPR-Cas inhibition and the evolutionary arms race between phages and bacteria but also suggests an approach for designing highly potent regulatory tools in the future applications of type I CRISPR-Cas systems.
Assuntos
Proteínas Associadas a CRISPR/antagonistas & inibidores , Sistemas CRISPR-Cas/fisiologia , Proteínas Virais/metabolismo , ADP-Ribosilação/fisiologia , Proteínas de Bactérias/genética , Bacteriófagos/genética , Proteínas Associadas a CRISPR/genética , Proteínas Associadas a CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Microscopia Crioeletrônica/métodos , DNA/metabolismo , Modelos Moleculares , RNA Bacteriano/metabolismo , Proteínas Virais/genéticaRESUMO
Precise electrochemical synthesis of commodity chemicals and fuels from CO2 building blocks provides a promising route to close the anthropogenic carbon cycle, in which renewable but intermittent electricity could be stored within the greenhouse gas molecules. Here, we report state-of-the-art CO2-to-HCOOH valorization performance over a multiscale optimized Cu-Bi cathodic architecture, delivering a formate Faradaic efficiency exceeding 95% within an aqueous electrolyzer, a C-basis HCOOH purity above 99.8% within a solid-state electrolyzer operated at 100 mA cm-2 for 200 h and an energy efficiency of 39.2%, as well as a tunable aqueous HCOOH concentration ranging from 2.7 to 92.1 wt%. Via a combined two-dimensional reaction phase diagram and finite element analysis, we highlight the role of local geometries of Cu and Bi in branching the adsorption strength for key intermediates like *COOH and *OCHO for CO2 reduction, while the crystal orbital Hamiltonian population analysis rationalizes the vital contribution from moderate binding strength of η2(O,O)-OCHO on Cu-doped Bi surface in promoting HCOOH electrosynthesis. The findings of this study not only shed light on the tuning knobs for precise CO2 valorization, but also provide a different research paradigm for advancing the activity and selectivity optimization in a broad range of electrosynthetic systems.
RESUMO
Fluorine magnetic resonance imaging (19F-MRI) is particularly promising for biomedical applications owing to the absence of fluorine in most biological systems. However, its use has been limited by the lack of safe and water-soluble imaging agents with high fluorine contents and suitable relaxation properties. We report innovative 19F-MRI agents based on supramolecular dendrimers self-assembled by an amphiphilic dendrimer composed of a hydrophobic alkyl chain and a hydrophilic dendron. Specifically, this amphiphilic dendrimer bears multiple negatively charged terminals with high fluorine content, which effectively prevented intra- and intermolecular aggregation of fluorinated entities via electrostatic repulsion. This permitted high fluorine nuclei mobility alongside good water solubility with favorable relaxation properties for use in 19F-MRI. Importantly, the self-assembling 19F-MRI agent was able to encapsulate the near-infrared fluorescence (NIRF) agent DiR and the anticancer drug paclitaxel for multimodal 19F-MRI and NIRF imaging of and theranostics for pancreatic cancer, a deadly disease for which there remains no adequate early detection method or efficacious treatment. The 19F-MRI and multimodal 19F-MRI and NIRF imaging studies on human pancreatic cancer xenografts in mice confirmed the capability of both imaging modalities to specifically image the tumors and demonstrated the efficacy of the theranostic agent in cancer treatment, largely outperforming the clinical anticancer drug paclitaxel. Consequently, these dendrimer nanosystems constitute promising 19F-MRI agents for effective cancer management. This study offers a broad avenue to the construction of 19F-MRI agents and theranostics, exploiting self-assembling supramolecular dendrimer chemistry.
Assuntos
Dendrímeros , Flúor , Nanomedicina Teranóstica , Dendrímeros/química , Animais , Nanomedicina Teranóstica/métodos , Humanos , Camundongos , Flúor/química , Paclitaxel/química , Paclitaxel/uso terapêutico , Imageamento por Ressonância Magnética/métodos , Linhagem Celular Tumoral , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/terapia , Imagem por Ressonância Magnética de Flúor-19/métodos , Camundongos Nus , Meios de Contraste/químicaRESUMO
CYP78A, a cytochrome P450 subfamily that includes rice (Oryza sativa L.) BIG GRAIN2 (BG2, CYP78A13) and Arabidopsis thaliana KLUH (KLU, CYP78A5), generate an unknown mobile growth signal (referred to as a CYP78A-derived signal) that increases grain (seed) size. However, the mechanism by which the CYP78A pathway increases grain size remains elusive. Here, we characterized a rice small grain mutant, small grain4 (smg4), with smaller grains than its wild type due to restricted cell expansion and cell proliferation in spikelet hulls. SMG4 encodes a multidrug and toxic compound extrusion (MATE) transporter. Loss of function of SMG4 causes smaller grains while overexpressing SMG4 results in larger grains. SMG4 is mainly localized to endoplasmic reticulum (ER) exit sites (ERESs) and partially localized to the ER and Golgi. Biochemically, SMG4 interacts with coat protein complex â ¡ (COPâ ¡) components (Sar1, Sec23, and Sec24) and CYP78As (BG2, GRAIN LENGTH 3.2 [GL3.2], and BG2-LIKE 1 [BG2L1]). Genetically, SMG4 acts, at least in part, in a common pathway with Sar1 and CYP78As to regulate grain size. In summary, our findings reveal a CYP78As-SMG4-COPâ ¡ regulatory pathway for grain size in rice, thus providing new insights into the molecular and genetic regulatory mechanism of grain size.
Assuntos
Arabidopsis , Oryza , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Grão Comestível/genética , Sementes/genética , Arabidopsis/genéticaRESUMO
Synchronized ferroptosis contributes to nephron loss in acute kidney injury (AKI). However, the propagation signals and the underlying mechanisms of the synchronized ferroptosis for renal tubular injury remain unresolved. Here we report that platelet-activating factor (PAF) and PAF-like phospholipids (PAF-LPLs) mediated synchronized ferroptosis and contributed to AKI. The emergence of PAF and PAF-LPLs in ferroptosis caused the instability of biomembranes and signaled the cell death of neighboring cells. This cascade could be suppressed by PAF-acetylhydrolase (II) (PAFAH2) or by addition of antibodies against PAF. Genetic knockout or pharmacological inhibition of PAFAH2 increased PAF production, augmented synchronized ferroptosis and exacerbated ischemia/reperfusion (I/R)-induced AKI. Notably, intravenous administration of wild-type PAFAH2 protein, but not its enzymatically inactive mutants, prevented synchronized tubular cell death, nephron loss and AKI. Our findings offer an insight into the mechanisms of synchronized ferroptosis and suggest a possibility for the preventive intervention of AKI.
Assuntos
Injúria Renal Aguda , Ferroptose , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Injúria Renal Aguda/tratamento farmacológico , Ferroptose/efeitos dos fármacos , Animais , Camundongos , Camundongos Endogâmicos C57BL , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Fator de Ativação de Plaquetas/metabolismo , Camundongos Knockout , Humanos , MasculinoRESUMO
It has long been assumed that lifespan and healthspan correlate strongly, yet the two can be clearly dissociated1-6. Although there has been a global increase in human life expectancy, increasing longevity is rarely accompanied by an extended healthspan4,7. Thus, understanding the origin of healthy behaviours in old people remains an important and challenging task. Here we report a conserved epigenetic mechanism underlying healthy ageing. Through genome-wide RNA-interference-based screening of genes that regulate behavioural deterioration in ageing Caenorhabditis elegans, we identify 59 genes as potential modulators of the rate of age-related behavioural deterioration. Among these modulators, we found that a neuronal epigenetic reader, BAZ-2, and a neuronal histone 3 lysine 9 methyltransferase, SET-6, accelerate behavioural deterioration in C. elegans by reducing mitochondrial function, repressing the expression of nuclear-encoded mitochondrial proteins. This mechanism is conserved in cultured mouse neurons and human cells. Examination of human databases8,9 shows that expression of the human orthologues of these C. elegans regulators, BAZ2B and EHMT1, in the frontal cortex increases with age and correlates positively with the progression of Alzheimer's disease. Furthermore, ablation of Baz2b, the mouse orthologue of BAZ-2, attenuates age-dependent body-weight gain and prevents cognitive decline in ageing mice. Thus our genome-wide RNA-interference screen in C. elegans has unravelled conserved epigenetic negative regulators of ageing, suggesting possible ways to achieve healthy ageing.
Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Epigênese Genética , Envelhecimento Saudável/genética , Histona-Lisina N-Metiltransferase/metabolismo , Fatores Genéricos de Transcrição/metabolismo , Envelhecimento/genética , Animais , Proteínas de Caenorhabditis elegans/genética , Cognição , Disfunção Cognitiva , Histona-Lisina N-Metiltransferase/deficiência , Histona-Lisina N-Metiltransferase/genética , Histonas/química , Histonas/metabolismo , Humanos , Longevidade/genética , Lisina/metabolismo , Masculino , Memória , Metilação , Camundongos , Mitocôndrias/metabolismo , Neurônios/metabolismo , Proteínas/genética , Interferência de RNA , Aprendizagem Espacial , Fatores Genéricos de Transcrição/deficiência , Fatores Genéricos de Transcrição/genéticaRESUMO
Aging entails gradual functional decline influenced by interconnected factors. Multiple hallmarks proposed as common and conserved underlying denominators of aging on the molecular, cellular and systemic levels across multiple species. Thus, understanding the function of aging hallmarks and their relationships across species can facilitate the translation of anti-aging drug development from model organisms to humans. Here, we built AgeAnnoMO (https://relab.xidian.edu.cn/AgeAnnoMO/#/), a knowledgebase of multi-omics annotation for animal aging. AgeAnnoMO encompasses an extensive collection of 136 datasets from eight modalities, encompassing 8596 samples from 50 representative species, making it a comprehensive resource for aging and longevity research. AgeAnnoMO characterizes multiple aging regulators across species via multi-omics data, comprehensively annotating aging-related genes, proteins, metabolites, mitochondrial genes, microbiotas and age-specific TCR and BCR sequences tied to aging hallmarks for these species and tissues. AgeAnnoMO not only facilitates a deeper and more generalizable understanding of aging mechanisms, but also provides potential insights of the specificity across tissues and species in aging process, which is important to develop the effective anti-aging interventions for diverse populations. We anticipate that AgeAnnoMO will provide a valuable resource for comprehending and integrating the conserved driving hallmarks in aging biology and identifying the targetable biomarkers for aging research.
Assuntos
Envelhecimento , Bases de Conhecimento , Multiômica , Animais , Humanos , Envelhecimento/genética , Biomarcadores , Longevidade/genéticaRESUMO
Bacterial RecJ exhibits 5'â3' exonuclease activity that is specific to ssDNA; however, archaeal RecJs show 5' or 3' exonuclease activity. The hyperthermophilic archaea Methanocaldococcus jannaschii encodes the 5'-exonuclease MjRecJ1 and the 3'-exonuclease MjRecJ2. In addition to nuclease activity, archaeal RecJ interacts with GINS, a structural subcomplex of the replicative DNA helicase complex. However, MjRecJ1 and MjRecJ2 do not interact with MjGINS. Here, we report the structural basis for the inability of the MjRecJ2 homologous dimer to interact with MjGINS and its efficient 3' hydrolysis polarity for short dinucleotides. Based on the crystal structure of MjRecJ2, we propose that the interaction surface of the MjRecJ2 dimer overlaps the potential interaction surface for MjGINS and blocks the formation of the MjRecJ2-GINS complex. Exposing the interaction surface of the MjRecJ2 dimer restores its interaction with MjGINS. The cocrystal structures of MjRecJ2 with substrate dideoxynucleotides or product dCMP/CMP show that MjRecJ2 has a short substrate binding patch, which is perpendicular to the longer patch of bacterial RecJ. Our results provide new insights into the function and diversification of archaeal RecJ/Cdc45 proteins.
Assuntos
Proteínas Arqueais , Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , Proteínas Arqueais/genética , Cristalografia por Raios X , Methanocaldococcus/enzimologia , Methanocaldococcus/metabolismo , Ligação Proteica , Multimerização Proteica , DNA Helicases/metabolismo , DNA Helicases/química , DNA Helicases/genética , Modelos Moleculares , Exodesoxirribonucleases/metabolismo , Exodesoxirribonucleases/química , Exodesoxirribonucleases/genéticaRESUMO
Platinum (Pt) oxides are vital catalysts in numerous reactions, but research indicates that they decompose at high temperatures, limiting their use in high-temperature applications. In this study, we identify a two-dimensional (2D) crystalline Pt oxide with remarkable thermal stability (1,200 K under nitrogen dioxide) using a suite of in situ methods. This 2D Pt oxide, characterized by a honeycomb lattice of Pt atoms encased between dual oxygen layers forming a six-pointed star structure, exhibits minimized in-plane stress and enhanced vertical bonding due to its unique structure, as revealed by theoretical simulations. These features contribute to its high thermal stability. Multiscale in situ observations trace the formation of this 2D Pt oxide from α-PtO2, providing insights into its formation mechanism from the atomic to the millimetre scale. This 2D Pt oxide with outstanding thermal stability and distinct surface electronic structure subverts the previously held notion that Pt oxides do not exist at high temperatures and can also present unique catalytic capabilities. This work expands our understanding of Pt oxidation species and sheds light on the oxidative and catalytic behaviours of Pt oxide in high-temperature settings.
RESUMO
Grain size is one of the most important traits determining crop yield. However, the mechanism controlling grain size remains unclear. Here, we confirmed the E3 ligase activity of DECREASED GRAIN SIZE 1 (DGS1) in positive regulation of grain size in rice (Oryza sativa) suggested in a previous study. Rice G-protein subunit gamma 2 (RGG2), which negatively regulates grain size, was identified as an interacting protein of DGS1. Biochemical analysis suggested that DGS1 specifically interacts with canonical Gγ subunits (rice G-protein subunit gamma 1 [RGG1] and rice G-protein subunit gamma 2 [RGG2]) rather than non-canonical Gγ subunits (DENSE AND ERECT PANICLE 1 [DEP1], rice G-protein gamma subunit type C 2 [GCC2], GRAIN SIZE 3 [GS3]). We also identified the necessary domains for interaction between DGS1 and RGG2. As an E3 ligase, DGS1 ubiquitinated and degraded RGG2 via a proteasome pathway in several experiments. DGS1 also ubiquitinated RGG2 by its K140, K145, and S147 residues. Thus, this work identified a substrate of the E3 ligase DGS1 and elucidated the post-transcriptional regulatory mechanism of the G-protein signaling pathway in the control of grain size.
Assuntos
Regulação da Expressão Gênica de Plantas , Oryza , Proteínas de Plantas , Ubiquitina-Proteína Ligases , Oryza/genética , Oryza/metabolismo , Oryza/crescimento & desenvolvimento , Oryza/enzimologia , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Grão Comestível/crescimento & desenvolvimento , Grão Comestível/genética , Grão Comestível/metabolismo , Ubiquitinação , Plantas Geneticamente Modificadas , Proteólise , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Sementes/genética , Proteínas de Ligação ao GTP/metabolismo , Proteínas de Ligação ao GTP/genéticaRESUMO
Copper is a trace element essential for numerous biological activities, whereas the mitochondria serve as both major sites of intracellular copper utilization and copper reservoir. Here, we investigated the impact of mitochondrial copper overload on the tricarboxylic acid cycle, renal senescence and fibrosis. We found that copper ion levels are significantly elevated in the mitochondria in fibrotic kidney tissues, which are accompanied by reduced pyruvate dehydrogenase (PDH) activity, mitochondrial dysfunction, cellular senescence and renal fibrosis. Conversely, lowering mitochondrial copper levels effectively restore PDH enzyme activity, improve mitochondrial function, mitigate cellular senescence and renal fibrosis. Mechanically, we found that mitochondrial copper could bind directly to lipoylated dihydrolipoamide acetyltransferase (DLAT), the E2 component of the PDH complex, thereby changing the interaction between the subunits of lipoylated DLAT, inducing lipoylated DLAT protein dimerization, and ultimately inhibiting PDH enzyme activity. Collectively, our study indicates that mitochondrial copper overload could inhibit PDH activity, subsequently leading to mitochondrial dysfunction, cellular senescence and renal fibrosis. Reducing mitochondrial copper overload might therefore serve as a strategy to rescue renal fibrosis.
Assuntos
Senescência Celular , Cobre , Fibrose , Rim , Mitocôndrias , Complexo Piruvato Desidrogenase , Cobre/metabolismo , Mitocôndrias/metabolismo , Fibrose/metabolismo , Animais , Complexo Piruvato Desidrogenase/metabolismo , Rim/metabolismo , Rim/patologia , Di-Hidrolipoil-Lisina-Resíduo Acetiltransferase/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Humanos , Nefropatias/metabolismo , Nefropatias/patologia , Ciclo do Ácido CítricoRESUMO
SignificanceWhether sympatric speciation (SS) is rare or common is still debated. Two populations of the spiny mouse, Acomys cahirinus, from Evolution Canyon I (EC I) in Israel have been depicted earlier as speciating sympatrically by molecular markers and transcriptome. Here, we investigated SS both genomically and methylomically, demonstrating that the opposite populations of spiny mice are sister taxa and split from the common ancestor around 20,000 years ago without an allopatric history. Mate choice, olfactory receptors, and speciation genes contributed to prezygotic/postzygotic reproductive isolation. The two populations showed different methylation patterns, facilitating adaptation to their local environment. They cope with abiotic and biotic stresses, due to high solar interslope radiation differences. We conclude that our new genomic and methylomic data substantiated SS.
Assuntos
Isolamento Reprodutivo , Simpatria , Animais , Especiação Genética , Genoma , Israel , Murinae/genética , Simpatria/genéticaRESUMO
The phylogeny and speciation of subterranean zokors in China are unclear, as previous studies on morphology and limited molecular markers have generated conflicting results. This study unraveled the complex evolutionary history of eight zokor species in China based on de novo assembly at chromosome level and whole-genome sequencing of 23 populations. We found extensive phylogenetic discordances between nuclear and mitochondrial phylogenies, and different coalescent phylogenies, which could be explained by introgression and incomplete lineage sorting (ILS). The recent Qinghai-Tibet Plateau uplift (â¼3.60 million y ago; Mya) drove Eospalax to speciate into clade A and clade B (â¼3.22 Mya), and discordant phylogenies in this node were mainly attributed to introgression rather than ILS. Clade A rapidly diverged into three lineages due to geographical isolation and glaciation, while glaciation and C4 plant expansion contributed to the speciation of clade B. ILS contributed to the discordances of two rapidly radiated nodes rather than introgression. The effective population sizes (Ne's) of all the species of Eospalax were affected by three glaciations. Ancient polymorphisms and divergence hitchhiking contribute to genomic islands of all the species pairs. Positively selected genes putatively related to specific inhabitation adaptations were identified, such as heart development, neurogenesis, DNA repair, and immune response. Climate, geological tectonism, and C4 vegetation shaped the adaptation and speciation of zokors in China.
Assuntos
Genoma , Roedores , Animais , China , Genômica , Filogenia , Roedores/genética , TibetRESUMO
Carbohydrate partitioning between the source and sink tissues plays an important role in regulating plant growth and development. However, the molecular mechanisms regulating this process remain poorly understood. In this study, we show that elevated auxin levels in the rice dao mutant cause increased accumulation of sucrose in the photosynthetic leaves but reduced sucrose content in the reproductive organs (particularly in the lodicules, anthers, and ovaries), leading to closed spikelets, indehiscent anthers, and parthenocarpic seeds. RNA sequencing analysis revealed that the expression of AUXIN RESPONSE FACTOR 18 (OsARF18) and OsARF2 is significantly up- and down-regulated, respectively, in the lodicule of dao mutant. Overexpression of OsARF18 or knocking out of OsARF2 phenocopies the dao mutant. We demonstrate that OsARF2 regulates the expression of OsSUT1 through direct binding to the sugar-responsive elements (SuREs) in the OsSUT1 promoter and that OsARF18 represses the expression of OsARF2 and OsSUT1 via direct binding to the auxin-responsive element (AuxRE) or SuRE in their promoters, respectively. Furthermore, overexpression of OsSUT1 in the dao and Osarf2 mutant backgrounds could largely rescue the spikelets' opening and seed-setting defects. Collectively, our results reveal an auxin signaling cascade regulating source-sink carbohydrate partitioning and reproductive organ development in rice.
Assuntos
Metabolismo dos Carboidratos , Flores , Ácidos Indolacéticos , Oryza , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Técnicas de Inativação de Genes , Ácidos Indolacéticos/metabolismo , Mutação , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sacarose/metabolismoRESUMO
BACKGROUND: Triple-negative breast cancers display heterogeneity in molecular drivers and immune traits. We previously classified triple-negative breast cancers into four subtypes: luminal androgen receptor (LAR), immunomodulatory, basal-like immune-suppressed (BLIS), and mesenchymal-like (MES). Here, we aimed to evaluate the efficacy and safety of subtyping-based therapy in the first-line treatment of triple-negative breast cancer. METHODS: FUTURE-SUPER is an ongoing, open-label, randomised, controlled phase 2 trial being conducted at Fudan University Shanghai Cancer Center (FUSCC), Shanghai, China. Eligible participants were females aged 18-70 years, with an Eastern Cooperative Oncology Group performance status of 0-1, and histologically confirmed, untreated metastatic or recurrent triple-negative breast cancer. After categorising participants into five cohorts according to molecular subtype and genomic biomarkers, participants were randomly assigned (1:1) with a block size of 4, stratified by subtype, to receive, in 28-day cycles, nab-paclitaxel (100 mg/m2, intravenously on days 1, 8, and 15) alone (control group) or with a subtyping-based regimen (subtyping-based group): pyrotinib (400 mg orally daily) for the LAR-HER2mut subtype, everolimus (10 mg orally daily) for the LAR-PI3K/AKTmut and MES-PI3K/AKTmut subtypes, camrelizumab (200 mg intravenously on days 1 and 15) and famitinib (20 mg orally daily) for the immunomodulatory subtype, and bevacizumab (10 mg/kg intravenously on days 1 and 15) for the BLIS/MES-PI3K/AKTWT subtype. The primary endpoint was investigator-assessed progression-free survival for the pooled subtyping-based group versus the control group in the intention-to-treat population (all randomly assigned participants). Safety was analysed in all patients with safety records who received at least one dose of study drug. This study is registered with ClinicalTrials.gov (NCT04395989). FINDINGS: Between July 28, 2020, and Oct 16, 2022, 139 female participants were enrolled and randomly assigned to the subtyping-based group (n=69) or control group (n=70). At the data cutoff (May 31, 2023), the median follow-up was 22·5 months (IQR 15·2-29·0). Median progression-free survival was significantly longer in the pooled subtyping-based group (11·3 months [95% CI 8·6-15·2]) than in the control group (5·8 months [4·0-6·7]; hazard ratio 0·44 [95% CI 0·30-0·65]; p<0·0001). The most common grade 3-4 treatment-related adverse events were neutropenia (21 [30%] of 69 in the pooled subtyping-based group vs 16 [23%] of 70 in the control group), anaemia (five [7%] vs none), and increased alanine aminotransferase (four [6%] vs one [1%]). Treatment-related serious adverse events were reported for seven (10%) of 69 patients in the subtyping-based group and none in the control group. No treatment-related deaths were reported in either group. INTERPRETATION: These findings highlight the potential clinical benefits of using molecular subtype-based treatment optimisation in patients with triple-negative breast cancer, suggesting a path for further clinical investigation. Phase 3 randomised clinical trials assessing the efficacy of subtyping-based regimens are now underway. FUNDING: National Natural Science Foundation of China, Natural Science Foundation of Shanghai, Shanghai Hospital Development Center, and Jiangsu Hengrui Pharmaceuticals. TRANSLATION: For the Chinese translation of the abstract see Supplementary Materials section.
Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Proteínas Proto-Oncogênicas c-akt , Fosfatidilinositol 3-Quinases/uso terapêutico , Recidiva Local de Neoplasia/tratamento farmacológico , China , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversosRESUMO
Ferroptosis adversely affects the viability, differentiation, and metabolic integrity of C2C12 myoblasts, contributing to the decline in skeletal muscle health. The intricate mechanisms behind this process are not fully understood. In this study, we induced ferroptosis in myoblasts using targeted inducers and found a marked decrease in specific redox metabolites, particularly taurine. Taurine supplementation effectively reversed the deleterious effects of ferroptosis, significantly increased cellular glutathione levels, reduced MDA and ROS levels, and rejuvenated impaired myogenic differentiation. Furthermore, taurine downregulated HO-1 expression and decreased intracellular Fe2+ levels, thereby stabilizing the labile iron pool. Using NMR metabolomic analysis, we observed that taurine profoundly promoted glycerophospholipid metabolism, which is critical for cell membrane repair, and enhanced mitochondrial bioenergetics, thereby increasing the energy reserves essential for muscle satellite cell regeneration. These results suggest that taurine is a potent ferroptosis inhibitor that attenuates key drivers of this process, strengthens oxidative defenses, and improves redox homeostasis. This combined effect protects cells from ferroptosis-induced damage. This study highlights the potential of taurine as a valuable ferroptosis inhibitor that protects skeletal muscle from ferroptosis-induced damage and provides a basis for therapeutic strategies to rejuvenate and facilitate the regeneration of aging skeletal muscle.
Assuntos
Ferroptose , Homeostase , Ferro , Mioblastos , Oxirredução , Taurina , Taurina/farmacologia , Ferroptose/efeitos dos fármacos , Oxirredução/efeitos dos fármacos , Mioblastos/efeitos dos fármacos , Mioblastos/metabolismo , Mioblastos/citologia , Ferro/metabolismo , Animais , Camundongos , Homeostase/efeitos dos fármacos , Linhagem Celular , Espécies Reativas de Oxigênio/metabolismo , Diferenciação Celular/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Glutationa/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Glicerofosfolipídeos/metabolismoRESUMO
Lactate can serve as both an energy substrate and a signaling molecule, exerting diverse effects on skeletal muscle physiology. Due to the apparently positive effects, it would be interesting to consider it as a sports supplement. However, the mechanism behind these effects are yet to be comprehensively understood. In this study, we observed that lactate administration could improve the ability of antifatigue, and we further found that lactate upregulated the expression of myosin heavy chain (MYHC I) and MYHC IIa, while downregulating the expression of MYHC IIb. Besides, transcriptomics and metabolomics revealed significant changes in the metabolic profile of gastrocnemius muscle following lactate administration. Furthermore, lactate enhanced the activities of metabolic enzymes, including HK, LDHB, IDH, SDM, and MDH, and promoted the expression of lactate transport-related proteins MCT1 and CD147, thereby improving the transport and utilization of lactate in both vivo and vitro. More importantly, lactate administration increased cellular Ca2+ concentration and facilitated nuclear translocation of nuclear factor of activated T cells (NFATC1) in myotubes, whereas inhibition of NFATC1 significantly attenuated the effects of lactate treatment on NFATC1 nuclear translocation and MyHC expression. Our results elucidate the ability of lactate to induce metabolic remodeling in skeletal muscle and promote myofiber-type transitions by activating the Ca2+-NFATC1 signaling pathway. This study is useful in exploring the potential of lactate as a nutritional supplement for skeletal muscle adaptation and contributing to a mechanistic understanding of the central role of lactate in exercise physiology.