RESUMO
Bacterial lifestyles depend on conditions encountered during colonization. The transition between planktonic and biofilm growth is dependent on the intracellular second messenger c-di-GMP. High c-di-GMP levels driven by diguanylate cyclases (DGCs) activity favor biofilm formation, while low levels were maintained by phosphodiesterases (PDE) encourage planktonic lifestyle. The activity of these enzymes can be modulated by stimuli-sensing domains such as Per-ARNT-Sim (PAS). In Pseudomonas aeruginosa, more than 40 PDE/DGC are involved in c-di-GMP homeostasis, including 16 dual proteins possessing both canonical DGC and PDE motifs, that is, GGDEF and EAL, respectively. It was reported that deletion of the EAL/GGDEF dual enzyme PA0285, one of five c-di-GMP-related enzymes conserved across all Pseudomonas species, impacts biofilms. PA0285 is anchored in the membrane and carries two PAS domains. Here, we confirm that its role is conserved in various P. aeruginosa strains and in Pseudomonas putida. Deletion of PA0285 impacts the early stage of colonization, and RNA-seq analysis suggests that expression of cupA fimbrial genes is involved. We demonstrate that the C-terminal portion of PA0285 encompassing the GGDEF and EAL domains binds GTP and c-di-GMP, respectively, but only exhibits PDE activity in vitro. However, both GGDEF and EAL domains are important for PA0285 PDE activity in vivo. Complementation of the PA0285 mutant strain with a copy of the gene encoding the C-terminal GGDEF/EAL portion in trans was not as effective as complementation with the full-length gene. This suggests the N-terminal transmembrane and PAS domains influence the PDE activity in vivo, through modulating the protein conformation.
Assuntos
Proteínas de Bactérias , Pseudomonas , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biofilmes , GMP Cíclico/metabolismo , Regulação Bacteriana da Expressão Gênica , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/metabolismo , Fósforo-Oxigênio Liases/genética , Fósforo-Oxigênio Liases/metabolismo , Pseudomonas/enzimologiaRESUMO
Realizing decarbonization and sustainable energy supply by the integration of variable renewable energies has become an important direction for energy development. Flow batteries (FBs) are currently one of the most promising technologies for large-scale energy storage. This review aims to provide a comprehensive analysis of the state-of-the-art progress in FBs from the new perspectives of technological and environmental sustainability, thus guiding the future development of FB technologies. More importantly, we evaluate the current situation and future development of key materials with key aspects of green economy and decarbonization to promote sustainable development and improve the novel energy framework. Finally, we present an analysis of the current challenges and prospects on how to effectively construct low-carbon and sustainable FB materials in the future.
RESUMO
Selective mid-infrared (MIR) radiation is highly desirable in many applications. However, there are still great challenges to simultaneously achieve MIR camouflage and radiative cooling utilizing simple structure. This work theoretically and experimentally proposes a bi-layer metamaterial composed of aluminum doped zinc oxide (AZO) nanoparticles embedded in Al2O3matrix on the aluminum film. The bi-layer metamaterial exhibits high performance in MIR camouflage with radiative cooling, a low emissivity (ε3-5µm= 0.11,ε8-14µm= 0.20) in atmospheric windows and a high emissivity (ε5-8µm= 0.81) in non-atmospheric windows. The interaction of the epsilon-near-zero (ENZ) mode and localized surface plasmon resonance (LSPR) mode is responsible for the perfect emission over the wavelength range of 5-8µm. Additionally, the proposed selective MIR emitter supports large-angle incidence and has great polarization insensitivity. This demonstrates that epsilon-near-zero material-based bi-layer metamaterial is highly promising for the development of selective mid-infrared radiation.
RESUMO
Passive radiative cooling involves the emission of thermal radiation into cold space and the reflection of solar radiation, which aims to cool and lower the temperature of objects. However, currently most radiative coolers have a white appearance which restricts their potential applications. We develop a coloured bilayer radiative cooling membrane using polyvinylidene fluoride/tetraethoxysilane (PVDF/TEOS) fibres, with incorporation of phase change materials (PCMs) and active dyes through a simple and large-area electrospinning process. In comparison to traditional emitters, PCM-incorporated colourful coolers provide energy storage capacity and colourful appearances. Our phase-transition-based colourful flexible film (PCFF) achieves a total solar reflectance of 0.81 and a mid-infrared (8-13µm) emissivity of 0.85 with superior mechanical strength and good hydrophobicity. We experimentally demonstrate that our PCFF can significantly reduce the temperature of objects exposed to direct sunlight, with a cooling effect of up to 9 °C compared to commercial fabrics of similar materials and colours. Our work provides a promising starting point for the design and manufacture of colourful and flexible thermal control films.
RESUMO
Temperature is a fundamental parameter for all forms of lives. Natural evolution has resulted in organisms which have excellent thermoregulation capabilities in extreme climates. Bioinspired materials that mimic biological solution for thermoregulation have proven promising for passive radiative cooling. However, scalable production of artificial photonic radiators with complex structures, outstanding properties, high throughput, and low cost is still challenging. Herein, we design and demonstrate biologically inspired photonic materials for passive radiative cooling, after discovery of longicorn beetles' excellent thermoregulatory function with their dual-scale fluffs. The natural fluffs exhibit a finely structured triangular cross-section with two thermoregulatory effects which effectively reflects sunlight and emits thermal radiation, thereby decreasing the beetles' body temperature. Inspired by the finding, a photonic film consisting of a micropyramid-arrayed polymer matrix with random ceramic particles is fabricated with high throughput. The film reflects â¼95% of solar irradiance and exhibits an infrared emissivity >0.96. The effective cooling power is found to be â¼90.8 Wâ m-2 and a temperature decrease of up to 5.1 °C is recorded under direct sunlight. Additionally, the film exhibits hydrophobicity, superior flexibility, and strong mechanical strength, which is promising for thermal management in various electronic devices and wearable products. Our work paves the way for designing and fabrication of high-performance thermal regulation materials.
RESUMO
As an emerging subset of organic complexes, metal complexes have garnered considerable attention owing to their outstanding structures, properties, and applications. In this content, metal-organic cages (MOCs) with defined shapes and sizes provide internal spaces to isolate water for guest molecules, which can be selectively captured, isolated, and released to achieve control over chemical reactions. Complex supramolecules are constructed by simulating the self-assembly behavior of the molecules or structures in nature. For this purpose, massive amounts of cavity-containing supramolecules, such as metal-organic cages (MOCs), have been extensively explored for a large variety of reactions with a high degree of reactivity and selectivity. Because sunlight and water are necessary for the process of photosynthesis, water-soluble metal-organic cages (WSMOCs) are ideal platforms for photo-responsive stimulation and photo-mediated transformation by simulating photosynthesis due to their defined sizes, shapes, and high modularization of metal centers and ligands. Therefore, the design and synthesis of WSMOCs with uncommon geometries embedded with functional building units is of immense importance for artificial photo-responsive stimulation and photo-mediated transformation. In this review, we introduce the general synthetic strategies of WSMOCs and their applications in this sparking field.
RESUMO
The development of water-soluble redox-active molecules with high potentials is one of the effective ways to enhance the energy density of aqueous organic flow batteries (AOFBs). Herein, a series of promising N-substituted benzidine analogues as water-soluble catholyte candidates with controllable redox potentials (0.78-1.01â V vs. standard hydrogen electrode (SHE)) were obtained by the molecular engineering of aqueous irreversible benzidines. Theoretical calculations reveal that the redox potentials of these benzidine derivatives in acidic solution are determined by their electronic structure and alkalinity. Among these benzidine derivatives, N,N,N',N'-tetraethylbenzidine(TEB) shows both high redox potential (0.82â V vs. SHE) and good solubility (1.1â M). Pairing with H4 [Si(W3 O10 )4 ] anolyte, the cell displayed discharge capacity retention of 99.4 % per cycle and a high coulombic efficiency (CE) of â¼100 % over 1200â cycles. The stable discharge capacity of 41.8â Ah L-1 was achieved at the 1.0â M TEB catholyte with a CE of 97.2 % and energy efficiency (EE) of 91.2 %, demonstrating that N-substituted benzidines could be promising for AOFBs.
RESUMO
Gleditsiae Spina, the thorn of Gleditsia sinensis Lam., has a long history of being used as a traditional medicine in East Asian countries. However, only a few biologically active substances have been identified from it. In this study, the epidermis, xylem and pith of Gleditsiae Spina, respectively Gs-E, Gs-X and Gs-P, were studied. We used a widely targeted metabolomics method to investigate the chemical composition of Gs-E, Gs-X and Gs-P. A total of 728 putative metabolites were identified from Gleditsiae Spina, including 211 primary metabolites and 517 secondary metabolites. These primary and secondary metabolites could be categorized into more than 10 different classes. Flavonoids, phenolic acids, lipids, amino acids and derivatives, and organic acids constituted the main metabolite groups. Multivariate statistical analysis showed that the Gs-E, Gs-X and Gs-P samples could be clearly separated. Differential accumulated metabolite (DAM) analysis revealed that more than half of the DAMs exhibited the highest relative concentrations in Gs-E, and most of the DAMs showed the lowest relative concentrations in Gs-X. Moreover, 11 common differential primary metabolites and 79 common differential secondary metabolites were detected in all comparison groups. These results further our understanding of chemical composition and metabolite accumulation of Gleditsiae Spina.
Assuntos
Medicamentos de Ervas Chinesas , Metabolômica , Epiderme/química , Flavonoides/análise , Xilema/química , Xilema/metabolismoRESUMO
Reported in this work is a water triggered chemo-divergent enantioselective spiro-annulation and cascade reaction of ortho-quinone methides (o-QMs) with α-thiocyanato indanones catalyzed by a chiral organic base. In the case of spiro-annulation, the use of trace amount of water as additive is critical to achieve high enantioselectivity (up to 96 % ee). We found that a cascade reaction was enabled by just tuning the ratio of water in solvent. Accordingly, two new highly efficient asymmetric reactions for the divergent synthesis of spiro- and fused-indanone scaffolds with excellent enantioselectivities (up to 99 % ee) were developed. Mechanistic investigations suggest that interfacial hydrogen bonding may play an important role in achieving the switchable reaction pathways.
RESUMO
Despite recent evidence from full-scale plants suggesting that Candidatus Accumulibacter may be capable of using amino acids, this metabolic trait has never been confirmed in a bioreactor experiment. Here we show that an enriched culture of Ca. Accumulibacter clade IIF strain SCELSE-1 could metabolize 11 of 20 α-amino acids, with aspartate, glutamate, asparagine, and glutamine resulting in the highest phosphorus removal. The anaerobic uptake of aspartate and glutamate was achieved through a glutamate/aspartate-proton symporter fully powered by the proton motive force (PMF). Under anaerobic conditions aspartate was deaminized and routed into core carbon metabolic pathways to form polyhydroxyalkanoates (PHA). The lack of genes encoding NADH dependent isocitrate dehydrogenase in the Ca. Accumulibacter genome resulted in a kinetic barrier for glutamate to be channelled to the TCA cycle. Glutamate was stored as glutamate polymer. When amino acids (aspartate or glutamate) and acetate were supplied together, Ca. Accumulibacter took up both carbon sources simultaneously, with the uptake rate of each carbon source largely preserved. Overall energy savings (up to 17%) were achieved under mixed carbon scenarios, due to the ability of Ca. Accumulibacter to rearrange its anaerobic carbon metabolism based on the reducing power, PMF and ATP balance.
Assuntos
Carbono , Fósforo , Aminoácidos , Anaerobiose , Reatores BiológicosRESUMO
Metamaterial emitters with spectrally tunable radiation in the mid-infrared region have aroused great interest in thermal management engineering applications. Nevertheless, it is still a great challenge to economically and conveniently manufacture easily scalable thermal emitters with wide-range tunable spectra. This work theoretically and experimentally demonstrates a conceptually simple and absorption-tunable design strategy for thermal emitters with tailorable spectral responses in the mid-infrared wavelength, based on the nanocomposite structure. This strategy introduces aluminum-doped zinc oxide (AZO) nanoparticles with intrinsic resonance into the top layer as an improvement to the traditional Fabry-Perot resonance system, and thereby excellent permittivity properties that are inaccessible to natural materials are obtained. With a field build-up generated in not just the middle spacer but also the top nanocomposite layer, the absorption bands can be tailored in a wider range. Moreover, according to the calculated relationship between the overall absorption and structural parameters, the tailorability of the absorption spectra can be achieved. As a proof of concept, infrared stealth and day-time radiative cooling performances are demonstrated based on spectrally different infrared emitters. This design and theoretical strategy leads to multipurpose metamaterials with tunable resonance responses for advanced thermal management engineering or even beyond infrared fields.
RESUMO
Metamaterials with spectrally selective absorptance operating in the mid-infrared range have attracted much interest in numerous applications. However, it remains a challenge to economically fabricate scalable meta-absorbers with tailorable absorptance bands. This work demonstrates a conceptually simple and low-cost yet effective design strategy to achieve spectrally selective absorption with tailorable band positions at MIR by colloidal lithography. The strategy ingeniously uses residual diameter fluctuations of circular resonators etched through monodisperse colloidal particles for achieving superposition of multiple magnetic resonances and thereby a more than doubled absorption band, which is neglected in previous works. The proposed meta-absorber features densely packed thick aluminum resonators with a rather narrow diameter distribution and enhanced capacitive coupling among them. Moreover, the tailorability of the absorption band can be achieved by a parameterized variation in the fabrication process. As a proof of concept, infrared stealth and radiative cooling are demonstrated based on our meta-absorbers. The design and fabrication strategy create versatile metamaterials for advanced radiative thermal engineering.
RESUMO
The use of photocatalysts to purify wastewater and simultaneously convert solar energy into clean hydrogen energy is of considerable significance in environmental science. However, it is still a challenge due to their relatively high costs, low efficiencies, and poor stabilities. In this study, a metal-free carbon quantum dots (CQDs) modified graphitic carbon nitride photocatalyst (CCN) was synthesized by a facile method. The characterization and theoretical calculation results reveal that the incorporation of CQDs into the g-C3N4 matrix significantly improves the charge transfer and separation efficiency, exhibits a redshift of absorption edge, narrows the bandgap, and prevents the recombination of photoexcited carriers. The hydrogen production and simultaneous degradation of methylene blue (MB) or rhodamine B (RhB) in simulated wastewaters were further tested. In the simulated wastewater, the CCN catalyst showed enhanced photodegradation efficiency, accompanied with the increased hydrogen evolution rate (1291 µmol·h-1·g-1). The internal electrical field between the g-C3N4 and the CQDs is the main reason for the spatial separation of photoexcited electron-hole pairs. Overall, this work could offer a new protocol for the design of highly efficient photocatalysts for dye wastewater purification with simultaneous hydrogen production.
Assuntos
Carbono/química , Grafite/química , Hidrogênio/química , Metais/química , Compostos de Nitrogênio/química , Pontos Quânticos/química , Águas Residuárias/química , Catálise , Elétrons , Próteses e ImplantesRESUMO
Structural whiteness, stemming from biologically evolutionarily refined structures, provides inspiration for designing promising, reflectance-based materials. White beetles Goliathus goliatus, which can survive in high-temperature-equatorial forests, may suggest undiscovered new physical mechanisms for thermoregulation. Their scales' whiteness is created by the exquisite shell/hollow cylinder structure with two thermoregulatory effects, contributing to a lower equilibrium temperature of elytra under direct sunlight. In the visible regime, they enhance the broadband omnidirectional reflection significantly by synergetic structural effects originating from the thin-film interference, Mie resonance and total reflection. In the mid-infrared (MIR) regime, white scales act as antireflective layers to increase the emissivity in the MIR range, enabling the elytra to reradiate heat to the environment and help the beetles reduce their temperature by as much as â¼7.8 °C in air. These biological strategies for thermoregulation could provide new approaches for bioinspired coatings towards passive radiative cooling.
Assuntos
Besouros , Temperatura Alta , Fenômenos Ópticos , Luz Solar , AnimaisRESUMO
BACKGROUND: The aim of this study was to identify risk factors and explore the possible prevention measures for seizures following cranioplasty. METHODS: The authors performed a retrospective review of 142 consecutive patients who underwent cranioplasty following craniectomy for trauma or cerebral hemorrhage in Dezhou People's Hospital between January 2010 and January 2017. Patients who were diagnosed with aneurysms, arteriovenous malformations, cerebral infarction, and tumors (14), had seizures prior to cranioplasty (9) and those lost to follow-up (7) were excluded. Patients did not use antiepilepsy drugs from treatment of postcranioplasty seizures. The median follow-up time was 51.11â±â31.59 months (range: 17-98 months). Analyses were performed on a database tracking age, sex, reason for craniectomy, operative time, time between operations, presence of dural substitute, diabetic status, hypertensive status, tobacco use, alcohol use, location of cranioplasty, classification, time and times of seizures following cranioplasty development. RESULTS: One hundred twelve patients met study criteria. The overall rate of seizures following cranioplasty was 35.7% (40 out of 112 patients). There were no statistically significant associations between postcranioplasty seizures and sex, age, location of cranioplasty, cranioplasty materials, or dural substitute used in craniectomy. Postcranioplasty seizure frequency differed significantly according to reasons for depressive craniectomy. The incidence of postcranioplasty seizures was significantly higher in the first year than in later years. Incidence decreased progressively in subsequent years. CONCLUSION: Incidence of seizures following cranioplasty was associated with the reason for depressive craniectomy.
Assuntos
Procedimentos de Cirurgia Plástica/efeitos adversos , Complicações Pós-Operatórias/epidemiologia , Convulsões/epidemiologia , Crânio/cirurgia , Traumatismos Craniocerebrais/cirurgia , Craniotomia , Humanos , Procedimentos de Cirurgia Plástica/métodos , Estudos Retrospectivos , Fatores de RiscoRESUMO
We report herein a dynamic kinetic resolution (DKR) involving ortho-quinone methide (o-QM) intermediates. In the presence of Et3 N and the cinchonine-derived nucleophilic catalyst D, the DKR of 2-sulfonylalkyl phenols with allenic esters afforded chiral benzylic sulfones in 57-79 % yield with good to excellent enantioselectivity (85-95 %â ee). Furthermore, with 2-(tosylmethyl)sesamols or 2-(tosylmethyl)naphthols, from which stable o-QM substrates can be generated, a formal [4+2] cycloaddition delivered 4-aryl- or alkyl-substituted chromans with excellent enantioselectivity (88-97 %â ee).
RESUMO
Ezh2 (Enhancer of zeste homolog 2) protein is the enzymatic component of the Polycomb repressive complex 2 (PRC2), which represses gene expression by methylating lysine 27 of histone H3 (H3K27) and regulates cell proliferation and differentiation during embryonic development. Recently, hot-spot mutations of Ezh2 were identified in diffused large B-cell lymphomas and follicular lymphomas. To investigate if tumor growth is dependent on the enzymatic activity of Ezh2, we developed a potent and selective small molecule inhibitor, EI1, which inhibits the enzymatic activity of Ezh2 through direct binding to the enzyme and competing with the methyl group donor S-Adenosyl methionine. EI1-treated cells exhibit genome-wide loss of H3K27 methylation and activation of PRC2 target genes. Furthermore, inhibition of Ezh2 by EI1 in diffused large B-cell lymphomas cells carrying the Y641 mutations results in decreased proliferation, cell cycle arrest, and apoptosis. These results provide strong validation of Ezh2 as a potential therapeutic target for the treatment of cancer.
Assuntos
Linfoma Difuso de Grandes Células B/patologia , Complexo Repressor Polycomb 2/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Embrião de Mamíferos/citologia , Proteína Potenciadora do Homólogo 2 de Zeste , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Técnicas de Inativação de Genes , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Linfoma Difuso de Grandes Células B/genética , Metilação/efeitos dos fármacos , Camundongos , Mutação/genética , Fenótipo , Complexo Repressor Polycomb 2/metabolismo , Bibliotecas de Moléculas Pequenas/química , Ensaio Tumoral de Célula-Tronco , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genéticaRESUMO
BACKGROUND: The fate and differentiation of mesenchymal stem cells (MSCs) depend on various microenvironmental cues. In chronic inflammatory bone disease, bone regeneration is inhibited. The present study therefore sought to identify the underlying molecule mechanisms. METHODS: We isolated periodontal ligament stem cells (PDLSCs), a new population of MSCs, from the periodontal ligament tissues of periodontitis patients and healthy controls (p-PDLSCs and h-PDLSCs). The secretion of inflammatory cytokines, like TNF-α, IL-1ß, IL-6 and IL-8, after LPS stimulation was measured by ELISA. The expressions of p-GSK3ß and GSK3ß in two types of PDLSCs were detected by Western blot. TOPFlash was used to assay the Tcf/Lef transcriptional activity. Knockdown of GSK3ß by siRNA and over-expression of GSK3ß by adenoviruses were performed to confirm the role of GSK3ß in the impaired osteogenic differentiation of PDLSCs under inflammatory microenvironment. RESULTS: We demonstrated that p-PDLSCs displayed impaired osteogenic capacity than h-PDLSCs. Upon inflammatory stimulation, monocytes, but not PDLSCs, released inflammatory cytokines among which TNF-α directly act on PDLSCs and suppressed their osteogenic differentiation. TNF-α induced the phosphorylation of GSK3ß, the deactivated form of GSK3ß, which increased nuclear ß-catenin and Lef-1 accumulation, and eventually reduced the Runx2-associated osteogenesis in PDLSCs. Over-expression of GSK3ß rescued osteogenesis in TNF-α-stimulated PDLSCs, whereas inactivation of GSK3ß was sufficient to liberate the ß-catenin/Lef-1/Runx2 pathway. CONCLUSION: GSK3ß plays an obligatory role in the TNF-α-mediated inhibition of osteogenesis in MSCs. GENERAL SIGNIFICANCE: The strategy to target GSK3ß may provide a potential approach to bone regeneration in inflammatory microenvironments.
Assuntos
Diferenciação Celular/fisiologia , Quinase 3 da Glicogênio Sintase/metabolismo , Inflamação/patologia , Células-Tronco Mesenquimais/patologia , Osteogênese/fisiologia , Nicho de Células-Tronco/fisiologia , Fator de Necrose Tumoral alfa/metabolismo , Adulto , Núcleo Celular/metabolismo , Células Cultivadas , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Glicogênio Sintase Quinase 3 beta , Humanos , Inflamação/metabolismo , Interleucinas/metabolismo , Fator 1 de Ligação ao Facilitador Linfoide/metabolismo , Células-Tronco Mesenquimais/metabolismo , Monócitos/metabolismo , Monócitos/patologia , Ligamento Periodontal/metabolismo , Ligamento Periodontal/patologia , Periodontite/metabolismo , Periodontite/patologia , Fosforilação/fisiologia , Adulto Jovem , beta Catenina/metabolismoRESUMO
The performance of herbivorous insects is greatly affected by plant nutritional quality and resistance, which are likely to be altered by rising concentrations of atmospheric CO2 . We previously reported that elevated CO2 enhanced biological nitrogen (N) fixation of Medicago truncatula, which could result in an increased supply of amino acids to the pea aphid (Acyrthosiphon pisum). The current study examined the N nutritional quality and aphid resistance of sickle, an ethylene-insensitive mutant of M. truncatula with supernodulation, and its wild-type control A17 under elevated CO2 in open-top field chambers. Regardless of CO2 concentration, growth and amino acid content were greater and aphid resistance was lower in sickle than in A17. Elevated CO2 up-regulated N assimilation and transamination-related enzymes activities and increased phloem amino acids in both genotypes. Furthermore, elevated CO2 down-regulated expression of 1-amino-cyclopropane-carboxylic acid (ACC), sickle gene (SKL) and ethylene response transcription factors (ERF) genes in the ethylene signaling pathway of A17 when infested by aphids and decreased resistance against aphids in terms of lower activities of superoxide dismutase (SOD), peroxidase (POD), and polyphenol oxidase (PPO). Our results suggest that elevated CO2 suppresses the ethylene signaling pathway in M. truncatula, which results in an increase in plant nutritional quality for aphids and a decrease in plant resistance against aphids.
Assuntos
Afídeos , Dióxido de Carbono/farmacologia , Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas , Medicago truncatula/efeitos dos fármacos , Nitrogênio/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Aminoácidos/metabolismo , Animais , Dióxido de Carbono/metabolismo , Genes de Plantas , Genótipo , Efeito Estufa , Interações Hospedeiro-Parasita , Medicago truncatula/genética , Medicago truncatula/crescimento & desenvolvimento , Medicago truncatula/metabolismo , Mutação , Floema/efeitos dos fármacos , Floema/metabolismo , Doenças das Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
Elevated CO(2) compromises the resistance of leguminous plants against chewing insects, but little is known about whether elevated CO(2) modifies the resistance against phloem-sucking insects or whether it has contrasting effects on the resistance of legumes that differ in biological nitrogen fixation. We tested the hypothesis that the physical and chemical resistance against aphids would be increased in Jemalong (a wild type of Medicago truncatula) but would be decreased in dnf1 (a mutant without biological nitrogen fixation) by elevated CO(2). The non-glandular and glandular trichome density of Jemalong plants increased under elevated CO(2), resulting in prolonged aphid probing. In contrast, dnf1 plants tended to decrease foliar trichome density under elevated CO(2), resulting in less surface and epidermal resistance to aphids. Elevated CO(2) enhanced the ineffective salicylic acid-dependent defence pathway but decreased the effective jasmonic acid/ethylene-dependent defence pathway in aphid-infested Jemalong plants. Therefore, aphid probing time decreased and the duration of phloem sap ingestion increased on Jemalong under elevated CO(2), which, in turn, increased aphid growth rate. Overall, our results suggest that elevated CO(2) decreases the chemical resistance of wild-type M. truncatula against aphids, and that the host's biological nitrogen fixation ability is central to this effect.