RESUMO
The durability of an antitumor immune response is mediated in part by the persistence of progenitor exhausted CD8+ T cells (Tpex). Tpex serve as a resource for replenishing effector T cells and preserve their quantity through self-renewal. However, it is unknown how T cell receptor (TCR) engagement affects the self-renewal capacity of Tpex in settings of continued antigen exposure. Here we use a Lewis lung carcinoma model that elicits either optimal or attenuated TCR signaling in CD8+ T cells to show that formation of Tpex in tumor-draining lymph nodes and their intratumoral persistence is dependent on optimal TCR engagement. Notably, attenuated TCR stimulation accelerates the terminal differentiation of optimally primed Tpex. This TCR-reinforced Tpex development and self-renewal is coupled to proximal positioning to dendritic cells and epigenetic imprinting involving increased chromatin accessibility at Egr2 and Tcf1 target loci. Collectively, this study highlights the critical function of TCR engagement in sustaining Tpex during tumor progression.
Assuntos
Linfócitos T CD8-Positivos , Carcinoma Pulmonar de Lewis , Fator 1-alfa Nuclear de Hepatócito , Camundongos Endogâmicos C57BL , Receptores de Antígenos de Linfócitos T , Animais , Linfócitos T CD8-Positivos/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos de Linfócitos T/imunologia , Camundongos , Carcinoma Pulmonar de Lewis/imunologia , Carcinoma Pulmonar de Lewis/patologia , Carcinoma Pulmonar de Lewis/metabolismo , Fator 1-alfa Nuclear de Hepatócito/metabolismo , Diferenciação Celular/imunologia , Células Dendríticas/imunologia , Transdução de Sinais/imunologia , Camundongos Knockout , Ativação Linfocitária/imunologia , Autorrenovação Celular , Camundongos Transgênicos , Proteína 2 de Resposta de Crescimento PrecoceRESUMO
Neurodegenerative diseases, including Alzheimer's disease (AD), are characterized by innate immune-mediated inflammation, but functional and mechanistic effects of the adaptive immune system remain unclear. Here we identify brain-resident CD8+ T cells that coexpress CXCR6 and PD-1 and are in proximity to plaque-associated microglia in human and mouse AD brains. We also establish that CD8+ T cells restrict AD pathologies, including ß-amyloid deposition and cognitive decline. Ligand-receptor interaction analysis identifies CXCL16-CXCR6 intercellular communication between microglia and CD8+ T cells. Further, Cxcr6 deficiency impairs accumulation, tissue residency programming and clonal expansion of brain PD-1+CD8+ T cells. Ablation of Cxcr6 or CD8+ T cells ultimately increases proinflammatory cytokine production from microglia, with CXCR6 orchestrating brain CD8+ T cell-microglia colocalization. Collectively, our study reveals protective roles for brain CD8+ T cells and CXCR6 in mouse AD pathogenesis and highlights that microenvironment-specific, intercellular communication orchestrates tissue homeostasis and protection from neuroinflammation.
RESUMO
LAG3 is an inhibitory receptor that is highly expressed on exhausted T cells. Although LAG3-targeting immunotherapeutics are currently in clinical trials, how LAG3 inhibits T cell function remains unclear. Here, we show that LAG3 moved to the immunological synapse and associated with the T cell receptor (TCR)-CD3 complex in CD4+ and CD8+ T cells, in the absence of binding to major histocompatibility complex class II-its canonical ligand. Mechanistically, a phylogenetically conserved, acidic, tandem glutamic acid-proline repeat in the LAG3 cytoplasmic tail lowered the pH at the immune synapse and caused dissociation of the tyrosine kinase Lck from the CD4 or CD8 co-receptor, which resulted in a loss of co-receptor-TCR signaling and limited T cell activation. These observations indicated that LAG3 functioned as a signal disruptor in a major histocompatibility complex class II-independent manner, and provide insight into the mechanism of action of LAG3-targeting immunotherapies.
Assuntos
Linfócitos T CD8-Positivos , Proteína Tirosina Quinase p56(lck) Linfócito-Específica , Antígenos CD/imunologia , Complexo CD3/imunologia , Antígenos CD8/metabolismo , Antígenos de Histocompatibilidade Classe II , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais , Proteína do Gene 3 de Ativação de LinfócitosRESUMO
Activated CD8+ T lymphocytes differentiate into heterogeneous subsets. Using super-resolution imaging, we found that prior to the first division, dynein-dependent vesicular transport polarized active TORC1 toward the microtubule-organizing center (MTOC) at the proximal pole. This active TORC1 was physically associated with active eIF4F, required for the translation of c-myc mRNA. As a consequence, c-myc-translating polysomes polarized toward the cellular pole proximal to the immune synapse, resulting in localized c-myc translation. Upon division, the TORC1-eIF4A complex preferentially sorted to the proximal daughter cell, facilitating asymmetric c-Myc synthesis. Transient disruption of eIF4A activity at first division skewed long-term cell fate trajectories to memory-like function. Using a genetic barcoding approach, we found that first-division sister cells often displayed differences in transcriptional profiles that largely correlated with c-Myc and TORC1 target genes. Our findings provide mechanistic insights as to how distinct T cell fate trajectories can be established during the first division.
Assuntos
Linfócitos T CD8-Positivos , Fator de Iniciação 4F em Eucariotos , Diferenciação Celular , Ativação Linfocitária , Alvo Mecanístico do Complexo 1 de Rapamicina/genéticaRESUMO
T follicular helper (TFH) cells are crucial for B cell-mediated humoral immunity1. Although transcription factors such as BCL6 drive the differentiation of TFH cells2,3, it is unclear whether and how post-transcriptional and metabolic programs enforce TFH cell programming. Here we show that the cytidine diphosphate (CDP)-ethanolamine pathway co-ordinates the expression and localization of CXCR5 with the responses of TFH cells and humoral immunity. Using in vivo CRISPR-Cas9 screening and functional validation in mice, we identify ETNK1, PCYT2, and SELENOI-enzymes in the CDP-ethanolamine pathway for de novo synthesis of phosphatidylethanolamine (PE)-as selective post-transcriptional regulators of TFH cell differentiation that act by promoting the surface expression and functional effects of CXCR5. TFH cells exhibit unique lipid metabolic programs and PE is distributed to the outer layer of the plasma membrane, where it colocalizes with CXCR5. De novo synthesis of PE through the CDP-ethanolamine pathway co-ordinates these events to prevent the internalization and degradation of CXCR5. Genetic deletion of Pcyt2, but not of Pcyt1a (which mediates the CDP-choline pathway), in activated T cells impairs the differentiation of TFH cells, and this is associated with reduced humoral immune responses. Surface levels of PE and CXCR5 expression on B cells also depend on Pcyt2. Our results reveal that phospholipid metabolism orchestrates post-transcriptional mechanisms for TFH cell differentiation and humoral immunity, highlighting the metabolic control of context-dependent immune signalling and effector programs.
Assuntos
Imunidade Humoral , Fosfatidiletanolaminas/metabolismo , Receptores CXCR5/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Animais , Linfócitos B/imunologia , Sistemas CRISPR-Cas , Diferenciação Celular , Cistina Difosfato , Feminino , Regulação da Expressão Gênica , Humanos , Leucócitos Mononucleares/imunologia , Ativação Linfocitária , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fosfotransferases (Aceptor do Grupo Álcool) , RNA Nucleotidiltransferases , Transdução de SinaisRESUMO
BACKGROUND: Inborn errors of immunity (IEI) often lack specific disease models and personalized management. Signal transducer and activator of transcription (STAT)-1 gain of function (GoF) is such example of an IEI with diverse clinical phenotype with unclear pathomechanisms and unpredictable response to therapy. Limitations in obtaining fresh samples for functional testing and research further highlights the need for patient-specific ex vivo platforms. OBJECTIVE: Using STAT1-GoF as an example IEI, we investigated the potential of patient-derived expanded potential stem cells (EPSC) as an ex vivo platform for disease modeling and personalized treatment. METHODS: We generated EPSC derived from individual STAT1-GoF patients. STAT1 mutations were confirmed with Sanger sequencing. Functional testing including STAT1 phosphorylation/dephosphorylation and gene expression with or without Janus activating kinase inhibitors were performed. Functional tests were repeated on EPSC lines with GoF mutations repaired by CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9) editing. RESULTS: EPSC were successfully reprogrammed from STAT1-GoF patients and expressed the same pluripotent makers as controls, with distinct morphologic differences. Patient-derived EPSC recapitulated the functional abnormalities of index STAT1-GoF patients with STAT1 hyperphosphorylation and increased expression of STAT1 and its downstream genes (IRF1, APOL6, and OAS1) after IFN-γ stimulation. Addition of ruxolitinib and baricitinib inhibited STAT1 hyperactivation in STAT1-GoF EPSC in a dose-dependent manner, which was not observed with tofacitinib. Corrected STAT1 phosphorylation and downstream gene expression were observed among repaired STAT1-GoF EPSC cell lines. CONCLUSION: This proof-of-concept study demonstrates the potential of our patient-derived EPSC platform to model STAT1-GoF. We propose this platform when researching, recapitulating, and repairing other IEI in the future.
Assuntos
Mutação com Ganho de Função , Fator de Transcrição STAT1 , Células-Tronco , Humanos , Mutação , Fosforilação , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/metabolismo , Células-Tronco/imunologia , Células-Tronco/metabolismoRESUMO
Point of care testing (POCT) of nucleic acid (NA) contributes to the timely disease diagnosis, like bacteria and virus screening in households or resource-constrained areas, but its development has always been stagnant. Herein, we proposed an exonuclease III cascaded with CRISPR/Cas12a (Exo-III/Cas12a) amplification strategy and constructed a smartphone-based portable fluorescence detector (SPFD) to repurpose the commercial alpha-fetoprotein (AFP) strip for the ultrasensitive and hand-held detection of NA samples. In detail, the target-initiated-Exo-III/Cas12a strategy realizes the signal amplification and liberates AFP from magnetic beads through the trans-cleavages of activated Cas12a toward the AFP aptamer. After magnetic separation and migration, the fluorescence signals of the test (FT) and control (FC) lines on the AFP strip were digitally output by the SPFD, and the FT/FC was employed for the quantitative analysis to minimize external disturbances and improve accuracy. We experimentally assessed the universe applicability of the proposed NA-POCT platform toward miRNA-155, 16S rRNA of Staphylococcus aureus, and ORF1a/b RNA of Covid-19 pseudovirus, achieving favorable detection limits of 42 aM, 18 CFU/mL, and 87 copies/µL, respectively. Moreover, its simplicity, universality, and admirable detection performance demonstrate a great potential in the aspect of rapidly transforming the existing POCT devices for multiple new applications at the time of need.
Assuntos
Exodesoxirribonucleases , Técnicas de Amplificação de Ácido Nucleico , Testes Imediatos , Smartphone , alfa-Fetoproteínas , alfa-Fetoproteínas/análise , Exodesoxirribonucleases/metabolismo , Exodesoxirribonucleases/química , Humanos , Sistemas CRISPR-Cas , Fluorescência , Proteínas Associadas a CRISPR/metabolismo , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/genética , Limite de Detecção , Técnicas Biossensoriais/métodos , RNA Viral/análise , Espectrometria de Fluorescência , Proteínas de Bactérias , EndodesoxirribonucleasesRESUMO
The high mutation rate of SARS-CoV-2 largely complicates our control of the pandemic. In particular, it is currently unclear why the spike (S) gene has an extraordinarily high mutation rate among all SARS-CoV-2 genes. By analyzing the occurrence of fixed synonymous mutations between SARS-CoV-2 and RaTG13, and profiling the DAF (derived allele frequency) of polymorphic synonymous sites among millions of worldwide SARS-CoV-2 strains, we found that both fixed and polymorphic mutations show higher mutation rates in the S gene than other genes. The majority of mutations are C-to-T, representing the APOBEC-mediated C-to-U deamination instead of the previously proposed A-to-I deamination. Both in silico and in vivo evidence indicated that the S gene is more likely to be single-stranded compared to other SARS-CoV-2 genes, agreeing with the APOBEC preference of ssRNA. We conclude that the single-stranded property of the S gene makes it a favorable target for C-to-U deamination, leading to its excessively high mutation rate compared to other non-S genes. In conclusion, APOBEC, rather than ADAR, is the "editor-in-chief" of SARS-CoV-2 RNAs. This work helps us to understand the molecular mechanism underlying the mutation and evolution of SARS-CoV-2, and we believe it will contribute to the control of the pandemic.
Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/genética , Desaminação , Humanos , Mutação , Taxa de Mutação , Pandemias , SARS-CoV-2/genéticaRESUMO
The emerging Omicron subvariants have a remarkable ability to spread and escape nearly all current monoclonal antibody (mAb) treatments. Although the virulence of SARS-CoV-2 has now diminished, it remains a significant threat to public health due to its high transmissibility and susceptibility to mutation. Therefore, it is urgent to develop broad-acting and potent therapeutics targeting current and emerging Omicron variants. Here, we identified a panel of Omicron BA.1 spike receptor-binding domain (RBD)-targeted nanobodies (Nbs) from a naive alpaca VHH library. This panel of Nbs exhibited high binding affinity to the spike RBD of wild-type, Alpha B.1.1.7, Beta B.1.351, Delta plus, Omicron BA.1, and BA.2. Through multivalent Nb construction, we obtained a subpanel of ultrapotent neutralizing Nbs against Omicron BA.1, BA.2, BF.7 and even emerging XBB.1.5, and XBB.1.16 pseudoviruses. Protein structure prediction and docking analysis showed that Nb trimer 2F2E5 targets two independent RBD epitopes, thus minimizing viral escape. Taken together, we obtained a panel of broad and ultrapotent neutralizing Nbs against Omicron BA.1, Omicron BA.2, BF.7, XBB.1.5, and XBB.1.16. These multivalent Nbs hold great promise for the treatment against SARS-CoV-2 infection and could possess a superwide neutralizing breadth against novel omicron mutants or recombinants.
Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos de Domínio Único , Humanos , Anticorpos de Domínio Único/genética , Anticorpos Monoclonais , Epitopos , Anticorpos Neutralizantes , Anticorpos AntiviraisRESUMO
BACKGROUND: Neuroendocrine carcinoma (NEC) originating from the endometrium is rare, and there is limited knowledge regarding its diagnosis and optimal management. In this study, we present our experience with 11 patients with endometrial NEC, aiming to provide guidance for clinical practice. METHODS: We retrospectively collected the clinical, pathological, and treatment data of 11 patients with endometrial NEC who were treated at the First Affiliated Hospital of Zhengzhou University from January 2011 to July 2023. The clinicopathological characteristics, treatment and prognosis of these patients were analyzed. RESULTS: The median age of the patients was 55.0 (39.0-64.0) years, and the median tumor size was 40.0 (33.0-60.0) mm. Irregular vaginal bleeding was the most common symptom observed in 10 out of 11 patients, while metabolic syndrome occurred in only 2 out of 11 patients. Six out of the 11 patients were diagnosed at an early stage. Among the patients, 6 were diagnosed with endometrial NECs, while the remaining patients had a combination of endometrial NEC and other non-NEC endometrial carcinomas. All patients underwent surgery, except for one who received only chemotherapy due to multiple metastases. After surgery, adjuvant chemotherapy was administered to 5 patients, chemotherapy combined with radiotherapy was given to 3 patients, and 2 patients did not receive any adjuvant therapy. A total of 10 patients completed the follow-up, with a median follow-up time of 51.0 (14.3-81.0) months. Unfortunately, 2 patients died from the disease. CONCLUSION: NECs originating from the endometrium might not be affected by metabolic disorders. Preoperative diagnosis of these tumors was challenging. The primary approach for managing endometrial NEC can be multimodal treatment centered around surgery.
Assuntos
Carcinoma Neuroendócrino , Neoplasias do Endométrio , Humanos , Feminino , Neoplasias do Endométrio/patologia , Neoplasias do Endométrio/terapia , Neoplasias do Endométrio/mortalidade , Carcinoma Neuroendócrino/patologia , Carcinoma Neuroendócrino/terapia , Carcinoma Neuroendócrino/mortalidade , Pessoa de Meia-Idade , Estudos Retrospectivos , Adulto , Prognóstico , Quimioterapia Adjuvante , Endométrio/patologia , Estadiamento de NeoplasiasRESUMO
The N2-fixing trees Alnus spp. have been widely encroaching into boreal peatlands, but the nutrient responses of native vascular plants remain unclear. Here, we compared nutrient concentrations and isotope signal of six common plants (Betula fruticosa, Salix rosmarinifolia, Vaccinium uliginosum, Rhododendron tomentosum, Chamaedaphne calyculata, and Eriophorum vaginatum) between Alnus hirsuta island and open peatland and assessed plant nutrient responses to A. hirsuta encroachment in boreal peatlands. Alnus hirsuta encroachment increased nitrogen (N) concentration of leaf, branch, and stem. Despite no significant interspecific difference in branch and stem, the increment magnitude of leaf N concentration varied among species, with greatest magnitude for R. tomentosum (55.1% ± 40.7%) and lowest for E. vaginatum (9.80% ± 4.40%) and B. fruticosa (18.4% ± 10.7%). Except for E. vaginatum, the significant increase in δ15N occurred for all organs of shrubs, with interspecific differences in change of leaf δ15N. According to the mass balance equation involving leaf δ15N, R. tomentosum and E. vaginatum, respectively, obtained highest (40.5% ± 19.8%) and lowest proportions (-14.0% ± 30.5%) of N from A. hirsuta. Moreover, the increment magnitudes of leaf N concentration showed a positive linear relationship with the proportion of N from A. hirsuta. In addition, A. hirsuta encroachment reduced leaf phosphorus (P) concentration of deciduous shrubs (i.e., B. fruticosa, S. rosmarinifolia, and V. uliginosum), thus increasing N:P ratio. These findings indicate that Alnus encroachment improves native plant N status and selectively intensifies P limitation of native deciduous shrubs, and highlight that the N acquisition from the symbiotic N2-fixing system regulates plant N responses in boreal peatlands.
Assuntos
Alnus , Folhas de Planta , Nitrogênio/metabolismo , Árvores , Fixação de Nitrogênio , Solo/químicaRESUMO
OBJECTIVES: To investigate the intermediary role of physical performance in the association between physical activity and mild cognitive impairment (MCI) in older adults with type 2 diabetes mellitus (T2DM), residing in rural areas. METHODS: This study employed a random sampling method to select 316 patients aged 65 years and older, all diagnosed with T2DM, from 24 different rural areas in China. The relationships between physical activity, physical performance, and MCI were analyzed using a logistic regression model, and the proposed mediation model was validated through bootstrap test. RESULTS: In this study, the prevalence of MCI in the rural-based older adults with T2DM was 53.48%. A significant correlation was observed between the levels of physical activity and physical performance. Moreover, diminished physical performance was positively correlated with an increased propensity for MCI, even after adjusting for relevant covariates. Physical performance was discerned to exert a partial mediating influence on the relationship between physical activity and MCI. CONCLUSIONS: The empirical evidence generated by this study posits that the impact of physical activity on MCI is partially mediated through physical performance in an aging population with T2DM residing in rural environments. Consequently, interventional strategies aimed at ameliorating physical performance may serve as a viable approach to mitigate the progression of cognitive decline.
Assuntos
Disfunção Cognitiva , Diabetes Mellitus Tipo 2 , Exercício Físico , População Rural , Humanos , Diabetes Mellitus Tipo 2/psicologia , Diabetes Mellitus Tipo 2/fisiopatologia , Disfunção Cognitiva/fisiopatologia , China/epidemiologia , Idoso , Masculino , Feminino , População Rural/estatística & dados numéricos , Exercício Físico/fisiologia , Idoso de 80 Anos ou mais , Desempenho Físico Funcional , Modelos Logísticos , PrevalênciaRESUMO
The rapid proliferation of tumors is highly dependent on the nutrition supply of blood vessels. Cutting off the nutrient supply to tumors is an effective strategy for cancer treatment, known as starvation therapy. Although various hydrogel-based biomaterials have been developed for starvation therapy through glucose consumption or intravascular embolization, the limitations of single-mode starvation therapy hinder their therapeutic effects. Herein, we propose a dual-function nutrition deprivation strategy that can block the nutrients delivery through extravascular gelation shrinkage and inhibit neovascularization through angiogenesis inhibitors based on a novel NIR-responsive nanocomposite hydrogel. CuS nanodots-modified MgAl-LDH nanosheets loaded with angiogenesis inhibitor (sorafenib, SOR) are incorporated into the poly(n-isopropylacrylamide) (PNIPAAm) hydrogel by radical polymerization to obtain the composite hydrogel (SOR@LDH-CuS/P). The SOR@LDH-CuS/P hydrogel can deliver hydrophobic SOR with a NIR-responsive release behavior, which could decrease the tumor vascular density and accelerate cancer cells apoptosis. Moreover, the SOR@LDH-CuS/P hydrogel exhibits higher (3.5 times) compressive strength than that of the PNIPAAm, which could squeeze blood vessels through extravascular gelation shrinkage. In vitro and in vivo assays demonstrate that the interruption of nutrient supply by gelation shrinkage and the prevention of angiogenesis by SOR is a promising strategy to inhibit tumor growth for multimode starvation therapy.
Assuntos
Hidrogéis , Neoplasias , Humanos , Hidrogéis/química , Inibidores da Angiogênese/farmacologia , Angiogênese , Sistemas de Liberação de Medicamentos , Neoplasias/tratamento farmacológicoRESUMO
OBJECTIVE: This study investigated the clinical, imaging, and electroencephalogram (EEG) characteristics of methylmalonic acidemia (MMA) with nervous system damage as the primary manifestation. METHODS: From January 2017 to November 2022, patients with nervous system injury as the main clinical manifestation, diagnosed with methylmalonic acidemia by metabolic and genetic testing, were enrolled and analyzed. Their clinical, imaging, and electroencephalogram data were analyzed. RESULTS: A total of 18 patients were enrolled, including 15 males and 3 females. The clinical symptoms were convulsions, poor feeding, growth retardation, disorder of consciousness, developmental delay, hypotonia, and blood system changes. There were 6 cases (33%) of hydrocephalus, 9 (50%) of extracerebral space widened, 5 (27%) of corpus callosum thinning, 3 (17%) of ventricular dilation, 3 (17%) of abnormal signals in the brain parenchyma (frontal lobe, basal ganglia region, and brain stem), and 3 (17%) of abnormal signals in the lateral paraventricular. In addition, there were 3 cases (17%) of cerebral white matter atrophy and 1 (5%) of cytotoxic edema in the basal ganglia and cerebral peduncle. EEG data displayed 2 cases (11%) of hypsarrhythmia, 3 (17%) of voltage reduction, 12(67%) of abnormal discharge, 13 (72%) of abnormal sleep physiological waves or abnormal sleep structure, 1 (5%) of immature (delayed) EEG development, and 8 (44%) of slow background. There were 2 cases (11%) of spasms, 1 (5%) of atonic seizures, and 1 (5%) of myoclonic seizures. There were 16 patients (89%) with hyperhomocysteinemia. During follow-up, 1 patient was lost to follow-up, and 1 died. In total, 87.5% (14/16) of the children had varying developmental delays. EEG was re-examined in 11 cases, of which 8 were normal, and 3 were abnormal. Treatments included intramuscular injections of vitamin B12, L-carnitine, betaine, folic acid, and oral antiepileptic therapy. Acute treatment included anti-infective, blood transfusion, fluid replacement, and correcting acidosis. The other treatments included low-protein diets and special formula milk powder. CONCLUSION: Methylmalonic acidemia can affect the central nervous system, leading to structural changes or abnormal signals on brain MRI. Metabolic screening and genetic testing help clarify the diagnosis. EEG can reflect changes in brain waves during the acute phase.
Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Criança , Masculino , Feminino , Humanos , Erros Inatos do Metabolismo dos Aminoácidos/diagnóstico , Erros Inatos do Metabolismo dos Aminoácidos/genética , Erros Inatos do Metabolismo dos Aminoácidos/terapia , Vitamina B 12 , Mutação , Convulsões/etiologia , Convulsões/tratamento farmacológico , Eletroencefalografia , Ácido Metilmalônico , Oxirredutases/genéticaRESUMO
Butyrylcholinesterase (BuChE) and neuroinflammation have recently emerged as promising therapeutic directions for Alzheimer's disease (AD). Herein, we synthesised 19 novel pyranone-carbamate derivatives and evaluated their activities against cholinesterases and neuroinflammation. The optimal compound 7p exhibited balanced BuChE inhibitory activity (eqBuChE IC50 = 4.68 nM; huBuChE IC50 = 9.12 nM) and anti-neuroinflammatory activity (NO inhibition = 28.82% at 10 µM, comparable to hydrocortisone). Enzyme kinetic and docking studies confirmed compound 7p was a mix-type BuChE inhibitor. Additionally, compound 7p displayed favourable drug-likeness properties in silico prediction, and exhibited high BBB permeability in the PAMPA-BBB assay. Compound 7p had good safety in vivo as verified by an acute toxicity assay (LD50 > 1000 mg/kg). Most importantly, compound 7p effectively mitigated cognitive and memory impairments in the scopolamine-induced mouse model, showing comparable effects to Rivastigmine. Therefore, we envisioned that compound 7p could serve as a promising lead compound for treating AD.
Assuntos
Doença de Alzheimer , Camundongos , Animais , Doença de Alzheimer/tratamento farmacológico , Butirilcolinesterase/metabolismo , Carbamatos/farmacologia , Doenças Neuroinflamatórias , Peptídeos beta-Amiloides , Inibidores da Colinesterase/farmacologia , Acetilcolinesterase/metabolismo , Relação Estrutura-Atividade , Simulação de Acoplamento Molecular , Estrutura MolecularRESUMO
AIMS: This study aims to investigate the mediating role of regulatory emotional self-efficacy and self-compassion in the relationship among anxiety, depression, body image distress and subjective well-being among women with polycystic ovary syndrome. DESIGN: A cross-sectional study. METHODS: The study recruited 510 women with polycystic ovary syndrome from a tertiary hospital affiliated with a university in Hunan Province, China. The study employed several tools to collect data, including the Generalized Anxiety Scale, the Patient Health Questionnaire-9, the Body Image States Scale, the Self-Compassion Scale, the Regulatory Emotional Self-Efficacy Scale and the Index of Well-being questionnaire. Data analysis was carried out using descriptive analysis, spearman correlation analysis, ordinary least squares regression and bootstrapping. RESULTS: The study's findings indicate that regulatory emotional self-efficacy and self-compassion both act as mediators in the connection between anxiety, depression, body image distress and subjective well-being among women with polycystic ovary syndrome. CONCLUSION: The study emphasizes the significance of regulatory emotional self-efficacy and self-compassion in promoting well-being among women with polycystic ovary syndrome. It also implies that interventions targeted at enhancing these factors could potentially enhance the subjective well-being of women affected by PCOS. IMPACT: Our study's primary contribution is to underscore the crucial mediating roles of regulatory emotional self-efficacy and self-compassion in the relationship among anxiety, depression, body image distress and subjective well-being. Our study indicates that clinical practitioners should prioritize improving the regulatory emotional self-efficacy and self-compassion of women with polycystic ovary syndrome, reducing their anxiety, depression and body image distress and improving their subjective well-being. REPORTING METHOD: This study was reported according to the Standards for Reporting Qualitative Research (SRQR). PATIENT OR PUBLIC CONTRIBUTION: No patient or public contribution outside of participation in the actual study for purposes of data collection.
RESUMO
The mild cognitive impairment (MCI) and dementia in rural areas are increasingly attracting public attention. However, their prevalence is still unclear. This study aims to reveal the distribution of MCI and dementia in rural areas. We systematically searched PubMed, Web of Science, Embase, and PsycINFO up to June 2023 for cohort and cross-sectional studies. Meta-analysis was conducted using random-effects models to evaluate the prevalence of MCI and dementia. Thirty-five studies with 16,936 participants met the inclusion criteria. The pooled prevalence of MCI and dementia was 27 % (n = 12, 95 %CI = 0.21-0.32, I2 = 99.5 %, P < 0.001) and 7 % (n = 27, 95 %CI = 0.05-0.08, I2 = 99.30 %, P < 0.001), respectively. Subgroup analyses revealed that aged 60 years or older [(MCI: 29 %, 95 %CI = 0.20-0.38, I2 = 99.7 %, P < 0.001), (dementia: 9 % (95 %CI = 0.06-0.12, I2 = 99 %, P < 0.001)], female [(MCI: 29 %, 95 %CI = 0.19-0.40, I2 = 99.3 %, P < 0.001), (dementia: 7 %, 95 % CI = 0.04-0.12, I2 = 98.66 %, P < 0.001)], a-MCI (19 %, 95 %CI = 0.12-0.26, I2 = 97.62 %, P < 0.001) and AD (4 %, 95 %CI = 0.02-0.05, I2 = 98.60 %, P < 0.001) showed higher prevalence. The prevalence of MCI and dementia in rural China was 23 % (95 %CI = 0.18-0.29, I2 = 99.5 %, P < 0.001) and 6 % (95 %CI = 0.04-0.08, I2 = 99.6 %, P < 0.001), respectively. Implementing cognitive impairment screening and intervention measures is necessary to improve the cognitive function of the rural population.
Assuntos
Disfunção Cognitiva , Demência , População Rural , Humanos , Disfunção Cognitiva/epidemiologia , Demência/epidemiologia , Prevalência , População Rural/estatística & dados numéricos , Estudos Transversais , Feminino , Masculino , IdosoRESUMO
To determine the prevalence and modifiable risk factors for MCI in older adults with T2DM in rural China. This cross-sectional study encompassed 96 villages, employing a cluster sampling approach to recruit eligible older adults with T2DM as study participants. Logistic regression analysis was utilized to identify modifiable risk factors associated with MCI. Average marginal effects were calculated. The discriminatory performance of these risk factors in identifying MCI was evaluated by plotting the receiver operating curve and calculating the value of the area under the curve. A total of 898 older adults with T2DM in our study. The overall prevalence of MCI was 50.22 %. Independent associations with MCI were found in poor self-management ability of diabetes (OR = 0.808, 95 % CI: 0.808, 0.766), depressive symptoms (OR = 3.500, 95 % CI: 1.933, 6.337), moderate (OR = 0.936, 95 % CI: 0.017, 0.075) and high (OR = 0.939, 95 % CI: 0.016, 0.100) levels of physical activity, poorer oral health (OR = 2.660, 95 % CI: 2.226, 3.179), and lower grip strength (OR = 0.913, 95 % CI: 0.870, 0.958). The AUC was 0.967 (95 % CI 0.508-0.470). The prevalence of MCI was high among older adults with T2DM in rural areas of China. The self-management ability of diabetes, depressive symptoms, physical activity, oral health and grip strength were modifiable risk factors of MCI. Targeted interventions should be developed and implemented to address these modifiable risk factors, aiming to enhance cognitive function and mitigate the incidence of MCI in older adults with T2DM.
Assuntos
Disfunção Cognitiva , Diabetes Mellitus Tipo 2 , População Rural , Humanos , Estudos Transversais , Masculino , Disfunção Cognitiva/epidemiologia , Feminino , Fatores de Risco , Idoso , Prevalência , China/epidemiologia , Diabetes Mellitus Tipo 2/epidemiologia , População Rural/estatística & dados numéricos , Depressão/epidemiologia , Pessoa de Meia-IdadeRESUMO
Sepsis is a life-threatening condition characterized by a harmful host response to infection with organ dysfunction. Annually about 20 million people are dead owing to sepsis and its mortality rates is as high as 20%. However, no studies have been carried out to investigate sepsis from the system biology point of view, as previous research predominantly focused on individual genes without considering their interactions and associations. Here, we conducted a comprehensive exploration of genome-wide expression alterations in both mRNAs and long non-coding RNAs (lncRNAs) in sepsis, using six microarray datasets. Co-expression networks were conducted to identify mRNA and lncRNA modules, respectively. Comparing these sepsis modules with normal modules, we observed a homogeneous expression pattern within the mRNA/lncRNA members, with the majority of them displaying consistent expression direction. Moreover, we identified consistent modules across diverse datasets, consisting of 20 common mRNA members and two lncRNAs, namely CHRM3-AS2 and PRKCQ-AS1, which are potential regulators of sepsis. Our results reveal that the up-regulated common mRNAs are mainly involved in the processes of neutrophil mediated immunity, while the down-regulated mRNAs and lncRNAs are significantly overrepresented in T-cell mediated immunity functions. This study sheds light on the co-expression patterns of mRNAs and lncRNAs in sepsis, providing a novel perspective and insight into the sepsis transcriptome, which may facilitate the exploration of candidate therapeutic targets and molecular biomarkers for sepsis.
Assuntos
RNA Longo não Codificante , Sepse , Humanos , Biologia , Imunidade Celular , RNA Mensageiro , Receptor Muscarínico M3RESUMO
BACKGROUND: Subarachnoid hemorrhage (SAH) causes significant long-term neurocognitive dysfunction, which is associated with hippocampal neuroinflammation. Growing evidences have shown that astrocytes played a significant role in mediating neuroinflammation. Recently, in vivo reprogramming of astrocytes to neurons by NeuroD1 or PTBP1 administration has generated a lot of interests and controversies. While the debates centered on the source of neurogenesis, no attention has been paid to the changes of the astrocytes-mediated neuroinflammation and its impact on endogenous neurogenesis after NeuroD1 administration. METHODS: 80 adult male C57BL/6 mice were used in this study. SAH was established by pre-chiasmatic injection of 100 µl blood. AAV-NeuroD1-GFP virus was injected to the hippocampus 3 day post-SAH. Neurocognitive function, brain water content, in vivo electrophysiology, Golgi staining, western blot and immunofluorescent staining were assessed at day 14 post-virus injection. RESULTS: NeuroD1 administration markedly attenuated reactive astrocytes-mediated neuroinflammation by reversing neurotoxic A1 astrocytes transformation, decreasing the secretion of neuroinflammatory cytokines, and reducing the activation of harmful microglia. NeuroD1 treatment significantly reversed the brain-blood barrier impairment and promoted the release of neurotrophic factors pleiotrophin (PTN), all of which contributed to the improvement of cellular microenvironment and made it more suitable for neurogenesis. Interestingly, besides neurogenesis in the hippocampus from cells transfected with NeuroD1 at the early phase of SAH, NeuroD1 administration significantly boosted the endogenous neurogenesis at the late phase of SAH, which likely benefited from the improvement of the neuroinflammatory microenvironment. Functionally, NeuroD1 treatment significantly alleviated neurocognitive dysfunction impaired by SAH. CONCLUSIONS: NeuroD1 significantly promoted neurofunctional recovery by attenuating reactive astrocytes-mediated neuroinflammation and boosting neurogenesis decimated by SAH. Specifically, NeuroD1 efficiently converted transfected cells, most likely astrocytes, to neurons at the early phase of SAH, suppressed astrocytes-mediated neuroinflammation and boosted endogenous neurogenesis at the late phase of SAH.