Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 245
Filtrar
1.
Cell ; 160(4): 659-672, 2015 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-25679760

RESUMO

The mesenchymal-amoeboid transition (MAT) was proposed as a mechanism for cancer cells to adapt their migration mode to their environment. While the molecular pathways involved in this transition are well documented, the role of the microenvironment in the MAT is still poorly understood. Here, we investigated how confinement and adhesion affect this transition. We report that, in the absence of focal adhesions and under conditions of confinement, mesenchymal cells can spontaneously switch to a fast amoeboid migration phenotype. We identified two main types of fast migration--one involving a local protrusion and a second involving a myosin-II-dependent mechanical instability of the cell cortex that leads to a global cortical flow. Interestingly, transformed cells are more prone to adopt this fast migration mode. Finally, we propose a generic model that explains migration transitions and predicts a phase diagram of migration phenotypes based on three main control parameters: confinement, adhesion, and contractility.


Assuntos
Mesoderma/citologia , Animais , Adesão Celular , Linhagem Celular Tumoral , Movimento Celular , Células Epiteliais/citologia , Fibroblastos/citologia , Adesões Focais , Células HeLa , Humanos , Pele/citologia
2.
Nature ; 621(7979): 610-619, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37557913

RESUMO

The proper regulation of transcription is essential for maintaining genome integrity and executing other downstream cellular functions1,2. Here we identify a stable association between the genome-stability regulator sensor of single-stranded DNA (SOSS)3 and the transcription regulator Integrator-PP2A (INTAC)4-6. Through SSB1-mediated recognition of single-stranded DNA, SOSS-INTAC stimulates promoter-proximal termination of transcription and attenuates R-loops associated with paused RNA polymerase II to prevent R-loop-induced genome instability. SOSS-INTAC-dependent attenuation of R-loops is enhanced by the ability of SSB1 to form liquid-like condensates. Deletion of NABP2 (encoding SSB1) or introduction of cancer-associated mutations into its intrinsically disordered region leads to a pervasive accumulation of R-loops, highlighting a genome surveillance function of SOSS-INTAC that enables timely termination of transcription at promoters to constrain R-loop accumulation and ensure genome stability.


Assuntos
Instabilidade Genômica , Regiões Promotoras Genéticas , Estruturas R-Loop , Terminação da Transcrição Genética , Humanos , DNA de Cadeia Simples/metabolismo , Instabilidade Genômica/genética , Mutação , Estruturas R-Loop/genética , RNA Polimerase II/metabolismo , Regiões Promotoras Genéticas/genética , Genoma Humano , Proteínas de Ligação a DNA/metabolismo
3.
Proc Natl Acad Sci U S A ; 121(14): e2317492121, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38547056

RESUMO

Energy metabolism is highly interdependent with adaptive cell migration in vivo. Mechanical confinement is a critical physical cue that induces switchable migration modes of the mesenchymal-to-amoeboid transition (MAT). However, the energy states in distinct migration modes, especially amoeboid-like stable bleb (A2) movement, remain unclear. In this report, we developed multivalent DNA framework-based nanomachines to explore strategical mitochondrial trafficking and differential ATP levels during cell migration in mechanically heterogeneous microenvironments. Through single-particle tracking and metabolomic analysis, we revealed that fast A2-moving cells driven by biomimetic confinement recruited back-end positioning of mitochondria for powering highly polarized cytoskeletal networks, preferentially adopting an energy-saving mode compared with a mesenchymal mode of cell migration. We present a versatile DNA nanotool for cellular energy exploration and highlight that adaptive energy strategies coordinately support switchable migration modes for facilitating efficient metastatic escape, offering a unique perspective for therapeutic interventions in cancer metastasis.


Assuntos
Amoeba , Linhagem Celular Tumoral , Movimento Celular , Fenômenos Físicos
4.
J Biol Chem ; 300(2): 105660, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38242322

RESUMO

Persistent high-risk HPV infection is closely associated with cervical cancer development, and there is no drug targeting HPV on the market at present, so it is particularly important to understand the interaction mechanism between HPV and the host which may provide the novel strategies for treating HPV diseases. HPV can hijack cell surface heparan sulfate proteoglycans (HSPGs) as primary receptors. However, the secondary entry receptors for HPV remain elusive. We identify myosin-9 (NMHC-IIA) as a host factor that interacts with HPV L1 protein and mediates HPV internalization. Efficient HPV entry required myosin-9 redistribution to the cell surface regulated by HPV-hijacked MEK-MLCK signaling. Myosin-9 maldistribution by ML-7 or ML-9 significantly inhibited HPV pseudoviruses infection in vitro and in vivo. Meanwhile, N-glycans, especially the galactose chains, may act as the decoy receptors for HPV, which can block the interaction of HPV to myosin-9 and influence the way of HPV infection. Taken together, we identify myosin-9 as a novel functional entry receptor for high-risk HPV both in vitro and in vivo, and unravel the new roles of myosin-9 and N-glycans in HPV entry, which provides the possibilities for host targets of antiviral drugs.


Assuntos
Papillomavirus Humano , Infecções por Papillomavirus , Internalização do Vírus , Humanos , Proteínas do Citoesqueleto , Proteoglicanas de Heparan Sulfato/metabolismo , Miosinas , Linhagem Celular , Animais , Cricetinae , Cricetulus , Polissacarídeos/metabolismo
5.
Plant Physiol ; 195(2): 970-985, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38478469

RESUMO

The Xishuangbanna (XIS) cucumber (Cucumis sativus var. xishuangbannanesis) is a semiwild variety that has many distinct agronomic traits. Here, long reads generated by Nanopore sequencing technology helped assembling a high-quality genome (contig N50 = 8.7 Mb) of landrace XIS49. A total of 10,036 structural/sequence variations (SVs) were identified when comparing with Chinese Long (CL), and known SVs controlling spines, tubercles, and carpel number were confirmed in XIS49 genome. Two QTLs of hypocotyl elongation under low light, SH3.1 and SH6.1, were fine-mapped using introgression lines (donor parent, XIS49; recurrent parent, CL). SH3.1 encodes a red-light receptor Phytochrome B (PhyB, CsaV3_3G015190). A ∼4 kb region with large deletion and highly divergent regions (HDRs) were identified in the promoter of the PhyB gene in XIS49. Loss of function of this PhyB caused a super-long hypocotyl phenotype. SH6.1 encodes a CCCH-type zinc finger protein FRIGIDA-ESSENTIAL LIKE (FEL, CsaV3_6G050300). FEL negatively regulated hypocotyl elongation but it was transcriptionally suppressed by long terminal repeats retrotransposon insertion in CL cucumber. Mechanistically, FEL physically binds to the promoter of CONSTITUTIVE PHOTOMORPHOGENIC 1a (COP1a), regulating the expression of COP1a and the downstream hypocotyl elongation. These above results demonstrate the genetic mechanism of cucumber hypocotyl elongation under low light.


Assuntos
Cucumis sativus , Genoma de Planta , Hipocótilo , Locos de Características Quantitativas , Hipocótilo/crescimento & desenvolvimento , Hipocótilo/genética , Cucumis sativus/genética , Cucumis sativus/crescimento & desenvolvimento , Locos de Características Quantitativas/genética , Fitocromo B/genética , Fitocromo B/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Luz
6.
Mol Ther ; 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38822524

RESUMO

Dysregulated T cell activation underpins the immunopathology of rheumatoid arthritis (RA), yet the machineries that orchestrate T cell effector program remain incompletely understood. Herein, we leveraged bulk and single-cell RNA sequencing data from RA patients and validated protein disulfide isomerase family A member 3 (PDIA3) as a potential therapeutic target. PDIA3 is remarkably upregulated in pathogenic CD4 T cells derived from RA patients and positively correlates with C-reactive protein level and disease activity score 28. Pharmacological inhibition or genetic ablation of PDIA3 alleviates RA-associated articular pathology and autoimmune responses. Mechanistically, T cell receptor signaling triggers intracellular calcium flux to activate NFAT1, a process that is further potentiated by Wnt5a under RA settings. Activated NFAT1 then directly binds to the Pdia3 promoter to enhance the expression of PDIA3, which complexes with STAT1 or PKM2 to facilitate their nuclear import for transcribing T helper 1 (Th1) and Th17 lineage-related genes, respectively. This non-canonical regulatory mechanism likely occurs under pathological conditions, as PDIA3 could only be highly induced following aberrant external stimuli. Together, our data support that targeting PDIA3 is a vital strategy to mitigate autoimmune diseases, such as RA, in clinical settings.

7.
Opt Express ; 32(1): 625-638, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38175087

RESUMO

Conventionally, the fabrication of liquid crystal lenticular microlens arrays (LCLMLAs) is complicated and costly. Here, we demonstrate a one-step fabrication technique for LCLMLAs, which is prepared through the photopolymerization-induced phase separation in the LC/polymer composite. The LCLMLAs possess both polarization-dependent and electrically tunable focusing properties. Furthermore, we construct a 14-view 2D/3D switchable autostereoscopic display prototype based on a 2D LCD panel and the prepared LCLMLA, which has a viewing angle of 14° and a crosstalk of 46.2% at the optimal viewing zone. The proposed LCLMLAs have the merits of simple fabrication, large-scale production, and low cost.

8.
Opt Express ; 32(7): 12528-12536, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38571073

RESUMO

Diffractive optical element is advantageous for miniaturization, arraying and integration of optical systems. They have been widely used in beam shaping, diffractive imaging, generating beam arrays, spectral optimization and other aspects. Currently, the vast majority of diffractive optics are not tunable. This limits the applicability and functionality of these devices. Here we report a tunable diffractive optical element controlled by light in the visible band. The diffractive optical element consists of a square gold microarray deposited on a deformable substrate. The substrate is made of a liquid crystal elastomer. When pumped by a 532 nm laser, the substrate is deformed to change the crystal lattice. This changes the far-field diffraction pattern of the device. The proposed concept establishes a light-controlled soft platform with great potential for tunable/reconfigurable photonic devices, such as filters, couplers, holograms and structural color displays.

9.
Anal Bioanal Chem ; 416(9): 2107-2115, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38135761

RESUMO

Cell migration is an essential manner of different cell lines that are involved in embryological development, immune responses, tumorigenesis, and metastasis in vivo. Physical confinement derived from crowded tissue microenvironments has pivotal effects on migratory behaviors. Distinct migration modes under a heterogeneous extracellular matrix (ECM) have been extensively studied, uncovering potential molecular mechanisms involving a series of biological processes. Significantly, multi-omics strategies have been launched to provide multi-angle views of complex biological phenomena, facilitating comprehensive insights into molecular regulatory networks during cell migration. In this review, we describe biomimetic devices developed to explore the migratory behaviors of cells induced by different types of confined microenvironments in vitro. We also discuss the results of multi-omics analysis of intrinsic molecular alterations and critical pathway dysregulations of cell migration under heterogeneous microenvironments, highlighting the significance of physical confinement-triggered intracellular signal transduction in order to regulate cellular behaviors. Finally, we discuss both the challenges and promise of mechanistic analysis in confinement-induced cell migration, promoting the development of early diagnosis and precision therapeutics.


Assuntos
Matriz Extracelular , Multiômica , Humanos , Movimento Celular , Matriz Extracelular/metabolismo , Transdução de Sinais , Transformação Celular Neoplásica , Microambiente Tumoral
10.
Bioorg Chem ; 147: 107400, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38688196

RESUMO

Although certain members of the Ubiquitin-specific peptidases (USPs) have been recognized as promising therapeutic targets for various diseases, research progress regarding USP21 has been relatively sluggish in its early stages. USP21 is a crucial member of the USPs subfamily, involved in diverse cellular processes such as apoptosis, DNA repair, and signal transduction. Research findings from the past decade demonstrate that USP21 mediates the deubiquitination of multiple well-known target proteins associated with critical cellular processes relevant to both disease and homeostasis, particularly in various cancers.This reviewcomprehensively summarizes the structure and biological functions of USP21 with an emphasis on its role in tumorigenesis, and elucidates the advances on the discovery of tens of small-molecule inhibitors targeting USP21, which suggests that targeting USP21 may represent a potential strategy for cancer therapy.


Assuntos
Neoplasias , Ubiquitina Tiolesterase , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Neoplasias/metabolismo , Ubiquitina Tiolesterase/antagonistas & inibidores , Ubiquitina Tiolesterase/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Animais , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Estrutura Molecular
11.
Bioorg Chem ; 147: 107377, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38653150

RESUMO

The first systematic acylated diversification of naturally scarce premyrsinane diterpenes, together with their biosynthetic precursors lathyrane diterpene were carried out. Two new series of premyrsinane derivates (1a-32a) and lathyrane derivates (1-32) were synthesized from the naturally abundant lathyrane diterpene Euphorbia factor L3 through a bioinspired approach. The cholinesterase inhibitory and neuroprotective activities of these diterpenes were investigated to explore potential anti-Alzheimer's disease (AD) bioactive lead compounds. In general, the lathyrane diterpenes showed the better acetylcholinesterase (AChE) inhibitory activity than that of premyrsinanes. The lathyrane derivative 17 bearing a 3-dimethylaminobenzoyl moiety showed the best AChE inhibition effect with the IC50 value of 7.1 µM. Molecular docking demonstrated that 17 could bond with AChE well (-8 kal/mol). On the other hand, premyrsinanes showed a better neuroprotection profile against H2O2-induced injury in SH-SY5Y cells. Among them, the premyrsinane diterpene 16a had significant neuroprotective effect with the cell viability rate of 113.5 % at 12.5 µM (the model group with 51.2 %). The immunofluorescence, western blot and reactive oxygen species (ROS) analysis were conducted to demonstrate the mechanism of 16a. Furthermore, a preliminary SAR analysis of the two categories of diterpenes was performed to provide the insights for anti-AD drug development.


Assuntos
Acetilcolinesterase , Doença de Alzheimer , Inibidores da Colinesterase , Diterpenos , Euphorbia , Fármacos Neuroprotetores , Diterpenos/farmacologia , Diterpenos/química , Diterpenos/síntese química , Doença de Alzheimer/tratamento farmacológico , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/química , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/síntese química , Euphorbia/química , Humanos , Acetilcolinesterase/metabolismo , Relação Estrutura-Atividade , Estrutura Molecular , Simulação de Acoplamento Molecular , Relação Dose-Resposta a Droga , Sobrevivência Celular/efeitos dos fármacos
12.
Cell Mol Biol Lett ; 29(1): 32, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443798

RESUMO

RNA-binding proteins (RBPs) are kinds of proteins with either singular or multiple RNA-binding domains (RBDs), and they can assembly into ribonucleic acid-protein complexes, which mediate transportation, editing, splicing, stabilization, translational efficiency, or epigenetic modifications of their binding RNA partners, and thereby modulate various physiological and pathological processes. CUG-BP, Elav-like family 1 (CELF1) is a member of the CELF family of RBPs with high affinity to the GU-rich elements in mRNA, and thus exerting control over critical processes including mRNA splicing, translation, and decay. Mounting studies support that CELF1 is correlated with occurrence, genesis and development and represents a potential therapeutical target for these malignant diseases. Herein, we present the structure and function of CELF1, outline its role and regulatory mechanisms in varieties of homeostasis and diseases, summarize the identified CELF1 regulators and their structure-activity relationships, and prospect the current challenges and their solutions during studies on CELF1 functions and corresponding drug discovery, which will facilitate the establishment of a targeted regulatory network for CELF1 in diseases and advance CELF1 as a potential drug target for disease therapy.


Assuntos
Descoberta de Drogas , Epigênese Genética , Homeostase , RNA , RNA Mensageiro
13.
Nano Lett ; 23(14): 6727-6735, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37459599

RESUMO

Cell migration occurs in confined microenvironments, which plays a vital role in the process of tumor metastasis. However, it is challenging to study their behaviors in vivo. Here we developed a cell squeeze system that can be scaled down to micrometers to mimic native physical confined microenvironments, wherein degrees of surface adhesion and mechanical constraints could be manipulated in order to investigate cell-migrating behaviors. Based on the microscale cell squeeze system, we found the synergistic role of lamin A/C and vimentin in cell transition and migration under strong confinement. The dynamic variations in lamin A/C and vimentin expression establish a positive feedback loop in response to confinement, effectively promoting amoeboid migration by modulating nuclear deformability while ensuring cell viability. This work shed light on modulating cell response to microenvironments by altering the expression of lamin A/C and/or vimentin, which may be a more efficient way of inhibiting cancer metastasis.


Assuntos
Movimento Celular , Lamina Tipo A , Núcleo Celular/metabolismo , Filamentos Intermediários , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Vimentina/metabolismo , Humanos , Células HeLa
14.
Anal Chem ; 95(4): 2366-2374, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36655581

RESUMO

Before fertilization, sperms adhere to oviductal epithelium cells, and only a restrictive number of winner sperms can escape to reach the egg. To study the sperm escape behavior from the oviductal surface, we developed a microfluidic chip to fabricate an adhesive surface and to create a gradient of progesterone (P4) for mimicking the oviduct microenvironment in vivo. We identified three sperm motion patterns in such a microenvironment─anchored spin, run-and-spin, and escaped mode. By using kinetic analysis, we verified the hypothesis that the responsive rotation energy anchored with the adhered sperm head determines whether the sperm is trapped or detaching, which is defined as the hammer flying strategy of successful escape after accumulating energy in the process of rotating. Intriguingly, this hammer-throw escaping is able to be triggered by the P4 biochemical stimulation. Our results revealed the tangled process of sperm escape before fertilization in the ingenious microfluidic system.


Assuntos
Biomimética , Sêmen , Humanos , Feminino , Masculino , Animais , Cinética , Espermatozoides , Oviductos
15.
J Med Virol ; 95(8): e29041, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37621182

RESUMO

The emerging outbreak of monkeypox is closely associated with the viral infection and spreading, threatening global public health. Virus-induced cell migration facilitates viral transmission. However, the mechanism underlying this type of cell migration remains unclear. Here we investigate the motility of cells infected by vaccinia virus (VACV), a close relative of monkeypox, through combining multi-omics analyses and high-resolution live-cell imaging. We find that, upon VACV infection, the epithelial cells undergo epithelial-mesenchymal transition-like transformation, during which they lose intercellular junctions and acquire the migratory capacity to promote viral spreading. After transformation, VACV-hijacked RhoA signaling significantly alters cellular morphology and rearranges the actin cytoskeleton involving the depolymerization of robust actin stress fibers, leading-edge protrusion formation, and the rear-edge recontraction, which coordinates VACV-induced cell migration. Our study reveals how poxviruses alter the epithelial phenotype and regulate RhoA signaling to induce fast migration, providing a unique perspective to understand the pathogenesis of poxviruses.


Assuntos
Mpox , Vaccinia virus , Humanos , Movimento Celular , Surtos de Doenças , Células Epiteliais
16.
Bioorg Chem ; 138: 106595, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37178652

RESUMO

A series of novel myrsinane-type Euphorbia diterpene derivatives (1-37) were synthesized from the abundant natural lathyrane-type Euphorbia factor L3, using a multi-step chemical process guided by a bioinspired skeleton conversion strategy, with the aim of discovering potential anti-Alzheimer's disease (AD) bioactive lead compounds. The synthesis process involved a concise reductive olefin coupling reaction through an intramolecular Michael addition with a free radical, followed by a visible-light-triggered regioselective cyclopropane ring-opening. The cholinesterase inhibitory and neuroprotective activities of the synthesized myrsinane derivatives were evaluated. Most of the compounds showed moderate to strong potency, highlighting the importance of ester groups in Euphorbia diterpene. In particular, derivative 37 displayed the most potent acetylcholinesterase (AChE) inhibition, with an IC50 value of 8.3 µM, surpassing that of the positive control, tacrine. Additionally, 37 also showed excellent neuroprotective effect against H2O2-induced injury in SH-SY5Y cells, with a cell viability rate of 124.2% at 50 µM, which was significantly higher than that of the model group (viability rate 52.1%). Molecular docking, reactive oxygen species (ROS) analysis, immunofluorescence, and immunoblotting were performed to investigate the mechanism of action of myrsinane derivative 37. The results indicated that derivative 37 may be a promising myrsinane-type multi-functional lead compound for the treatment of Alzheimer's disease. Furthermore, a preliminary SAR analysis was performed to study the acetylcholinesterase inhibitory and neuroprotective activities of these diterpenes.


Assuntos
Doença de Alzheimer , Diterpenos , Euphorbia , Neuroblastoma , Fármacos Neuroprotetores , Humanos , Euphorbia/química , Acetilcolinesterase/metabolismo , Simulação de Acoplamento Molecular , Peróxido de Hidrogênio , Doença de Alzheimer/tratamento farmacológico , Diterpenos/química , Esqueleto/metabolismo , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/uso terapêutico , Estrutura Molecular , Relação Estrutura-Atividade , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico
17.
Bioorg Chem ; 133: 106409, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36753963

RESUMO

Histone demethylation is a key post-translational modification of chromatin, and its dysregulation affects a wide array of nuclear activities including the maintenance of genome integrity, transcriptional regulation, and epigenetic inheritance. Lysine specific demethylase 6A (KDM6A, also known as UTX) is an Fe2+- and α-ketoglutarate- dependent oxidase which belongs to KDM6 Jumonji histone demethylase subfamily, and it can remove mono-, di- and tri-methyl groups from methylated lysine 27 of histone H3 (H3K27me1/2/3). Mounting studies indicate that KDM6A is responsible for driving multiple human diseases, particularly cancers and pharmacological inhibition of KDM6A is an effective strategy to treat varieties of KDM6A-amplified cancers in cellulo and in vivo. Although there are several reviews on the roles of KDM6 subfamily in cancer development and therapy, all of them only simply introduce the roles of KDM6A in cancer without systematically summarizing the specific mechanisms of KDM6A in tumorigenesis, which greatly limits the advances on the understanding of roles KDM6A in varieties of cancers, discovering targeting selective KDM6A inhibitors, and exploring the adaptive profiles of KDM6A antagonists. Herein, we present the structure and functions of KDM6A, simply outline the functions of KDM6A in homeostasis and non-cancer diseases, summarize the role of KDM6A and its distinct target genes/ligand proteins in development of varieties of cancers, systematically classify KDM6A inhibitors, sum up the difficulties encountered in the research of KDM6A and the discovery of related drugs, and provide the corresponding solutions, which will contribute to understanding the roles of KDM6A in carcinogenesis and advancing the progression of KDM6A as a drug target in cancer therapy.


Assuntos
Histona Desmetilases , Neoplasias , Humanos , Carcinogênese/metabolismo , Histona Desmetilases/metabolismo , Histonas/química , Histonas/metabolismo , Lisina/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética
18.
Bioorg Chem ; 131: 106329, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36565674

RESUMO

A series of lathyrane-type Euphorbia diterpene derivatives featured 3R configuration (H-3ß) were synthesized from natural rich Euphorbia factor L3via modified Mitsunobu reaction based on configuration inversion strategy. The antiproliferation activity and MDR reversal ability of the lathyrane derivatives were evaluated, and the most synthesized compounds showed moderate or strong potencies. Among them, diterpenes 21 (IC50 values of 2.6, 5.2 and 13.1 µM, respectively) and 25 (IC50 values of 5.5, 8.6 and 1.3 µM, respectively) presented the strong cytotoxicity against MCF-7, 4 T1 and HepG2 cells. Meanwhile, derivative 25 exhibited excellent MDR reversal ability with the reversal fold of 16.1 higher than that of verapamil. The cellular thermal shift assay and molecular docking proved direct engagement of diterpene 25 to ABCB1, suggesting 25 could be a promising MDR modulator. Furthermore, the preliminary SARs of these diterpenes were also discussed.


Assuntos
Antineoplásicos , Diterpenos , Euphorbia , Humanos , Linhagem Celular Tumoral , Diterpenos/síntese química , Diterpenos/farmacologia , Euphorbia/química , Células Hep G2 , Simulação de Acoplamento Molecular , Estrutura Molecular , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia
19.
Int J Mol Sci ; 25(1)2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38203249

RESUMO

Xishuangbanna (XIS) cucumber (Cucumis sativus L. var. xishuangbannanesis) is a semiwild variety originating from low latitude tropic areas, and therefore shows extreme cold sensitivity and heat tolerance. Here, we mapped the quantitative trait loci (QTLs) that control the cold sensitivity and heat tolerance of XIS cucumber seedlings. Using bulked segregant analysis (BSA), we identified three QTLs (HTT1.1, HTT3.1, and HTT3.2, with a total length of 11.98 Mb) for heat tolerance and two QTLs (LTT6.1 and LTT6.2, with a total length of 8.74 Mb) for cold sensitivity. The QTL LTT6.1 was then narrowed down to a length of 641 kb by using kompetitive allele-specific PCR (KASP) markers. Based on structural variants (SVs) and single-nucleotide polymorphisms (SNPs), we found the LTT6.1 is covered by a high divergent region including a 50 kb deletion in the XIS49 genome, which affects the gene structure of lipase abhydrolase domain containing 6 (ABHD6, Csa_6G032560). Accordingly, there is a very big difference in lipid composition, but not in other osmoprotectants like free amino acids and fatty acids, between XIS49 and cultivated cucumber CL. Moreover, we calculated the composite likelihood ratio (CLR) and identified selective sweeps from 115 resequencing data, and found that lipid- and fatty-acid-related processes are major aspects in the domestication of the XIS group cucumber. LTT6.1 is a particularly special region positioned nearby lipid-related selective sweeps. These studies above suggested that the lipid-related domestication of XIS cucumbers should account for their extreme cold sensitivity.


Assuntos
Cucumis sativus , Frio Extremo , Cucumis sativus/genética , Domesticação , Alelos , Ácidos Graxos
20.
J Cell Sci ; 134(5)2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-33154171

RESUMO

Epidemics caused by viral infections pose a significant global threat. Cytoskeletal vimentin is a major intermediate filament (IF) protein, and is involved in numerous functions, including cell signaling, epithelial-mesenchymal transition, intracellular organization and cell migration. Vimentin has important roles for the life cycle of particular viruses; it can act as a co-receptor to enable effective virus invasion and guide efficient transport of the virus to the replication site. Furthermore, vimentin has been shown to rearrange into cage-like structures that facilitate virus replication, and to recruit viral components to the location of assembly and egress. Surprisingly, vimentin can also inhibit virus entry or egress, as well as participate in host-cell defense. Although vimentin can facilitate viral infection, how this function is regulated is still poorly understood. In particular, information is lacking on its interaction sites, regulation of expression, post-translational modifications and cooperation with other host factors. This Review recapitulates the different functions of vimentin in the virus life cycle and discusses how they influence host-cell tropism, virulence of the pathogens and the consequent pathological outcomes. These insights into vimentin-virus interactions emphasize the importance of cytoskeletal functions in viral cell biology and their potential for the identification of novel antiviral targets.


Assuntos
Filamentos Intermediários , Viroses , Citoesqueleto , Humanos , Vimentina/genética , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA