Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Cell Physiol ; : e31442, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39319990

RESUMO

The apoptosis resistance of myofibroblasts is a hallmark in the irreversible progression of pulmonary fibrosis (PF). While the underlying molecular mechanism remains elusive. In this study, we unveiled a previously unrecognized mechanism underlying myofibroblast apoptosis resistance during PF. Our investigation revealed heightened expression of mesenchyme homeobox 1 (MEOX1) in the lungs of idiopathic pulmonary fibrosis (IPF) patients and bleomycin-induced PF mice. Silencing MEOX1 significantly attenuated PF progression in mice. In vitro, we found a notable increase in MEOX1 expression in transforming growth factor-ß1 (TGF-ß1)-induced myofibroblasts. Silencing MEOX1 enhanced apoptosis of myofibroblasts. Mechanistically, we identified G-protein signaling pathway regulatory factor 4 (RGS4) as a critical downstream target of MEOX1, as predicted by bioinformatics analysis. MEOX1 enhanced apoptosis resistance by upregulating RGS4 expression in myofibroblasts. In conclusion, our study highlights MEOX1 as a promising therapeutic target for protecting against PF by modulating myofibroblast apoptosis resistance.

2.
J Cell Physiol ; 239(2): e31169, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38193350

RESUMO

Alveolar epithelial cell (AEC) necroptosis is critical to disrupt the alveolar barrier and provoke acute lung injury (ALI). Here, we define calcitonin gene-related peptide (CGRP), the most abundant endogenous neuropeptide in the lung, as a novel modulator of AEC necroptosis in lipopolysaccharide (LPS)-induced ALI. Upon LPS-induced ALI, overexpression of Cgrp significantly mitigates the inflammatory response, alleviates lung tissue damage, and decreases AEC necroptosis. Similarly, CGRP alleviated AEC necroptosis under the LPS challenge in vitro. Previously, we identified that long optic atrophy 1 (L-OPA1) deficiency mediates mitochondrial fragmentation, leading to AEC necroptosis. In this study, we discovered that CGRP positively regulated mitochondrial fusion through stabilizing L-OPA1. Mechanistically, we elucidate that CGRP activates AMP-activated protein kinase (AMPK). Furthermore, the blockade of AMPK compromised the protective effect of CGRP against AEC necroptosis following the LPS challenge. Our study suggests that CRGP-mediated activation of the AMPK/L-OPA1 axis may have potent therapeutic benefits for patients with ALI or other diseases with necroptosis.


Assuntos
Lesão Pulmonar Aguda , Animais , Masculino , Camundongos , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/tratamento farmacológico , Células Epiteliais Alveolares/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Peptídeo Relacionado com Gene de Calcitonina/genética , Peptídeo Relacionado com Gene de Calcitonina/farmacologia , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Linhagem Celular , GTP Fosfo-Hidrolases/metabolismo , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Pulmão/metabolismo , Camundongos Endogâmicos C57BL , Necroptose , Transdução de Sinais
3.
Lab Invest ; 104(2): 100307, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38104865

RESUMO

Chronic obstructive pulmonary disease (COPD) is a major cause of morbidity, mortality, and health care use worldwide with heterogeneous pathogenesis. Mitochondria, the powerhouses of cells responsible for oxidative phosphorylation and energy production, play essential roles in intracellular material metabolism, natural immunity, and cell death regulation. Therefore, it is crucial to address the urgent need for fine-tuning the regulation of mitochondrial quality to combat COPD effectively. Mitochondrial quality control (MQC) mainly refers to the selective removal of damaged or aging mitochondria and the generation of new mitochondria, which involves mitochondrial biogenesis, mitochondrial dynamics, mitophagy, etc. Mounting evidence suggests that mitochondrial dysfunction is a crucial contributor to the development and progression of COPD. This article mainly reviews the effects of MQC on COPD as well as their specific regulatory mechanisms. Finally, the therapeutic approaches of COPD via MQC are also illustrated.


Assuntos
Mitocôndrias , Doença Pulmonar Obstrutiva Crônica , Humanos , Mitocôndrias/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Envelhecimento , Mitofagia
4.
Mol Med ; 30(1): 93, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898476

RESUMO

BACKGROUND: The epithelial-mesenchymal transition (EMT) of human bronchial epithelial cells (HBECs) is essential for airway remodeling during asthma. Wnt5a has been implicated in various lung diseases, while its role in the EMT of HBECs during asthma is yet to be determined. This study sought to define whether Wnt5a initiated EMT, leading to airway remodeling through the induction of autophagy in HBECs. METHODS: Microarray analysis was used to investigate the expression change of WNT5A in asthma patients. In parallel, EMT models were induced using 16HBE cells by exposing them to house dust mites (HDM) or interleukin-4 (IL-4), and then the expression of Wnt5a was observed. Using in vitro gain- and loss-of-function approaches via Wnt5a mimic peptide FOXY5 and Wnt5a inhibitor BOX5, the alterations in the expression of the epithelial marker E-cadherin and the mesenchymal marker protein were observed. Mechanistically, the Ca2+/CaMKII signaling pathway and autophagy were evaluated. An autophagy inhibitor 3-MA was used to examine Wnt5a in the regulation of autophagy during EMT. Furthermore, we used a CaMKII inhibitor KN-93 to determine whether Wnt5a induced autophagy overactivation and EMT via the Ca2+/CaMKII signaling pathway. RESULTS: Asthma patients exhibited a significant increase in the gene expression of WNT5A compared to the healthy control. Upon HDM and IL-4 treatments, we observed that Wnt5a gene and protein expression levels were significantly increased in 16HBE cells. Interestingly, Wnt5a mimic peptide FOXY5 significantly inhibited E-cadherin and upregulated α-SMA, Collagen I, and autophagy marker proteins (Beclin1 and LC3-II). Rhodamine-phalloidin staining showed that FOXY5 resulted in a rearrangement of the cytoskeleton and an increase in the quantity of stress fibers in 16HBE cells. Importantly, blocking Wnt5a with BOX5 significantly inhibited autophagy and EMT induced by IL-4 in 16HBE cells. Mechanistically, autophagy inhibitor 3-MA and CaMKII inhibitor KN-93 reduced the EMT of 16HBE cells caused by FOXY5, as well as the increase in stress fibers, cell adhesion, and autophagy. CONCLUSION: This study illustrates a new link in the Wnt5a-Ca2+/CaMKII-autophagy axis to triggering airway remodeling. Our findings may provide novel strategies for the treatment of EMT-related diseases.


Assuntos
Asma , Autofagia , Células Epiteliais , Transição Epitelial-Mesenquimal , Proteína Wnt-5a , Humanos , Proteína Wnt-5a/metabolismo , Proteína Wnt-5a/genética , Asma/metabolismo , Asma/patologia , Asma/genética , Células Epiteliais/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Brônquios/metabolismo , Brônquios/patologia , Masculino , Linhagem Celular , Feminino , Pessoa de Meia-Idade , Transdução de Sinais , Adulto
5.
J Cell Physiol ; 237(7): 3030-3043, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35478455

RESUMO

Necroptosis, a recently described form of programmed cell death, is the main way of alveolar epithelial cells (AECs) death in acute lung injury (ALI). While the mechanism of how to trigger necroptosis in AECs during ALI has been rarely evaluated. Long optic atrophy protein 1 (L-OPA1) is a crucial mitochondrial inner membrane fusion protein, and its deficiency impairs mitochondrial function. This study aimed to investigate the role of L-OPA1 deficiency-mediated mitochondrial dysfunction in AECs necroptosis. We comprehensively investigated the detailed contribution and molecular mechanism of L-OPA1 deficiency in AECs necroptosis by inhibiting or activating L-OPA1. First, our data showed that L-OPA1 expression was downregulated in the lungs and AECs under the lipopolysaccharide (LPS) challenge. Furthermore, inhibition of L-OPA1 aggravated the pathological injury, inflammatory response, and necroptosis in the lungs of LPS-induced ALI mice. In vitro, inhibition of L-OPA1 induced necroptosis of AECs, while activation of L-OPA1 alleviated necroptosis of AECs under the LPS challenge. Mechanistically, inhibition of L-OPA1 aggravated necroptosis of AECs by inducing mitochondrial fragmentation and reducing mitochondrial membrane potential. While activation of L-OPA1 had the opposite effects. In summary, these findings indicate for the first time that L-OPA1 deficiency mediates mitochondrial fragmentation, induces necroptosis of AECs, and exacerbates ALI in mice.


Assuntos
Lesão Pulmonar Aguda , Células Epiteliais Alveolares , GTP Fosfo-Hidrolases/metabolismo , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/metabolismo , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/patologia , Animais , GTP Fosfo-Hidrolases/genética , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos , Mitocôndrias/metabolismo , Necroptose
6.
Int J Biol Sci ; 20(12): 4713-4730, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39309425

RESUMO

Extensive loss of alveolar epithelial cells (AECs) undergoing necroptosis is a crucial mechanism of acute lung injury (ALI), but its triggering mechanism needs to be thoroughly investigated. Neutrophil extracellular traps (NETs) play a significant role in ALI. However, the effect of NETs on AECs' death has not been clarified. Our study found that intratracheal instillation of NETs disrupted lung tissue structure, suggesting that NETs could induce ALI in mice. Moreover, we observed that NETs could trigger necroptosis of AECs in vivo and in vitro. The phosphorylation levels of RIPK3 and MLKL were increased in MLE12 cells after NETs treatment (P < 0.05). Mechanistically, NETs taken up by AECs through endocytosis activated the cGAS-STING pathway and triggered AECs necroptosis. The expression of cGAS, STING, TBK1 and IRF3 were increased in MLE12 cells treated with NETs (P < 0.05). Furthermore, the cGAS inhibitor RU.521 inhibited NETs-triggered AECs necroptosis and alleviated the pulmonary damage induced by NETs in mice. In conclusion, our study demonstrates that NETs taken up by AECs via endocytosis can activate the cGAS-STING pathway and trigger AECs necroptosis to promote ALI in mice. Our findings indicate that targeting the NETs/cGAS-STING/necroptosis pathway in AECs is an effective strategy for treating ALI.


Assuntos
Lesão Pulmonar Aguda , Células Epiteliais Alveolares , Armadilhas Extracelulares , Proteínas de Membrana , Necroptose , Nucleotidiltransferases , Animais , Armadilhas Extracelulares/metabolismo , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Camundongos , Nucleotidiltransferases/metabolismo , Células Epiteliais Alveolares/metabolismo , Proteínas de Membrana/metabolismo , Masculino , Transdução de Sinais , Camundongos Endogâmicos C57BL , Neutrófilos/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo
7.
Redox Biol ; 63: 102765, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37269686

RESUMO

Alveolar epithelial cell (AEC) senescence is a key driver of a variety of chronic lung diseases. It remains a challenge how to alleviate AEC senescence and mitigate disease progression. Our study identified a critical role of epoxyeicosatrienoic acids (EETs), downstream metabolites of arachidonic acid (ARA) by cytochrome p450 (CYP), in alleviating AEC senescence. In vitro, we found that 14,15-EET content was significantly decreased in senescent AECs. Exogenous EETs supplementation, overexpression of CYP2J2, or inhibition of EETs degrading enzyme soluble epoxide hydrolase (sEH) to increase EETs alleviated AECs' senescence. Mechanistically, 14,15-EET promoted the expression of Trim25 to ubiquitinate and degrade Keap1 and promoted Nrf2 to enter the nucleus to exert an anti-oxidant effect, thereby inhibiting endoplasmic reticulum stress (ERS) and alleviating AEC senescence. Furthermore, in D-galactose (D-gal)-induced premature aging mouse model, inhibiting the degradation of EETs by Trifluoromethoxyphenyl propionylpiperidin urea (TPPU, an inhibitor of sEH) significantly inhibited the protein expression of p16, p21, and γH2AX. Meanwhile, TPPU reduced the degree of age-related pulmonary fibrosis in mice. Our study has confirmed that EETs are novel anti-senescence substances for AECs, providing new targets for the treatment of chronic lung diseases.


Assuntos
Células Epiteliais Alveolares , Senescência Celular , Eicosanoides , Estresse do Retículo Endoplasmático , Fator 2 Relacionado a NF-E2 , Animais , Camundongos , Células Epiteliais Alveolares/efeitos dos fármacos , Células Epiteliais Alveolares/fisiologia , Eicosanoides/farmacologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Proteína 1 Associada a ECH Semelhante a Kelch , Fator 2 Relacionado a NF-E2/genética , Fibrose Pulmonar , Senescência Celular/efeitos dos fármacos
8.
Oxid Med Cell Longev ; 2022: 5759626, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35509835

RESUMO

Background: Arachidonic acid (ARA) metabolites are involved in the pathogenesis of epithelial-mesenchymal transformation (EMT). However, the role of ARA metabolism in the progression of EMT during pulmonary fibrosis (PF) has not been fully elucidated. The purpose of this study was to investigate the role of cytochrome P450 oxidase (CYP)/soluble epoxide hydrolase (sEH) and cyclooxygenase-2 (COX-2) metabolic disorders of ARA in EMT during PF. Methods: A signal intratracheal injection of bleomycin (BLM) was given to induce PF in C57BL/6 J mice. A COX-2/sEH dual inhibitor PTUPB was used to establish the function of CYPs/COX-2 dysregulation to EMT in PF mice. In vitro experiments, murine alveolar epithelial cells (MLE12) and human alveolar epithelial cells (A549) were used to explore the roles and mechanisms of PTUPB on transforming growth factor (TGF)-ß1-induced EMT. Results: PTUPB treatment reversed the increase of mesenchymal marker molecule α-smooth muscle actin (α-SMA) and the loss of epithelial marker molecule E-cadherin in lung tissue of PF mice. In vitro, COX-2 and sEH protein levels were increased in TGF-ß1-treated alveolar epithelial cells (AECs). PTUPB decreased the expression of α-SMA and restored the expression of E-cadherin in TGF-ß1-treated AECs, accompanied by reduced migration and collagen synthesis. Moreover, PTUPB attenuated TGF-ß1-Smad2/3 pathway activation in AECs via Nrf2 antioxidant cascade. Conclusion: PTUPB inhibits EMT in AECs via Nrf2-mediated inhibition of the TGF-ß1-Smad2/3 pathway, which holds great promise for the clinical treatment of PF.


Assuntos
Fibrose Pulmonar , Fator de Crescimento Transformador beta1 , Animais , Camundongos , Células Epiteliais Alveolares/metabolismo , Caderinas/metabolismo , Ciclo-Oxigenase 2/metabolismo , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/metabolismo , Fibrose Pulmonar/patologia , Pirazóis , Sulfonamidas , Fator de Crescimento Transformador beta1/metabolismo
9.
Oxid Med Cell Longev ; 2022: 7265486, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36275905

RESUMO

Background: Epoxyeicosatrienoic acids (EETs), the metabolite of arachidonic acid by cytochrome P450 (CYP), reportedly serve as a vital endogenous protective factor in several chronic diseases. EETs are metabolized by soluble epoxide hydrolase (sEH). We have observed that prophylactic blocking sEH alleviates bleomycin- (BLM-) induced pulmonary fibrosis (PF) in mice. However, the underlying mechanism and therapeutic effects of EETs on PF remain elusive. Objective: In this study, we investigated the effect of CYP2J2/EETs on the activation of murine fibroblasts and their mechanisms. Results: we found that administration of the sEH inhibitor (TPPU) 7 days after the BLM injection also reversed the morphology changes and collagen deposition in the lungs of BLM-treated mice, attenuating PF. Fibroblast activation is regarded as a critical role of PF. Therefore, we investigated the effects of EETs on the proliferation and differentiation of murine fibroblasts. Results showed that the overexpression of CYP2J2 reduced the cell proliferation and the expressions of α-SMA and PCNA induced by transforming growth factor- (TGF-) ß1 in murine fibroblasts. Then, we found that EETs inhibited the proliferation and differentiation of TGF-ß1-treated-NIH3T3 cells and primary murine fibroblasts. Mechanistically, we found that 14,15-EET disrupted the phosphorylation of Smad2/3 murine fibroblasts by activating PPARγ, which was completely abolished by a PPARγ inhibitor GW9662. Conclusion: our study shows that EETs inhibit the activation of murine fibroblasts by blocking the TGF-ß1-Smad2/3 signaling in a PPARγ-dependent manner. Regulating CYP2J2-EET-sEH metabolic pathway may be a potential therapeutic option in PF.


Assuntos
Fibrose Pulmonar , Fator de Crescimento Transformador beta1 , Animais , Camundongos , Ácidos Araquidônicos/farmacologia , Bleomicina/efeitos adversos , Colágeno/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Epóxido Hidrolases/metabolismo , Fibroblastos/metabolismo , Células NIH 3T3 , PPAR gama/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Fibrose Pulmonar/patologia , Fator de Crescimento Transformador beta1/metabolismo
10.
Int Immunopharmacol ; 113(Pt A): 109339, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36330909

RESUMO

Our previous study showed that triggering receptors expressed on myeloid cell-1 (TREM-1) was upregulated in bleomycin (BLM)-induced pulmonary fibrosis (PF) mouse model. However, the role of TREM-1 in the development of PF and its underlying mechanism remain unclear. Herein, we report that the prophylactical blockade of TREM-1 using a decoy peptide dodecapeptide (LR12) exerted protective effects against BLM-induced PF in mice, with a higher survival rate, attenuated tissue injury, and less extracellular matrix deposition. Interestingly, therapeutic blockade of TREM-1 at the early stage of fibrosis also attenuated BLM-induced PF, suggesting a non-inflammatory effect. More importantly, we observed that TREM-1 blockade with LR12 significantly reduced the expression of the senescence-relative protein, including p16, p21, p53, and γ-H2AX in the lungs of PF mice. Notably, TREM-1 was upregulated in alveolar epithelial cells (AECs) and correlated with the levels of senescence markers in BLM-treated mice. In vitro, activating TREM-1 with an agonistic antibody exacerbated BLM-induced senescence in MLE12 cells, a murine AEC cell line. Furthermore, prophylactic or therapeutic blockade of TREM-1 protected MLE12 cells from senescence induced by BLM or H2O2. In conclusion, our findings elucidate a pro-fibrotic effect of TREM-1 by inducing AECs senescence in PF, providing a potential strategy for fibrotic disease treatment.


Assuntos
Células Epiteliais Alveolares , Fibrose Pulmonar , Receptor Gatilho 1 Expresso em Células Mieloides , Animais , Camundongos , Células Epiteliais Alveolares/patologia , Bleomicina/toxicidade , Peróxido de Hidrogênio/metabolismo , Células Mieloides , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/fisiopatologia , Receptor Gatilho 1 Expresso em Células Mieloides/metabolismo
11.
Exp Mol Med ; 54(11): 2077-2091, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36443565

RESUMO

Necroptosis is the major cause of death in alveolar epithelial cells (AECs) during acute lung injury (ALI). Here, we report a previously unrecognized mechanism for necroptosis. We found an accumulation of mitochondrial citrate (citratemt) in lipopolysaccharide (LPS)-treated AECs because of the downregulation of Idh3α and citrate carrier (CIC, also known as Slc25a1). shRNA- or inhibitor-mediated inhibition of Idh3α and Slc25a1 induced citratemt accumulation and necroptosis in vitro. Mice with AEC-specific Idh3α and Slc25a1 deficiency exhibited exacerbated lung injury and AEC necroptosis. Interestingly, the overexpression of Idh3α and Slc25a1 decreased citratemt levels and rescued AECs from necroptosis. Mechanistically, citratemt accumulation induced mitochondrial fission and excessive mitophagy in AECs. Furthermore, citratemt directly interacted with FUN14 domain-containing protein 1 (FUNDC1) and promoted the interaction of FUNDC1 with dynamin-related protein 1 (DRP1), leading to excessive mitophagy-mediated necroptosis and thereby initiating and promoting ALI. Importantly, necroptosis induced by citratemt accumulation was inhibited in FUNDC1-knockout AECs. We show that citratemt accumulation is a novel target for protection against ALI involving necroptosis.


Assuntos
Lesão Pulmonar Aguda , Células Epiteliais Alveolares , Camundongos , Animais , Células Epiteliais Alveolares/metabolismo , Lipopolissacarídeos/efeitos adversos , Necroptose , Ácido Cítrico/efeitos adversos , Ácido Cítrico/metabolismo , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/genética , Proteínas Mitocondriais/metabolismo , Proteínas de Membrana/metabolismo
12.
Int Immunopharmacol ; 101(Pt B): 108372, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34810128

RESUMO

Citrate has a prominent role as a substrate in cellular energy metabolism. Recently, citrate has been shown to drive inflammation. However, the role of citrate in lipopolysaccharide (LPS)-induced acute lung injury (ALI) remains unclear. Here, we aimed to clarify whether extracellular citrate aggravated the LPS-induced ALI and the potential mechanism. Our findings demonstrated that extracellular citrate aggravated the pathological lung injury induced by LPS in mice, characterized by up-regulation of pro-inflammatory factors and over-activation of NACHT, LRR, and PYD domains-containing protein 3 (NLRP3) inflammasome in the lungs. In vitro, we found that citrate treatment significantly augmented the expression of NLRP3 and pro-IL-1ß and enhanced the translocation of NF-κB/p65 into the nucleus. Furthermore, extracellular citrate plus adenosine-triphosphate (ATP) significantly increased the production of reactive oxygen species (ROS) in primary murine macrophages. Inhibiting the production of ROS with a ROS scavenger N-acetyl-L-cysteine (NAC) attenuated the activation of NLRP3 inflammasome. Altogether, we conclude that extracellular citrate may serve as a damage-associated molecular pattern (DAMP) and aggravates LPS-induced ALI by activating the NLRP3 inflammasome.


Assuntos
Alarminas/metabolismo , Ácido Cítrico/metabolismo , Lipopolissacarídeos/toxicidade , Lesão Pulmonar/induzido quimicamente , Ativação de Macrófagos/fisiologia , Macrófagos/efeitos dos fármacos , Trifosfato de Adenosina , Animais , Citocinas/genética , Citocinas/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Lesão Pulmonar/metabolismo , Lesão Pulmonar/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Distribuição Aleatória
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA