RESUMO
Rapid and accurate quantification of low-abundance protein biomarkers in biofluids can transform the diagnosis of a range of pathologies, including infectious diseases. Here, we harness ultrabright plasmonic fluors as "digital nanolabels" and demonstrate the detection and quantification of subfemtomolar concentrations of human IL-6 and SARS-CoV-2 alpha and variant proteins in clinical nasopharyngeal swab and saliva samples from COVID-19 patients. The resulting digital plasmonic fluor-linked immunosorbent assay (digital p-FLISA) enables detection of SARS-CoV-2 nucleocapsid protein, both in solution and in live virions. Digital p-FLISA outperforms the "gold standard" enzyme-linked immunosorbent assay (ELISA), having a nearly 7000-fold lower limit-of-detection, and outperforms a commercial antigen test, having over 5000-fold improvement in analytical sensitivity. Detection and quantification of very low concentrations of target proteins holds potential for early detection of pathological conditions, treatment monitoring, and personalized medicine.
Assuntos
COVID-19 , Humanos , Ensaio de Imunoadsorção Enzimática , COVID-19/diagnóstico , Fluorimunoensaio , SARS-CoV-2 , Biomarcadores , Sensibilidade e EspecificidadeRESUMO
There is a clinical need for differential diagnosis of the latent versus active stages of tuberculosis (TB) disease by a simple-to-administer test. Alpha-crystallin (Acr) and early secretory antigenic target-6 (ESAT-6) are protein biomarkers associated with the latent and active stages of TB, respectively, and could be used for differential diagnosis. We therefore developed a microneedle patch (MNP) designed for application to the skin to quantify Acr and ESAT-6 in dermal interstitial fluid by enzyme-linked immunosorbent assay (ELISA). We fabricated mechanically strong microneedles made of polystyrene and coated them with capture antibodies against Acr and ESAT-6. We then optimized assay sensitivity to achieve a limit of detection of 750 pg/ml and 3,020 pg/ml for Acr and ESAT-6, respectively. This study demonstrates the feasibility of an MNP-based ELISA for differential diagnosis of latent TB disease.
Assuntos
Tuberculose , Humanos , Ensaio de Imunoadsorção Enzimática , Tuberculose/diagnóstico , Anticorpos , Transporte Biológico , BiomarcadoresRESUMO
Plasmonic nanoparticles (NPs) have played a significant role in the evolution of modern nanoscience and nanotechnology in terms of colloidal synthesis, general understanding of nanocrystal growth mechanisms, and their impact in a wide range of applications. They exhibit strong visible colors due to localized surface plasmon resonance (LSPR) that depends on their size, shape, composition, and the surrounding dielectric environment. Under resonant excitation, the LSPR of plasmonic NPs leads to a strong field enhancement near their surfaces and thus enhances various light-matter interactions. These unique optical properties of plasmonic NPs have been used to design chemical and biological sensors. Over the last few decades, colloidal plasmonic NPs have been greatly exploited in sensing applications through LSPR shifts (colorimetry), surface-enhanced Raman scattering, surface-enhanced fluorescence, and chiroptical activity. Although colloidal plasmonic NPs have emerged at the forefront of nanobiosensors, there are still several important challenges to be addressed for the realization of plasmonic NP-based sensor kits for routine use in daily life. In this comprehensive review, researchers of different disciplines (colloidal and analytical chemistry, biology, physics, and medicine) have joined together to summarize the past, present, and future of plasmonic NP-based sensors in terms of different sensing platforms, understanding of the sensing mechanisms, different chemical and biological analytes, and the expected future technologies. This review is expected to guide the researchers currently working in this field and inspire future generations of scientists to join this compelling research field and its branches.
RESUMO
BACKGROUND: TP73 antisense RNA 1 (TP73-AS1) is a long noncoding RNA which has been shown to be involved in the progression of multiple malignant tumors. Previous studies have demonstrated the oncogenic role of TP73-AS1 in breast cancer. However, its molecular mechanism remains largely unknown in breast tumorigenesis. METHODS: Expression of TP63-AS1, miRNA-125a-3p (miR-125a) and metadherin (MTDH) was detected by real-time quantitative PCR and western blotting. The malignancy was evaluated by cell counting kit 8 (CCK-8), transwell assays, flow cytometry and western blotting. The target binding was confirmed by dual luciferase reporter assay. Xenograft tumor model was performed to detect tumor growth in vivo. RESULTS: Expression of TP73-AS1 was higher in breast cancer tissues and cell lines. Biologically, its knockdown could promote cell apoptosis rate, and inhibit proliferative capacity, migration and invasion ability in HCC-70 and MB231 cells, accompanied with higher cleaved caspase 3 level and lower Ki67, N-cadherin and Vimentin level. Moreover, TP73-AS1 downregulation restrained the tumor growth of HCC-70 cells in vivo. Mechanically, TP73-AS1 functioned as a molecular "sponge" for miR-125a to modulate MTDH, a downstream target of miR-125a. Intriguingly, both miR-125a overexpression and MTDH silencing exerted a tumor-suppressive effect in the malignant progression of HCC-70 and MB231 cells, which was counteracted by TP73-AS1 upregulation and miR-125a downregulation, respectively. CONCLUSION: Knockdown of TP73-AS1 inhibited cell proliferation, migration and invasion, but facilitated apoptosis in breast cancer cells in vitro through targeting miR-125a and upregulating MTDH, suggesting a novel TP73-AS1/miR-125a/MTDH pathway in the malignant progression of breast cancer.
Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/patologia , Regulação Neoplásica da Expressão Gênica , Proteínas de Membrana/metabolismo , MicroRNAs/genética , RNA Longo não Codificante/genética , Proteínas de Ligação a RNA/metabolismo , Animais , Apoptose , Biomarcadores Tumorais/genética , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Movimento Celular , Proliferação de Células , Progressão da Doença , Feminino , Humanos , Técnicas In Vitro , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Prognóstico , Proteínas de Ligação a RNA/genética , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Graphitic carbon nanocages (GCNCs) are unique graphene-based nanomaterials that can be used for cancer photothermal therapy (PTT). However, low toxicity GCNC-based organic/inorganic hybrid biomaterials for microwave irradiation assisted PTT have not yet been reported. In the present study, chitosan (CS)-coated GCNCs (CS-GCNCs) loaded with 5-fluorouracil (5Fu) were used for cancer therapy when activated by 808-nm laser and microwave co-irradiation. The cytotoxicity of GCNCs was significantly reduced after coating with CS. For example, fewer cell-cycle defects were caused by CS-GCNCs in comparison with non-coated GCNCs. The release rate of 5Fu from CS-GCNCs was significantly slower than that of 5Fu from GCNCs, providing sustained release. The release rate could be accelerated by 808-nm laser and microwave co-irradiation. The 5Fu in CS-GCNCs retained high cancer cell killing bioactivity by enhancing the caspase-3 expression level. The cancer cell killing and tumor inhibition efficiencies of the 5Fu-loaded nanomaterials increased significantly under 808-nm laser and microwave co-irradiation. The strong cell killing and tumor ablation activities were due to the synergy of the enhanced GCNC thermal effect caused by laser and microwave co-irradiation and the chemotherapy of 5Fu. Our research opens a door for the development of drug-loaded GCNC-based nano-biomaterials for chemo-photothermal synergistic therapy with the assistance of microwave irradiation. STATEMENT OF SIGNIFICANCE: Graphitic carbon nanocages (GCNCs) are graphene-based nanomaterials that can be used for both drug loading and cancer photothermal therapy (PTT). Herein, we showed that chitosan (CS)-GCNCs hybrid biomaterials had very low cytotoxicity, high ability for loading drug, and exhibited sustained drug release. In particular, although low-power microwaves alone are unable to trigger cancer cell damage by GCNCs, the cell killing and mouse tumor inhibition efficiencies were significantly improved by near-infrared (NIR) laser and microwave co-irradiation compared with laser-triggered PTT alone. This combined use of laser and microwave co-irradiation promises essential therapeutic modality and opens a new avenue for PTT.