Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 60(23): 12964-12970, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33797187

RESUMO

Despite the remarkable progress achieved in recent years, organic photovoltaics (OPVs) still need work to approach the delicate balance between efficiency, stability, and cost. Herein, two fully non-fused electron acceptors, PTB4F and PTB4Cl, are developed via a two-step synthesis from single aromatic units. The introduction of a two-dimensional chain and halogenated terminals for these non-fused acceptors plays a synergistic role in optimizing their solid stacking and orientation, thus promoting an elongated exciton lifetime and fast charge-transfer rate in bulk heterojunction blends. As a result, PTB4Cl, upon blending with PBDB-TF polymer, has enabled single-junction OPVs with power conversion efficiencies of 12.76 %, representing the highest values among the reported fully unfused electron acceptors so far.

2.
Adv Mater ; 36(7): e2306681, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37805706

RESUMO

Achieving precise control over the nanoscale morphology of bulk heterojunction films presents a significant challenge for the conventional post-treatments employed in organic solar cells (OSCs). In this study, a near-infrared photon-assisted annealing (NPA) strategy is developed for fabricating high-performance OSCs under mild processing conditions. It is revealed a top NIR light illumination, together with the bottom heating, enables the selective tuning of the molecular arrangement and assembly of narrow bandgap acceptors in polymer networks to achieve optimal morphologies, as well as the acceptor-rich top surface of active layers. The derived OSCs exhibit a remarkable power conversion efficiency (PCE) of 19.25%, representing one of the highest PCEs for the reported binary OSCs so far. Moreover, via the NPA strategy, it has succeeded in accessing top-illuminated flexible OSCs using thermolabile polyethylene terephthalate from mineral water bottles, displaying excellent mechanical stabilities. Overall, this work will hold the potential to develop organic solar cells under mild processing with various substrates.

3.
Adv Mater ; 35(39): e2303729, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37452690

RESUMO

The fast degradation of the charge-extraction interface at indium tin oxide (ITO) poses a significant obstacle to achieving long-term stability for organic solar cells (OSCs). Herein, a sustainable approach for recycling non-sustainable indium to construct efficient and stable OSCs and scale-up modules is developed. It is revealed that the recovered indium chloride (InCl3 ) from indium oxide waste can be applied as an effective hole-selective interfacial layer for the ITO electrode (noted as InCl3 -ITO anode) through simple aqueous fabrication, facilitating not only energy level alignment to photoactive blends but also mitigating parasitic absorption and charge recombination losses of the corresponding OSCs. As a result, OSCs and modules consisting of InCl3 -ITO anodes achieve remarkable power conversion efficiencies (PCEs) of 18.92% and 15.20% (active area of 18.73 cm2 ), respectively. More importantly, the InCl3 -ITO anode can significantly extend the thermal stability of derived OSCs, with an extrapolated T80 lifetime of ≈10 000 h.

4.
Adv Mater ; 34(28): e2110569, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35525536

RESUMO

Although encouraging progress is being made on spin-coated prototype cells, organic solar cells (OSCs) still face significant challenges, yet to be explored, for upscaling the multi-stacked photoactive layers in the construction of large-area modules. Herein, high-performance opaque and semitransparent organic solar modules are developed via a bilayer-merged-annealing (BMA)-assisted blade-coating strategy, achieving impressive efficiencies of 14.79% and 12.01% with respect to active area of 18.73 cm2 , which represent the best organic solar minimodules so far. It is revealed that the BMA strategy effectively resolves the de-wetting issues between polar charge transport layer solution and non-polar bulk heterojunction blends, hence improving the film coverage, along with electronic and electric contacts of multi-stacked photoactive layers. As result, organic solar modules coated under ambient conditions successfully retain the high-efficiency of small-area cells upon 312 times area scaling-up. Overall, this work provides a facile and effective method to fabricate high-performance organic solar modules under ambient conditions.

5.
Arch Med Res ; 52(6): 620-626, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33653596

RESUMO

OBJECTIVE: The early symptoms of nasopharyngeal carcinoma (NPC) are not obvious, and it is difficult to make early diagnosis. A case-control study was conducted to identify potential biomarkers and established a diagnosis model for nasopharyngeal carcinoma. METHODS: Plasma samples of 131 cases of NPC and 132 cases of healthy individuals were incubated with the Ray Biotech Human Lung Cancer IgG Autoantibody Detection Array G1, and signal values were used to develop a risk prediction model for NPC diagnosis. RESULTS: Of the 30 autoantibodies, high expression of MAGE-A4, NY-ESO-1, HuD, Survivin, IMDH2, Ubiquilin-1, IMP1, PGP9.5, IMP3, C-Myc and low expression of Cyclin B1 were potential biomarkers for NPC diagnosis (p <0.05), among which Survivin, MAGE-A4 and IMP3 shows higher AUC of 0.674, 0.652 and 0.650 respectively, the specificity of them was 89.39% (95% CI: 82.85-94.08%), 90.15% (95% CI: 83.75-94.65%) and 88.64% (81.95-93.50%).The risk probability analysis for NPC diagnosis based on the panel of Cyclin B1, NY-ESO-1, Survivin, and IMP3 displayed the best diagnosis performance with an AUC of 0.779, p (Yi = 1) = 1/(1+EXP[8.316+1.672*CyclinB1-1.152*NY-ESO-1-2.052*Survivin-0.950*IMP3]), the specificity of that was 86.36% (95% CI: 79.31-91.71%). CONCLUSIONS: Our findings demonstrated that the panel of Cyclin B1, NY-ESO-1, Survivin, and IMP3 has a good performance in the detection of NPC, and all 11 autoantibodies may also have a certain significance for the prognosis of NPC.


Assuntos
Biomarcadores Tumorais , Neoplasias Nasofaríngeas , Autoanticorpos , Estudos de Casos e Controles , Detecção Precoce de Câncer , Humanos , Carcinoma Nasofaríngeo/diagnóstico , Neoplasias Nasofaríngeas/diagnóstico
6.
Nat Commun ; 12(1): 3049, 2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34031410

RESUMO

Photo-degradation of organic semiconductors remains as an obstacle preventing their durable practice in optoelectronics. Herein, we disclose that volume-conserving photoisomerization of a unique series of acceptor-donor-acceptor (A-D-A) non-fullerene acceptors (NFAs) acts as a surrogate towards their subsequent photochemical reaction. Among A-D-A NFAs with fused, semi-fused and non-fused backbones, fully non-fused PTIC, representing one of rare existing samples, exhibits not only excellent photochemical tolerance in aerobic condition, but also efficient performance in solar cells. Along with a series of in-depth investigations, we identify that the structural confinement to inhibit photoisomerization of these unique A-D-A NFAs from molecular level to macroscopic condensed solid helps enhancing the photochemical stabilities of molecules, as well as the corresponding OSCs. Although other reasons associating with the photostabilities of molecules and devices should not excluded, we believe this work provides helpful structure-property information toward new design of stable and efficient photovoltaic molecules and solar cells.

7.
ACS Appl Mater Interfaces ; 11(1): 1394-1401, 2019 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-30516954

RESUMO

To further advance polymer solar cells requires the fast evolution of π-conjugated materials as well as a better understanding of their structure-property relationships. Herein, we present three copolymers (PT1, PT2, PT3) made through tuning π-bridges (without any group, thiophene, and 3-hexylthieno[3,2- b]thiophene) between electron-rich (D: BDTT) and -deficient (A: BDD) units. The comparative studies reveal the unique correlation that the tune of π-bridge on the polymeric backbone governs the solid stacking and photovoltaic properties of resultant poly(BDTT- alt-BDD)s, which provide an effective way to deliver new and efficient polymer with feasible processability. That is, polymers with either twist zigzag backbone (PT1) or with linear coplanar backbone (PT2) result in inferior photovoltaic performance upon simple solution casting. Among them, PT3 with extended zigzag backbone and planar segments exhibits suitable processability and retains good efficiency in nonfullerene solar cells through a single-solvent cast without involving tedious treatments. This work illustrates that the tuning of the D-π-A polymer backbone facilitates efficient materials with feasible processability, promising for scale-up fabrication.

8.
Nat Commun ; 10(1): 2152, 2019 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-31089140

RESUMO

The flexibility in structural design of organic semiconductors endows organic solar cells (OSCs) not only great function-tunabilities, but also high potential toward practical application. In this work, simple non-fused-ring electron acceptors are developed through two-step synthesis from single aromatic units for constructing efficient OSCs. With the assistance of non-covalent interactions, these rotatable non-fused acceptors (in solution) allow transiting into planar and stackable conformation in condensed solid, promoting acceptors not only feasible solution-processability, but also excellent film characteristics. As results, decent power conversion efficiencies of 10.27% and 13.97% can be achieved in single and tandem OSCs consisting of simple solution-cast blends, in which the fully unfused acceptors exhibit exceptionally low synthetic complexity index. In addition, the unfused acceptor and its based OSCs exhibit promising stabilities under continuous illumination. Overall, this work reveals valuable insights on the structural design of simple and effective electron acceptors with great practical perspectives.

9.
Adv Mater ; 30(52): e1803769, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30397928

RESUMO

Solar photon-to-electron conversion with polymer solar cells (PSCs) has experienced rapid development in the recent few years. Even so, the exploration of molecules and devices in efficiently converting near-infrared (NIR) photons into electrons remains critical, yet challenging. Herein presented is a family of near-infrared nonfullerene acceptors (NIR NFAs, T1-T4) with fluorinated regioisomeric A-Aπ-D-Aπ-A backbones for constructing efficient single-junction and tandem PSCs with photon response up to 1000 nm. It is found that the tuning of the regioisomeric bridge (Aπ) and fluoro (F)-substituents on a molecular skeleton strongly influences the backbone conformation and conjugation, leading to the optimized optoelectronic and stable stacking of resultant NFAs, which eventually impacts the performance of derived PSCs. In PSCs, the proximal NFAs with varied F-atoms (T1-T3) mostly outperform than that of distal NFA (T4). Notably, single-junction PSC with PTB7-Th:T2 blend can reach 10.87% power conversion efficiency (PCE), after implementing a solvent additive to improve blend morphology. Moreover, efficient tandem PSCs are fabricated through integrating such NIR cells with mediate bandgap nonfullerene-based subcells, to achieve a PCE of 14.64%. The results reveal the structural design of organic semiconductor and device with improved photovoltaic performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA