Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(7)2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37047682

RESUMO

P2Y12 is a G-protein-coupled receptor that is activated upon ADP binding. Considering its well-established role in platelet activation, blocking P2Y12 has been used as a therapeutic strategy for antiplatelet aggregation in cardiovascular disease patients. However, receptor studies have shown that P2Y12 is functionally expressed not only in platelets and the microglia but also in other cells of the immune system, such as in monocytes, dendritic cells, and T lymphocytes. As a result, studies were carried out investigating whether therapies targeting P2Y12 could also ameliorate inflammatory conditions, such as sepsis, rheumatoid arthritis, neuroinflammation, cancer, COVID-19, atherosclerosis, and diabetes-associated inflammation in animal models and human subjects. This review reports what is known about the expression of P2Y12 in the cells of the immune system and the effect of P2Y12 activation and/or inhibition in inflammatory conditions. Lastly, we will discuss the major problems and challenges in studying this receptor and provide insights on how they can be overcome.


Assuntos
COVID-19 , Receptores Purinérgicos P2 , Animais , Humanos , Antagonistas do Receptor Purinérgico P2Y/farmacologia , Antagonistas do Receptor Purinérgico P2Y/uso terapêutico , COVID-19/metabolismo , Plaquetas/metabolismo , Transdução de Sinais , Sistema Imunitário , Receptores Purinérgicos P2/metabolismo , Receptores Purinérgicos P2Y12/genética , Receptores Purinérgicos P2Y12/metabolismo , Agregação Plaquetária , Inibidores da Agregação Plaquetária/farmacologia , Difosfato de Adenosina/metabolismo
2.
J Biol Chem ; 295(29): 10032-10044, 2020 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-32503842

RESUMO

Fungal pathogen Candida albicans has a complex cell wall consisting of an outer layer of mannans and an inner layer of ß-glucans and chitin. The fungal cell wall is the primary target for antifungals and is recognized by host immune cells. Environmental conditions such as carbon sources, pH, temperature, and oxygen tension can modulate the fungal cell wall architecture. Cellular signaling pathways, including the mitogen-activated protein kinase (MAPK) pathways, are responsible for sensing environmental cues and mediating cell wall alterations. Although iron has recently been shown to affect ß-1,3-glucan exposure on the cell wall, we report here that iron changes the composition of all major C. albicans cell wall components. Specifically, high iron decreased the levels of mannans (including phosphomannans) and chitin; and increased ß-1,3-glucan levels. These changes increased the resistance of C. albicans to cell wall-perturbing antifungals. Moreover, high iron cells exhibited adequate mitochondrial functioning; leading to a reduction in accumulation of lactate that signals through the transcription factor Crz1 to induce ß-1,3-glucan masking in C. albicans We show here that iron-induced changes in ß-1,3-glucan exposure are lactate-dependent; and high iron causes ß-1,3-glucan exposure by preventing lactate-induced, Crz1-mediated inhibition of activation of the fungal MAPK Cek1. Furthermore, despite exhibiting enhanced antifungal resistance, high iron C. albicans cells had reduced survival upon phagocytosis by macrophages. Our results underscore the role of iron as an environmental signal in multiple signaling pathways that alter cell wall architecture in C. albicans, thereby affecting its survival upon exposure to antifungals and host immune response.


Assuntos
Antifúngicos/farmacologia , Candida albicans , Candidíase , Parede Celular , Ferro , Ácido Láctico , Macrófagos , Fagocitose , Animais , Candida albicans/imunologia , Candida albicans/metabolismo , Candidíase/tratamento farmacológico , Candidíase/imunologia , Candidíase/metabolismo , Parede Celular/imunologia , Parede Celular/metabolismo , Feminino , Ferro/imunologia , Ferro/metabolismo , Ácido Láctico/imunologia , Ácido Láctico/metabolismo , Macrófagos/imunologia , Macrófagos/microbiologia , Camundongos
3.
PLoS Pathog ; 15(4): e1007745, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-31009517

RESUMO

The mechanisms by which the gut luminal environment is disturbed by the immune system to foster pathogenic bacterial growth and survival remain incompletely understood. Here, we show that STAT2 dependent type I IFN signaling contributes to the inflammatory environment by disrupting hypoxia enabling the pathogenic S. Typhimurium to outgrow the microbiota. Stat2-/- mice infected with S. Typhimurium exhibited impaired type I IFN induced transcriptional responses in cecal tissue and reduced bacterial burden in the intestinal lumen compared to infected wild-type mice. Although inflammatory pathology was similar between wild-type and Stat2-/- mice, we observed decreased hypoxia in the gut tissue of Stat2-/- mice. Neutrophil numbers were similar in wild-type and Stat2-/- mice, yet Stat2-/- mice showed reduced levels of myeloperoxidase activity. In vitro, the neutrophils from Stat2-/- mice produced lower levels of superoxide anion upon stimulation with the bacterial ligand N-formylmethionyl-leucyl-phenylalanine (fMLP) in the presence of IFNα compared to neutrophils from wild-type mice, indicating that the neutrophils were less functional in Stat2-/- mice. Cytochrome bd-II oxidase-mediated respiration enhances S. Typhimurium fitness in wild-type mice, while in Stat2-/- deficiency, this respiratory pathway did not provide a fitness advantage. Furthermore, luminal expansion of S. Typhimurium in wild-type mice was blunted in Stat2-/- mice. Compared to wild-type mice which exhibited a significant perturbation in Bacteroidetes abundance, Stat2-/- mice exhibited significantly less perturbation and higher levels of Bacteroidetes upon S. Typhimurium infection. Our results highlight STAT2 dependent type I IFN mediated inflammation in the gut as a novel mechanism promoting luminal expansion of S. Typhimurium.


Assuntos
Disbiose/imunologia , Gastroenterite/imunologia , Inflamação/imunologia , Interferon Tipo I/imunologia , Fator de Transcrição STAT2/fisiologia , Infecções por Salmonella/imunologia , Salmonella typhimurium/imunologia , Animais , Células Cultivadas , Disbiose/metabolismo , Disbiose/patologia , Feminino , Gastroenterite/metabolismo , Gastroenterite/microbiologia , Gastroenterite/patologia , Inflamação/metabolismo , Inflamação/microbiologia , Inflamação/patologia , Interferon Tipo I/metabolismo , Intestinos/imunologia , Intestinos/microbiologia , Intestinos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neutrófilos/imunologia , Neutrófilos/metabolismo , Neutrófilos/microbiologia , Neutrófilos/patologia , Fator de Transcrição STAT1/fisiologia , Infecções por Salmonella/metabolismo , Infecções por Salmonella/microbiologia , Infecções por Salmonella/patologia
4.
FASEB J ; 34(2): 2497-2510, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31908004

RESUMO

Sepsis is a leading cause of morbidity and mortality in intensive care units. Previously, we identified Protein Kinase C-delta (PKCδ) as an important regulator of the inflammatory response in sepsis. An important issue in development of anti-inflammatory therapeutics is the risk of immunosuppression and inability to effectively clear pathogens. In this study, we investigated whether PKCδ inhibition prevented organ dysfunction and improved survival without compromising pathogen clearance. Sprague Dawley rats underwent sham surgery or cecal ligation and puncture (CLP) to induce sepsis. Post-surgery, PBS or a PKCδ inhibitor (200µg/kg) was administered intra-tracheally (IT). At 24 hours post-CLP, there was evidence of lung and kidney dysfunction. PKCδ inhibition decreased leukocyte influx in these organs, decreased endothelial permeability, improved gas exchange, and reduced blood urea nitrogen/creatinine ratios indicating organ protection. PKCδ inhibition significantly decreased bacterial levels in the peritoneal cavity, spleen and blood but did not exhibit direct bactericidal properties. Peritoneal chemokine levels, neutrophil numbers, or macrophage phenotypes were not altered by PKCδ inhibition. Peritoneal macrophages isolated from PKCδ inhibitor-treated septic rats demonstrated increased bacterial phagocytosis. Importantly, PKCδ inhibition increased survival. Thus, PKCδ inhibition improved survival and improved survival was associated with increased phagocytic activity, enhanced pathogen clearance, and decreased organ injury.


Assuntos
Bactérias/imunologia , Inibidores Enzimáticos/farmacologia , Macrófagos Peritoneais , Neutrófilos , Proteína Quinase C-delta/antagonistas & inibidores , Sepse , Animais , Quimiocinas , Macrófagos Peritoneais/imunologia , Macrófagos Peritoneais/patologia , Masculino , Neutrófilos/imunologia , Neutrófilos/patologia , Fagocitose/efeitos dos fármacos , Proteína Quinase C-delta/imunologia , Ratos , Ratos Sprague-Dawley , Sepse/tratamento farmacológico , Sepse/imunologia , Sepse/microbiologia , Sepse/patologia
5.
J Neuroinflammation ; 15(1): 309, 2018 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-30400800

RESUMO

BACKGROUND: Neuroinflammation often develops in sepsis leading to activation of cerebral endothelium, increased permeability of the blood-brain barrier (BBB), and neutrophil infiltration. We have identified protein kinase C-delta (PKCδ) as a critical regulator of the inflammatory response and demonstrated that pharmacologic inhibition of PKCδ by a peptide inhibitor (PKCδ-i) protected endothelial cells, decreased sepsis-mediated neutrophil influx into the lung, and prevented tissue damage. The objective of this study was to elucidate the regulation and relative contribution of PKCδ in the control of individual steps in neuroinflammation during sepsis. METHODS: The role of PKCδ in mediating human brain microvascular endothelial (HBMVEC) permeability, junctional protein expression, and leukocyte adhesion and migration was investigated in vitro using our novel BBB on-a-chip (B3C) microfluidic assay and in vivo in a rat model of sepsis induced by cecal ligation and puncture (CLP). HBMVEC were cultured under flow in the vascular channels of B3C. Confocal imaging and staining were used to confirm tight junction and lumen formation. Confluent HBMVEC were pretreated with TNF-α (10 U/ml) for 4 h in the absence or presence of PKCδ-i (5 µM) to quantify neutrophil adhesion and migration in the B3C. Permeability was measured using a 40-kDa fluorescent dextran in vitro and Evans blue dye in vivo. RESULTS: During sepsis, PKCδ is activated in the rat brain resulting in membrane translocation, a step that is attenuated by treatment with PKCδ-i. Similarly, TNF-α-mediated activation of PKCδ and its translocation in HBMVEC are attenuated by PKCδ-i in vitro. PKCδ inhibition significantly reduced TNF-α-mediated hyperpermeability and TEER decrease in vitro in activated HBMVEC and rat brain in vivo 24 h after CLP induced sepsis. TNF-α-treated HBMVEC showed interrupted tight junction expression, whereas continuous expression of tight junction protein was observed in non-treated or PKCδ-i-treated cells. PKCδ inhibition also reduced TNF-α-mediated neutrophil adhesion and migration across HBMVEC in B3C. Interestingly, while PKCδ inhibition decreased the number of adherent neutrophils to baseline (no-treatment group), it significantly reduced the number of migrated neutrophils below the baseline, suggesting a critical role of PKCδ in regulating neutrophil transmigration. CONCLUSIONS: The BBB on-a-chip (B3C) in vitro assay is suitable for the study of BBB function as well as screening of novel therapeutics in real-time. PKCδ activation is a key signaling event that alters the structural and functional integrity of BBB leading to vascular damage and inflammation-induced tissue damage. PKCδ-TAT peptide inhibitor has therapeutic potential for the prevention or reduction of cerebrovascular injury in sepsis-induced vascular damage.


Assuntos
Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/fisiopatologia , Proteína Quinase C-delta/metabolismo , Sepse/patologia , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Permeabilidade Capilar/efeitos dos fármacos , Permeabilidade Capilar/fisiologia , Adesão Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/fisiologia , Humanos , Masculino , Infiltração de Neutrófilos/efeitos dos fármacos , Infiltração de Neutrófilos/fisiologia , Peptídeos/farmacologia , Fosforilação/efeitos dos fármacos , Proteína Quinase C-delta/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Transporte Proteico/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Proteína da Zônula de Oclusão-1/metabolismo
6.
Purinergic Signal ; 13(1): 119-125, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27815804

RESUMO

Disruption of the lung endothelial and epithelial barriers during acute inflammation leads to excessive neutrophil migration. It is likely that activated platelets promote pulmonary recruitment of neutrophils during inflammation, and previous studies have found that anti-platelet therapy and depletion of circulating platelets have lung-protective effects in different models of inflammation. Because ADP signaling is important for platelet activation, I investigated the role of the ADP-receptor P2Y1, a G protein-coupled receptor expressed on the surface of circulating platelets, during lipopolysaccharide (LPS)-induced inflammation and lung injury in P2Y1-null and wild-type mice. Systemic inflammation was induced by a single intraperitoneal dose of LPS (3 mg/kg), and the mice were analyzed 24 h posttreatment. The data show that the LPS-induced inflammation levels were comparable in the P2Y1-null and wild-type mice. Specifically, splenomegaly, counts of circulating platelets and white blood cells (lymphocytes and neutrophils), and assessments of lung injury (tissue architecture and cell infiltration) were similar in the P2Y1-null and wild-type mice. Based on my results, I conclude that lung injury during LPS-induced inflammation in mice is independent of P2Y1 signaling. I propose that if a blockade of purinergic signaling in platelets is a potential lung-protective strategy in the treatment of acute inflammation, then it is more likely to be a result of the disruption of the signaling pathway mediated by P2Y12, another G protein-coupled receptor that mediates platelet responses to ADP.


Assuntos
Inflamação/metabolismo , Lesão Pulmonar/metabolismo , Receptores Purinérgicos P2Y1/metabolismo , Animais , Plaquetas/metabolismo , Inflamação/induzido quimicamente , Leucócitos/metabolismo , Lipopolissacarídeos , Camundongos , Camundongos Knockout , Receptores Purinérgicos P2Y1/genética
7.
Arterioscler Thromb Vasc Biol ; 36(5): 961-71, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27055904

RESUMO

OBJECTIVE: Platelets modulate hemostasis and immune responses via interactions with immune cells through secretion of immunemodulators and cell-cell interactions. The P2Y12 receptor mediates ADP-induced aggregation and secretion in platelets. APPROACH AND RESULTS: Using a mouse model of intra-abdominal sepsis and acute lung injury, we investigated the role of the P2Y12 receptor in neutrophil migration and lung inflammation in P2Y12 null mice and in mice pretreated with the P2Y12 antagonist clopidogrel. Our data show a decrease in circulating white blood cells and a decrease in platelet activation and platelet-leukocyte interactions in treated mice compared with untreated mice. Additionally, lung injury and platelet sequestration were diminished in clopidogrel-treated mice compared with their untreated septic littermates. Similar results were observed in P2Y12 null mice: platelet activation and platelet-leukocyte aggregates were decreased in septic P2Y12 null mice compared with wild-type mice. P2Y12 null mice were refractory to lung injury compared with wild-type mice. Finally, to evaluate P2Y12-independent effects of clopidogrel, we pretreated P2Y12 null mice. Interestingly, the number of circulating neutrophils was reduced in treated septic P2Y12 null mice, suggesting neutrophils as a target for clopidogrel pleiotropic effects. No difference was observed in P2Y1 null mice during sepsis, indicating that the P2Y12 receptor is responsible for the effects. CONCLUSIONS: P2Y12 null mice are refractory to sepsis-induced lung injury, suggesting a key role for activated platelets and the P2Y12 receptor during sepsis.


Assuntos
Lesão Pulmonar Aguda/metabolismo , Plaquetas/metabolismo , Pulmão/metabolismo , Ativação Plaquetária , Pneumonia/metabolismo , Receptores Purinérgicos P2Y12/metabolismo , Sepse/metabolismo , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/prevenção & controle , Animais , Plaquetas/efeitos dos fármacos , Clopidogrel , Citocinas/sangue , Predisposição Genética para Doença , Leucócitos/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infiltração de Neutrófilos/efeitos dos fármacos , Selectina-P/sangue , Fenótipo , Ativação Plaquetária/efeitos dos fármacos , Inibidores da Agregação Plaquetária/farmacologia , Pneumonia/genética , Pneumonia/patologia , Pneumonia/prevenção & controle , Antagonistas do Receptor Purinérgico P2Y/farmacologia , Receptores Purinérgicos P2Y12/deficiência , Receptores Purinérgicos P2Y12/genética , Sepse/tratamento farmacológico , Sepse/genética , Sepse/microbiologia , Transdução de Sinais , Ticlopidina/análogos & derivados , Ticlopidina/farmacologia
8.
Immunol Cell Biol ; 92(10): 837-50, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25047644

RESUMO

The UBASH3/STS/TULA family consists of two members sharing substantial homology and a similar multi-domain architecture, which includes a C-terminal histidine phosphatase domain capable of dephosphorylating phosphotyrosine-containing substrates. TULA-family proteins act as downregulators of receptor-induced activation in several cell types, including T cells and platelets. Deletion of both family members in mice has been shown to result in hyperresponsiveness of T cells to T-cell receptor (TCR)/CD3 complex engagement, but little is known about the biological consequences of double knockout (dKO) and especially of either single KO (sKO). We elucidated the biological consequences of the lack of TULA-family proteins in dKO and TULA and TULA-2 sKO animals. In order to do so, we examined immune responses in Trinitrobenzene sulfonic acid (TNBS)-induced colitis, a mouse model of human inflammatory bowel disease, which is characterized by the involvement of multiple cell types, of which T cells have a crucial role, in the development of a pathological inflammatory condition. Our data indicate that TNBS treatment upregulates T-cell responses in all KO mice studied to a significantly higher degree than in wild-type mice. Although the lack of either TULA-family member exacerbates inflammation and T-cell responses in a specific fashion, the lack of both TULA and TULA-2 in dKO exerts a higher effect than the lack of a single family member in TULA and TULA-2 sKO. Analysis of T-cell responses and TCR-mediated signaling argues that the proteins investigated affect T-cell signaling by regulating phosphorylation of Zap-70, a key protein tyrosine kinase.


Assuntos
Colite/imunologia , Proteínas Tirosina Fosfatases/fisiologia , Receptores de Antígenos de Linfócitos T/fisiologia , Linfócitos T/imunologia , Animais , Humanos , Camundongos , Camundongos Knockout , Fosforilação , Proteínas Tirosina Fosfatases/genética , Receptores de Antígenos de Linfócitos T/genética , Proteína-Tirosina Quinase ZAP-70/metabolismo
9.
Br J Pharmacol ; 181(4): 532-546, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37525937

RESUMO

Sepsis is a complicated pathological condition in response to severe infection. It is characterized by a strong systemic inflammatory response, where multiple components of the immune system are involved. Currently, there is no treatment for sepsis. Blood platelets are known for their role in haemostasis, but they also participate in inflammation through cell-cell interaction and the secretion of inflammatory mediators. Interestingly, an increase in platelet activation, secretion, and aggregation with other immune cells (such as monocytes, T-lymphocytes and neutrophils) has been detected in septic patients. Therefore, antiplatelet therapy in terms of P2Y12 antagonists has been evaluated as a possible treatment for sepis. It was found that blocking P2Y12 receptors decreased platelet marker expression and limited attachment to immune cells in some studies, but not in others. This review addresses the role of platelets in sepsis and discusses whether antagonizing P2Y12 signalling pathways can alter the disease outcome. Challenges in studying P2Y12 antagonists in sepsis also are discussed. LINKED ARTICLES: This article is part of a themed issue on Platelet purinergic receptor and non-thrombotic disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.4/issuetoc.


Assuntos
Plaquetas , Sepse , Humanos , Plaquetas/metabolismo , Inibidores da Agregação Plaquetária/farmacologia , Inibidores da Agregação Plaquetária/uso terapêutico , Antagonistas do Receptor Purinérgico P2Y/farmacologia , Antagonistas do Receptor Purinérgico P2Y/uso terapêutico , Imunidade , Sepse/tratamento farmacológico , Sepse/metabolismo , Receptores Purinérgicos P2Y12/metabolismo , Agregação Plaquetária
10.
J Pharmacol Exp Ther ; 344(1): 231-43, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23097214

RESUMO

Clopidogrel and prasugrel belong to a thienopyridine class of oral antiplatelet drugs that, after having been metabolized in the liver, can inhibit platelet function by irreversibly antagonizing the P2Y(12) receptor. Furthermore, thienopyridines influence numerous inflammatory conditions, but their effects on neutrophils have not been evaluated, despite the important role of these cells in inflammation. Therefore, we investigated the effect of prasugrel metabolites on neutrophils to further clarify the role of thienopyridines in inflammation. Interestingly, a prasugrel metabolite mixture, produced in vitro using rat liver microsomes, significantly inhibited N-formyl-methionyl-leucyl-phenylalanine (fMLP)- and platelet-activating factor (PAF)-induced neutrophil activation. More specifically, prasugrel metabolites inhibited neutrophil transmigration, CD16 surface expression, and neutrophil-platelet aggregation. Moreover, prasugrel metabolite pretreatment also significantly decreased fMLP- or PAF-induced extracellular-signal-regulated kinase phosphorylation as well as calcium mobilization. To determine the target of prasugrel in neutrophils, the role of both P2Y(12) and P2Y(13) receptors was studied using specific reversible antagonists, AR-C69931MX and MRS2211, respectively. Neither antagonist had any direct effect on the agonist-induced neutrophil functional responses. Our findings indicate that prasugrel metabolites may directly target neutrophils and inhibit their activation, suggesting a possible explanation for their anti-inflammatory effects previously observed. However, these metabolites do not act through either the P2Y(12) or P2Y(13) receptor in neutrophils.


Assuntos
Neutrófilos/efeitos dos fármacos , Piperazinas/farmacologia , Antagonistas do Receptor Purinérgico P2Y/farmacologia , Tiofenos/farmacologia , Animais , Western Blotting , Antígeno CD11b/biossíntese , Cálcio/metabolismo , Separação Celular , Sobrevivência Celular/efeitos dos fármacos , Quimiotaxia de Leucócito/efeitos dos fármacos , Humanos , Inflamação/induzido quimicamente , Inflamação/patologia , Lipopolissacarídeos , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microssomos Hepáticos , Peroxidase/metabolismo , Piperazinas/metabolismo , Agregação Plaquetária/efeitos dos fármacos , Cloridrato de Prasugrel , Antagonistas do Receptor Purinérgico P2/farmacologia , Antagonistas do Receptor Purinérgico P2Y/metabolismo , Receptores Purinérgicos P2Y12/efeitos dos fármacos , Tiofenos/metabolismo
11.
Front Physiol ; 14: 1250982, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37693009

RESUMO

Cancer incidence and mortality are growing worldwide. With a lack of optimal treatments across many cancer types, there is an unmet need for the development of novel treatment strategies for cancer. One approach is to leverage the immune system for its ability to survey for cancer cells. However, cancer cells evolve to evade immune surveillance by establishing a tumor microenvironment (TME) that is marked by remarkable immune suppression. Macrophages are a predominant immune cell within the TME and have a major role in regulating tumor growth. In the TME, macrophages undergo metabolic reprogramming and differentiate into tumor-associated macrophages (TAM), which typically assume an immunosuppressive phenotype supportive of tumor growth. However, the plasticity of macrophage biology offers the possibility that macrophages may be promising therapeutic targets. Among the many determinants in the TME that may shape TAM biology, platelets can also contribute to cancer growth and to maintaining immune suppression. Platelets communicate with immune cells including macrophages through the secretion of immune mediators and cell-cell interaction. In other diseases, altering platelet secretion and cell-cell communication has been shown to reprogram macrophages and ameliorate inflammation. Thus, intervening on platelet-macrophage biology may be a novel therapeutic strategy for cancer. This review discusses our current understanding of the interaction between platelets and macrophages in the TME and details possible strategies for reprogramming macrophages into an anti-tumor phenotype for suppressing tumor growth.

12.
J Cell Commun Signal ; 16(4): 661-675, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35414144

RESUMO

Platelets are well known for their roles in hemostasis and thrombosis, and are increasingly recognized for their abilities to interact with white blood cells during inflammatory diseases, via secreted soluble factors as well as cell-cell contact. This interaction has been investigated in animal models and patient samples and has shown to be implicated in patient outcomes in several diseases. Platelet-leukocyte co-cultures are widely used to study platelet-leukocyte interactions ex vivo. However, there is a paucity with regard to the systematic characterization of cell activation and functional behaviors of platelets and leukocytes in these co-cultures. Hence we aimed to characterize a model of platelet-leukocyte co-culture ex vivo. Human peripheral blood mononuclear cell (PBMC) and platelets were isolated and co-cultured for 5 days at 37 °C in the presence or absence of anti-CD3/CD28 antibodies or PHA. We evaluated PF-4 secretion and p-selectin expression in platelets as markers of platelet activation. Lymphocyte activation was assessed by cell proliferation and cell population phenotyping, in addition to platelet-lymphocyte aggregation. Platelet secretion and p-selectin expression is maintained throughout the co-culture, indicating that platelets were viable and reactive over the 5 days. Similarly PBMCs were viable and maintained proliferative capacity. Finally, dynamic heterotypic conjugation between platelets and T lymphocytes was also observed throughout co-culture (with a peak at days 3 and 4) upon T lymphocyte activation. In conclusion, this in vitro model can successfully mimic the in vivo interaction between platelets and T lymphocytes, and can be used to confirm and/or support in vivo results.

13.
Front Immunol ; 13: 1015577, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36405709

RESUMO

Sepsis, a complex clinical syndrome resulting from a serious infection, is a major healthcare problem associated with high mortality. Sex-related differences in the immune response to sepsis have been proposed but the mechanism is still unknown. Purinergic signaling is a sex-specific regulatory mechanism in immune cell physiology. Our studies have shown that blocking the ADP-receptor P2Y12 but not P2Y1 receptor was protective in male mice during sepsis, but not female. We now hypothesize that there are sex-related differences in modulating P2Y12 or P2Y1 signaling pathways during sepsis. Male and female wild-type (WT), P2Y12 knock-out (KO), and P2Y1 KO mice underwent sham surgery or cecal ligation and puncture (CLP) to induce sepsis. The P2Y12 antagonist ticagrelor or the P2Y1 antagonist MRS2279 were administered intra-peritoneally after surgery to septic male and female mice. Blood, lungs and kidneys were collected 24 hours post-surgery. Sepsis-induced changes in platelet activation, secretion and platelet interaction with immune cells were measured by flow cytometry. Neutrophil infiltration in the lung and kidney was determined by a myeloperoxidase (MPO) colorimetric assay kit. Sepsis-induced platelet activation, secretion and aggregate formation were reduced in male CLP P2Y12 KO and in female CLP P2Y1 KO mice compared with their CLP WT counterpart. Sepsis-induced MPO activity was reduced in male CLP P2Y12 KO and CLP P2Y1 KO female mice. CLP males treated with ticagrelor or MRS2279 showed a decrease in sepsis-induced MPO levels in lung and kidneys, aggregate formation, and platelet activation as compared to untreated male CLP mice. There were no differences in platelet activation, aggregate formation, and neutrophil infiltration in lung and kidney between female CLP mice and female CLP mice treated with ticagrelor or MRS2279. In human T lymphocytes, blocking P2Y1 or P2Y12 alters cell growth and secretion in vitro in a sex-dependent manner, supporting the data obtained in mice. In conclusion, targeting purinergic signaling represents a promising therapy for sepsis but drug targeting purinergic signaling is sex-specific and needs to be investigated to determine sex-related targeted therapies in sepsis.


Assuntos
Sepse , Feminino , Humanos , Camundongos , Masculino , Animais , Ticagrelor/uso terapêutico , Sepse/complicações , Infiltração de Neutrófilos/fisiologia , Camundongos Knockout , Transdução de Sinais
14.
Biochem Biophys Res Commun ; 408(4): 658-62, 2011 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-21530487

RESUMO

The increased risk of thromboembolism and higher incidence of cardiovascular disorders are among the most common causes of morbidity in patients suffering from autoimmune diseases. In this study we tested the hypothesis that IL-17A, a key pro-inflammatory cytokine involved in the development of autoimmune diseases, exerts pro-aggregant effects on both human and mouse platelets. Human or murine platelets were incubated with IL-17A for 2 min at 37°C prior the addition of the stimuli. Aggregation was monitored in a light transmission aggregometer measuring changes in turbidity with continuous observation over a 5-min interval after the addition of the stimuli. IL-17RA, CD42b and CD62P expression as well as fibrinogen bindings were measured by FACS while Erk-2 phosphorylation was analyzed by western blot using phospho-specific antibodies. Pre-incubation with IL-17A increased ADP-, but not collagen-induced platelet aggregation and accelerated CD62P expression and exposure of fibrinogen binding sites. These effects were associated with a faster kinetic of ADP-induced Erk-2 phosphorylation and were lost in platelets deficient in the IL-17 receptor. Together these results unveil a novel aspect of the inflammatory nature of IL-17A suggesting, at the same time, that therapeutic strategies targeting this cytokine might provide further benefit for the treatment of autoimmune diseases by reducing the risk of cardiovascular-related pathologies.


Assuntos
Interleucina-17/fisiologia , Agregação Plaquetária/fisiologia , Difosfato de Adenosina/farmacologia , Adulto , Animais , Doenças Autoimunes/complicações , Feminino , Humanos , Interleucina-17/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Pessoa de Meia-Idade , Agregação Plaquetária/efeitos dos fármacos , Receptores de Interleucina-17/genética , Tromboembolia/etiologia , Tromboembolia/genética , Tromboembolia/fisiopatologia
15.
J Leukoc Biol ; 110(1): 141-153, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33242353

RESUMO

Sepsis is a complex clinical condition resulting from a serious bloodstream infection. With mortality rates as high as 50%, improved treatments are needed. Regulatory T cells (Tregs), a subset of T lymphocytes, promote the resolution of inflammation. Septic patients have elevated levels of circulating Tregs. Platelets influence the proliferation and activation of Tregs in vitro. However, modulating platelet-Tregs interaction during sepsis may restraing Treg proliferation, leading to the restoration of immunologic homeostasis. P2Y12 is a purinergic receptor present on platelets and T lymphocytes. Blocking P2Y12 improves the outcome of sepsis. We investigated whether blocking P2Y12 alters platelet-Treg interaction in vivo. We used the murine model of sepsis, cecal ligation, and puncture (CLP) and we blocked P2Y12 using the P2Y12 antagonist, clopidogrel. Twenty-four hours after surgery, we measured Treg population sizes in the spleens of the Sham, CLP, and CLP + clopidogrel groups. We investigated the effect of blocking P2Y12 in vitro using cocultures of human platelets and T cells with or without anti-CD3/CD28. P2Y12 was blocked using AR-C69931MX. Treg population sizes were reduced in the septic mice treated with clopidogrel compared with untreated septic mice. Aggregation of platelets and CD4+ T cells was reduced in treated CLP mice compared with untreated CLP mice. P2Y12 antagonism changes how platelets influence T cells in vitro, depending on T-cell activation. In conclusion, blockade of the P2Y12 signaling pathway restrains Treg proliferation in vivo and in vitro. Targeting platelets to control Treg proliferation and activity may be a promising strategy for treating sepsis.


Assuntos
Plaquetas/metabolismo , Comunicação Celular/efeitos dos fármacos , Antagonistas do Receptor Purinérgico P2Y/farmacologia , Receptores Purinérgicos P2Y12/metabolismo , Sepse/etiologia , Sepse/metabolismo , Linfócitos T Reguladores/metabolismo , Animais , Biomarcadores , Plaquetas/imunologia , Comunicação Celular/imunologia , Suscetibilidade a Doenças , Humanos , Camundongos , Transdução de Sinais , Linfócitos T Reguladores/imunologia
16.
J Cell Commun Signal ; 14(1): 111-126, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31808055

RESUMO

Purinergic signaling plays a complex role in inflammation. Nucleotides released by T lymphocytes, endothelial cells, and platelets during inflammation induce cellular responses by binding to receptors that regulate intracellular signaling pathways. Previous studies have found that purinergic signaling can have both proinflammatory and anti-inflammatory effects, but the roles of specific pathways in specific cell types are poorly understood. We investigated the role of the P2Y12 signaling pathway in the activation of T lymphocytes in vitro. We isolated peripheral blood mononuclear cells (PBMCs) from healthy donors and pretreated them with ADP (a P2Y12 agonist), AR-C69931MX (a P2Y12 antagonist), or both. We then stimulated PBMC using phytohemagglutinin (PHA) or anti-CD3/CD28 antibodies. We found that ADP affects T cell responses in term of cell activity and receptor expression through both P2Y12-dependent and P2Y12-independent pathways and other responses (cytokine secretion) primarily through P2Y12 -independent pathways. The ADP-mediated effect changed over time and was stimulus-specific.

17.
Shock ; 51(5): 538-547, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30095599

RESUMO

BACKGROUND: Neutrophil dysfunction plays an important role in inflammation-induced tissue injury. Previously, we identified protein kinase C-δ (PKCδ) as a critical controller of neutrophil activation and trafficking but how PKCδ is regulated in inflammation has not been delineated. PKCδ activity is regulated by tyrosine phosphorylation on multiple sites. Tyrosine155 is a key regulator of apoptosis and gene expression, but its role in proinflammatory signaling is not known. METHODS: In-vitro studies - superoxide anion (O2) and neutrophil extracellular traps (NETs) were measured in bone marrow neutrophils (BMN) isolated from wild type (WT) and PKCδY155F knock-in mice (PKCδ tyrosine 155 → phenylalanine). Our novel 3D biomimetic microfluidic assay (bMFA) was used to delineate PKCδ-mediated regulation of individual steps in neutrophil adhesion and migration using WT and PKCδY155F BMN and mouse lung microvascular endothelial cells (MLMVEC). In-vivo studies - WT and PKCδY155F knock-in mice underwent sham or cecal ligation and puncture surgery and the lungs harvested 24 h post-surgery. RESULTS: In vitro - PKCδY155F BMN had significantly reduced O2 and NETs release compared with WT. WT BMN, but not PKCδY155F BMN, demonstrated significant adhesion and migration across tumor necrosis factor-activated MLMVEC in bMFA. PKCδ inhibition significantly reduced WT BMN adhesion and migration under low shear and near bifurcations, but had no effect on PKCδY155F BMN. In vivo - mutation of PKCδ tyrosine 155 significantly decreased neutrophil migration into the lungs of septic mice. CONCLUSIONS: PKCδ tyrosine 155 is a key phosphorylation site controlling proinflammatory signaling and neutrophil-endothelial cell interactions. These studies provide mechanistic insights into PKCδ regulation during inflammation.


Assuntos
Células Endoteliais/citologia , Inflamação/metabolismo , Neutrófilos/citologia , Proteína Quinase C-delta/metabolismo , Animais , Apoptose , Células da Medula Óssea/citologia , Adesão Celular , Endotélio Vascular/metabolismo , Feminino , Fibronectinas/metabolismo , Técnicas de Introdução de Genes , Masculino , Camundongos , Camundongos Transgênicos , Microcirculação , Microfluídica , Ativação de Neutrófilo , Oxigênio/metabolismo , Permeabilidade , Peroxidase/metabolismo , Fenilalanina/química , Fosforilação , Proteína Quinase C-delta/genética , Sepse/fisiopatologia , Superóxidos/metabolismo , Tirosina/química
18.
PLoS One ; 13(4): e0195379, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29617417

RESUMO

Sepsis is characterized by an intense systemic inflammatory response activating a cascade of proinflammatory events resulting in leukocyte dysregulation and host tissue damage. The lung is particularly susceptible to systemic inflammation, leading to acute lung injury. Key to inflammation-induced lung damage is the excessive migration of neutrophils across the vascular endothelium. The mechanisms which regulate neutrophil activation and migration in sepsis are not well defined but there is growing evidence that platelets are actively involved and play a key role in microvascular permeability and neutrophil-mediated organ damage. We previously identified PKC-delta (PKCδ) as a critical regulator of the inflammatory response in sepsis and demonstrated PKCδ inhibition was lung protective. However, the role of PKCδ in sepsis-induced platelet activation and platelet-leukocyte interactions is not known. In this study, rats underwent sham surgery or cecal ligation and puncture (CLP) to induce sepsis. Following surgeries, a PKCδ inhibitor (200µg/kg) or vehicle (PBS) was administered intra-tracheally. At 24 hours post-surgeries, lung tissue, BAL fluid, and blood samples were collected. While sepsis caused thrombocytopenia, the remaining circulating platelets were activated as demonstrated by increased p-selectin expression, elevated plasma PF4, and enhanced platelet-leukocyte aggregate formation compared to Sham animals. Platelet activation was associated with increased platelet PKCδ activity. Inhibition of PKCδ attenuated sepsis-induced platelet activation, secretion and aggregate formation. Sepsis-induced thrombocytopenia was also significantly reduced and circulating platelet numbers were similar to sham animals. In the lung, sepsis induced significant influx of platelets and neutrophils and the development of lung injury. Administration of the PKCδ inhibitor decreased platelet and neutrophil influx, and was lung protective. Thus, PKCδ inhibition modulated platelet activity both locally and systemically, decreased neutrophil influx into the lung, and was lung protective. We demonstrate for the first time that PKCδ plays an important role in platelet activation and platelet-neutrophil interaction during sepsis.


Assuntos
Plaquetas/enzimologia , Leucócitos/enzimologia , Ativação Plaquetária/fisiologia , Proteína Quinase C-delta/metabolismo , Sepse/enzimologia , Animais , Plaquetas/efeitos dos fármacos , Modelos Animais de Doenças , Leucócitos/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Pulmão/enzimologia , Pulmão/patologia , Masculino , Infiltração de Neutrófilos/efeitos dos fármacos , Infiltração de Neutrófilos/fisiologia , Ativação Plaquetária/efeitos dos fármacos , Agregação Plaquetária/efeitos dos fármacos , Agregação Plaquetária/fisiologia , Proteína Quinase C-delta/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Ratos Sprague-Dawley , Sepse/patologia , Trombocitopenia/enzimologia , Trombocitopenia/patologia
19.
PLoS One ; 12(8): e0182867, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28783756

RESUMO

BACKGROUND: It has long been postulated that Protein Kinase C (PKC) is an important regulator of megakaryopoiesis. Recent contributions to the literature have outlined the functions of several individual PKC isoforms with regard to megakaryocyte differentiation and platelet production. However, the exact role of PKCε remains elusive. OBJECTIVE: To delineate the role of PKCε in megakaryopoiesis. APPROACH AND RESULTS: We used a PKCε knockout mouse model to examine the effect of PKCε deficiency on platelet mass, megakaryocyte mass, and bone marrow progenitor cell distribution. We also investigated platelet recovery in PKCε null mice and TPO-mediated signaling in PKCε null megakaryocytes. PKCε null mice have higher platelet counts due to increased platelet production compared to WT littermate controls (p<0.05, n = 8). Furthermore, PKCε null mice have more bone marrow megakaryocyte progenitor cells than WT littermate control mice. Additionally, thrombopoietin-mediated signaling is perturbed in PKCε null mice as Akt and ERK1/2 phosphorylation are enhanced in PKCε null megakaryocytes stimulated with thrombopoietin. Finally, in response to immune-induced thrombocytopenia, PKCε null mice recovered faster and had higher rebound thrombocytosis than WT littermate control mice. CONCLUSIONS: Enhanced platelet recovery could be due to an increase in megakaryocyte progenitor cells found in PKCε null mice as well as enhanced thrombopoietin-mediated signaling observed in PKCε deficient megakaryocytes. These data suggest that PKCε is a negative regulator of megakaryopoiesis.


Assuntos
Técnicas de Inativação de Genes , Proteína Quinase C-épsilon/deficiência , Proteína Quinase C-épsilon/genética , Células-Tronco/citologia , Células-Tronco/metabolismo , Trombopoese , Animais , Células da Medula Óssea/citologia , Diferenciação Celular/efeitos dos fármacos , Megacariócitos/citologia , Megacariócitos/efeitos dos fármacos , Camundongos , Contagem de Plaquetas , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Células-Tronco/efeitos dos fármacos , Trombocitopenia/enzimologia , Trombocitopenia/imunologia , Trombopoese/efeitos dos fármacos , Trombopoese/genética , Trombopoetina/farmacologia
20.
Vet Immunol Immunopathol ; 100(3-4): 117-34, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15207450

RESUMO

African swine fever virus (ASFV) can cause an acutely fatal haemorrhagic fever in domestic pigs although in its natural hosts, warthogs, bushpigs and the soft tick vector, Ornithodoros moubata, ASFV causes inapparent persistent infections. The virus is a large, cytoplasmic, double-stranded DNA virus which has a tropism for macrophages. As it is the only member of the Asfarviridae family, ASFV encodes many novel genes not encoded by other virus families. The ability of the virus to persist in its natural hosts and in domestic pigs, which recover from infection with less virulent isolates, shows that the virus has effective mechanisms to evade host defence systems. This review focuses on recent progress made in understanding the function of ASFV-encoded proteins, which are involved in modulating the host response to infection. Growing evidence suggests that a major strategy used by the virus is to modulate signalling pathways in infected macrophages, thus interfering with the expression of a large number of immunomodulatory genes. One potent immunomodulatory protein, A238L, inhibits both activation of the host NFkappaB transcription factor and inhibits calcineurin phosphatase activity. Calcineurin-dependent pathways, including activation of the NFAT transcription factor, are therefore inhibited. Another ASFV-encoded protein, CD2v, resembles the host CD2 protein, which is expressed on T cells and NK cells. This virus protein causes the adsorption of red blood cells around virus-infected cells and extracellular virus particles. Expression of the CD2v protein aids virus dissemination in pigs and the protein also has a role in impairing bystander lymphocyte function. This may be mediated either by a direct interaction of CD2v extracellular domain with ligands on lymphocytes or by an indirect mechanism involving interaction of the CD2v cytoplasmic tail with host proteins involved in signalling or trafficking pathways. Two ASFV proteins, an IAP and a Bcl2 homologue, inhibit apoptosis in infected cells and thus facilitate production of progeny virions. The prediction is that half to two-thirds of the approximately 150 genes encoded by ASFV are not essential for replication in cells but have an important role for virus survival and transmission in its hosts. These genes provide an untapped repository, and will be valuable tools for deciphering not only how the virus manipulates the host response to infection to avoid elimination, but also useful for understanding important host anti-viral mechanisms. In addition, they may provide leads for discovery of novel immunomodulatory drugs.


Assuntos
Vírus da Febre Suína Africana/imunologia , Febre Suína Africana/imunologia , Febre Suína Africana/virologia , Proteínas Virais/imunologia , Adjuvantes Imunológicos/metabolismo , Febre Suína Africana/patologia , Vírus da Febre Suína Africana/metabolismo , Animais , Apoptose/imunologia , NF-kappa B/antagonistas & inibidores , NF-kappa B/imunologia , Monoéster Fosfórico Hidrolases/antagonistas & inibidores , Monoéster Fosfórico Hidrolases/imunologia , Suínos , Replicação Viral/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA