Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Anal Chem ; 88(21): 10362-10367, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27676129

RESUMO

Androgens are essential for male development and reproductive function. They are transported to their site of action as blood-borne endocrine hormones but can also be produced within tissues to act in intracrine and paracrine fashions. Because of this, circulating concentrations may not accurately reflect the androgenic influence within specific tissue microenvironments. Mass spectrometry imaging permits regional analysis of small molecular species directly from tissue surfaces. However, due to poor ionization and localized ion suppression, steroid hormones are difficult to detect. Here, derivatization with Girard T reagent was used to charge-tag testosterone and 5α-dihydrotestosterone allowing direct detection of these steroids in mouse testes, in both basal and maximally stimulated states, and in rat prostate. Limits of detection were ∼0.1 pg for testosterone. Exemplary detection of endogenous steroids was achieved by matrix-assisted laser desorption ionization and either Fourier transform ion cyclotron resonance detection (at 150 µm spatial resolution) or quadrupole-time-of-flight detection (at 50 µm spatial resolution). Structural confirmation was achieved by collision induced fragmentation following liquid extraction surface analysis and electrospray ionization. This application broadens the scope for derivatization strategies on tissue surfaces to elucidate local endocrine signaling in health and disease.

2.
FASEB J ; 27(4): 1519-31, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23303209

RESUMO

11ß-Hydroxysteroid dehydrogenase type-1 (11ß-HSD1) converts inert cortisone into active cortisol, amplifying intracellular glucocorticoid action. 11ß-HSD1 deficiency improves cardiovascular risk factors in obesity but exacerbates acute inflammation. To determine the effects of 11ß-HSD1 deficiency on atherosclerosis and its inflammation, atherosclerosis-prone apolipoprotein E-knockout (ApoE-KO) mice were treated with a selective 11ß-HSD1 inhibitor or crossed with 11ß-HSD1-KO mice to generate double knockouts (DKOs) and challenged with an atherogenic Western diet. 11ß-HSD1 inhibition or deficiency attenuated atherosclerosis (74-76%) without deleterious effects on plaque structure. This occurred without affecting plasma lipids or glucose, suggesting independence from classical metabolic risk factors. KO plaques were not more inflamed and indeed had 36% less T-cell infiltration, associated with 38% reduced circulating monocyte chemoattractant protein-1 (MCP-1) and 36% lower lesional vascular cell adhesion molecule-1 (VCAM-1). Bone marrow (BM) cells are key to the atheroprotection, since transplantation of DKO BM to irradiated ApoE-KO mice reduced atherosclerosis by 51%. 11ß-HSD1-null macrophages show 76% enhanced cholesterol ester export. Thus, 11ß-HSD1 deficiency reduces atherosclerosis without exaggerated lesional inflammation independent of metabolic risk factors. Selective 11ß-HSD1 inhibitors promise novel antiatherosclerosis effects over and above their benefits for metabolic risk factors via effects on BM cells, plausibly macrophages.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 1/deficiência , Aterosclerose/metabolismo , Medula Óssea/metabolismo , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/antagonistas & inibidores , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/metabolismo , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , Aterosclerose/genética , Medula Óssea/efeitos dos fármacos , Glucocorticoides/metabolismo , Camundongos , Camundongos Knockout , Fatores de Risco , Molécula 1 de Adesão de Célula Vascular/metabolismo
3.
Cardiovasc Res ; 119(8): 1740-1750, 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-36368681

RESUMO

AIMS: High salt intake is common and contributes to poor cardiovascular health. Urinary sodium excretion correlates directly with glucocorticoid excretion in humans and experimental animals. We hypothesized that high salt intake activates the hypothalamic-pituitary-adrenal axis activation and leads to sustained glucocorticoid excess. METHODS AND RESULTS: In male C57BL/6 mice, high salt intake for 2-8 weeks caused an increase in diurnal peak levels of plasma corticosterone. After 2 weeks, high salt increased Crh and Pomc mRNA abundance in the hypothalamus and anterior pituitary, consistent with basal hypothalamic-pituitary-adrenal axis activation. Additionally, high salt intake amplified glucocorticoid response to restraint stress, indicative of enhanced axis sensitivity. The binding capacity of Corticosteroid-Binding Globulin was reduced and its encoding mRNA downregulated in the liver. In the hippocampus and anterior pituitary, Fkbp5 mRNA levels were increased, indicating increased glucocorticoid exposure. The mRNA expression of the glucocorticoid-regenerating enzyme, 11ß-hydroxysteroid dehydrogenase Type 1, was increased in these brain areas and in the liver. Sustained high salt intake activated a water conservation response by the kidney, increasing plasma levels of the vasopressin surrogate, copeptin. Increased mRNA abundance of Tonebp and Avpr1b in the anterior pituitary suggested that vasopressin signalling contributes to hypothalamic-pituitary-adrenal axis activation by high salt diet. CONCLUSION: Chronic high salt intake amplifies basal and stress-induced glucocorticoid levels and resets glucocorticoid biology centrally, peripherally and within cells.


Assuntos
Glucocorticoides , Sistema Hipotálamo-Hipofisário , Humanos , Camundongos , Animais , Masculino , Glucocorticoides/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Cloreto de Sódio na Dieta , Sistema Hipófise-Suprarrenal/metabolismo , Camundongos Endogâmicos C57BL , Vasopressinas/genética , Vasopressinas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
4.
Front Endocrinol (Lausanne) ; 13: 1027164, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36465608

RESUMO

Decidualization is the hormone-dependent process of endometrial remodeling that is essential for fertility and reproductive health. It is characterized by dynamic changes in the endometrial stromal compartment including differentiation of fibroblasts, immune cell trafficking and vascular remodeling. Deficits in decidualization are implicated in disorders of pregnancy such as implantation failure, intra-uterine growth restriction, and pre-eclampsia. Androgens are key regulators of decidualization that promote optimal differentiation of stromal fibroblasts and activation of downstream signaling pathways required for endometrial remodeling. We have shown that androgen biosynthesis, via 5α-reductase-dependent production of dihydrotestosterone, is required for optimal decidualization of human stromal fibroblasts in vitro, but whether this is required for decidualization in vivo has not been tested. In the current study we used steroid 5α-reductase type 1 (SRD5A1) deficient mice (Srd5a1-/- mice) and a validated model of induced decidualization to investigate the role of SRD5A1 and intracrine androgen signaling in endometrial decidualization. We measured decidualization response (weight/proportion), transcriptomic changes, and morphological and functional parameters of vascular development. These investigations revealed a striking effect of 5α-reductase deficiency on the decidualization response. Furthermore, vessel permeability and transcriptional regulation of angiogenesis signaling pathways, particularly those that involved vascular endothelial growth factor (VEGF), were disrupted in the absence of 5α-reductase. In Srd5a1-/- mice, injection of dihydrotestosterone co-incident with decidualization restored decidualization responses, vessel permeability, and expression of angiogenesis genes to wild type levels. Androgen availability declines with age which may contribute to age-related risk of pregnancy disorders. These findings show that intracrine androgen signaling is required for optimal decidualization in vivo and confirm a major role for androgens in the development of the vasculature during decidualization through regulation of the VEGF pathway. These findings highlight new opportunities for improving age-related deficits in fertility and pregnancy health by targeting androgen-dependent signaling in the endometrium.


Assuntos
3-Oxo-5-alfa-Esteroide 4-Desidrogenase , Decídua , Remodelação Vascular , Animais , Feminino , Camundongos , Gravidez , 3-Oxo-5-alfa-Esteroide 4-Desidrogenase/genética , 3-Oxo-5-alfa-Esteroide 4-Desidrogenase/metabolismo , Androgênios/farmacologia , Colestenona 5 alfa-Redutase/genética , Colestenona 5 alfa-Redutase/metabolismo , Decídua/efeitos dos fármacos , Decídua/metabolismo , Di-Hidrotestosterona/farmacologia , Endométrio/efeitos dos fármacos , Endométrio/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Remodelação Vascular/efeitos dos fármacos , Remodelação Vascular/genética , Remodelação Vascular/fisiologia
5.
Am J Physiol Endocrinol Metab ; 300(2): E402-9, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21119028

RESUMO

The pathological mechanisms that distinguish simple steatosis from steatohepatitis (or NASH, with consequent risk of cirrhosis and hepatocellular cancer) remain incompletely defined. Whereas both a methionine- and choline-deficient diet (MCDD) and a choline-deficient diet (CDD) lead to hepatic triglyceride accumulation, MCDD alone is associated with hepatic insulin resistance and inflammation (steatohepatitis). We used metabolic tracer techniques, including stable isotope ([¹³C4]palmitate) dilution and mass isotopomer distribution analysis (MIDA) of [¹³C2]acetate, to define differences in intrahepatic fatty acid metabolism that could explain the contrasting effect of MCDD and CDD on NASH in C57Bl6 mice. Compared with control-supplemented (CS) diet, liver triglyceride pool sizes were similarly elevated in CDD and MCDD groups (24.37 ± 2.4, 45.94 ± 3.9, and 43.30 ± 3.5 µmol/liver for CS, CDD, and MCDD, respectively), but intrahepatic neutrophil infiltration and plasma alanine aminotransferase (31 ± 3, 48 ± 4, 231 ± 79 U/l, P < 0.05) were elevated only in MCDD mice. However, despite loss of peripheral fat in MCDD mice, neither the rate of appearance of palmitate (27.2 ± 3.5, 26.3 ± 2.3, and 28.3 ± 3.5 µmol·kg⁻¹·min⁻¹) nor the contribution of circulating fatty acids to the liver triglyceride pool differed between groups. Unlike CDD, MCDD had a defect in hepatic triglyceride export that was confirmed using intravenous tyloxapol (142 ± 21, 122 ± 15, and 80 ± 7 mg·kg⁻¹·h⁻¹, P < 0.05). Moreover, hepatic de novo lipogenesis was significantly elevated in the MCDD group only (1.4 ± 0.3, 2.3 ± 0.4, and 3.4 ± 0.4 µmol/day, P < 0.01). These findings suggest that important alterations in hepatic fatty acid metabolism may promote the development of steatohepatitis. Similar mechanisms may predispose to hepatocyte damage in human NASH.


Assuntos
Deficiência de Colina/metabolismo , Ácidos Graxos/metabolismo , Fígado Gorduroso/metabolismo , Fígado/metabolismo , Metionina/deficiência , Tecido Adiposo/metabolismo , Animais , Dieta , Ingestão de Alimentos/fisiologia , Fígado Gorduroso/patologia , Cromatografia Gasosa-Espectrometria de Massas , Hepatite/metabolismo , Hepatócitos/patologia , Imuno-Histoquímica , Cinética , Lipogênese/fisiologia , Masculino , Redes e Vias Metabólicas , Camundongos , Camundongos Endogâmicos C57BL , Tamanho do Órgão/fisiologia , Ácidos Palmíticos/metabolismo , Triglicerídeos/metabolismo
6.
Hypertension ; 75(5): 1213-1222, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32200679

RESUMO

GPR81 (G-protein-coupled receptor 81) is highly expressed in adipocytes, and activation by the endogenous ligand lactate inhibits lipolysis. GPR81 is also expressed in the heart, liver, and kidney, but roles in nonadipose tissues are poorly defined. GPR81 agonists, developed to improve blood lipid profile, might also provide insights into GPR81 physiology. Here, we assessed the blood pressure and renal hemodynamic responses to the GPR81 agonist, AZ'5538. In male wild-type mice, intravenous AZ'5538 infusion caused a rapid and sustained increase in systolic and diastolic blood pressure. Renal artery blood flow, intrarenal tissue perfusion, and glomerular filtration rate were all significantly reduced. AZ'5538 had no effect on blood pressure or renal hemodynamics in Gpr81-/- mice. Gpr81 mRNA was expressed in renal artery vascular smooth muscle, in the afferent arteriole, in glomerular and medullary perivascular cells, and in pericyte-like cells isolated from kidney. Intravenous AZ'5538 increased plasma ET-1 (endothelin 1), and pretreatment with BQ123 (endothelin-A receptor antagonist) prevented the pressor effects of GPR81 activation, whereas BQ788 (endothelin-B receptor antagonist) did not. Renal ischemia-reperfusion injury, which increases renal extracellular lactate, increased the renal expression of genes encoding ET-1, KIM-1 (Kidney Injury Molecule 1), collagen type 1-α1, TNF-α (tumor necrosis factor-α), and F4/80 in wild-type mice but not in Gpr81-/- mice. In summary, activation of GPR81 in vascular smooth muscle and perivascular cells regulates renal hemodynamics, mediated by release of the potent vasoconstrictor ET-1. This suggests that lactate may be a paracrine regulator of renal blood flow, particularly relevant when extracellular lactate is high as occurs during ischemic renal disease.


Assuntos
Endotelina-1/fisiologia , Hemodinâmica/efeitos dos fármacos , Receptores Acoplados a Proteínas G/agonistas , Animais , Artérias/efeitos dos fármacos , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/fisiologia , Bosentana/farmacologia , Endotelina-1/sangue , Taxa de Filtração Glomerular/efeitos dos fármacos , Coração/efeitos dos fármacos , Hemodinâmica/fisiologia , Infusões Intravenosas , Rim/irrigação sanguínea , Rim/efeitos dos fármacos , Lactatos/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Oligopeptídeos/farmacologia , Comunicação Parácrina , Peptídeos Cíclicos/farmacologia , Pericitos/efeitos dos fármacos , Pericitos/metabolismo , Piperidinas/farmacologia , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Receptores Acoplados a Proteínas G/deficiência , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/fisiologia , Circulação Renal/efeitos dos fármacos , Circulação Renal/fisiologia , Traumatismo por Reperfusão/sangue , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/fisiopatologia
7.
Endocrinology ; 160(9): 2061-2073, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31199473

RESUMO

Inhibition of 5α-reductases impairs androgen and glucocorticoid metabolism and induces insulin resistance in humans and rodents. The contribution of hepatic glucocorticoids to these adverse metabolic changes was assessed using a liver-selective glucocorticoid receptor (GR) antagonist, A-348441. Mice lacking 5α-reductase 1 (5αR1-KO) and their littermate controls were studied during consumption of a high-fat diet, with or without A-348441(120 mg/kg/d). Male C57BL/6 mice (age, 12 weeks) receiving dutasteride (1.8 mg/kg/d)) or vehicle with consumption of a high-fat diet, with or without A-348441, were also studied. In the 5αR1-KO mice, hepatic GR antagonism improved diet-induced insulin resistance but not more than that of the controls. Liver steatosis was not affected by hepatic GR antagonism in either 5αR1KO mice or littermate controls. In a second model of 5α-reductase inhibition using dutasteride and hepatic GR antagonism with A-348441 attenuated the excess weight gain resulting from dutasteride (mean ± SEM, 7.03 ± 0.5 vs 2.13 ± 0.4 g; dutasteride vs dutasteride plus A-348441; P < 0.05) and normalized the associated hyperinsulinemia after glucose challenge (area under the curve, 235.9 ± 17 vs 329.3 ± 16 vs 198.4 ± 25 ng/mL/min; high fat vs high fat plus dutasteride vs high fat plus dutasteride plus A-348441, respectively; P < 0.05). However, A-348441 again did not reverse dutasteride-induced liver steatosis. Thus, overall hepatic GR antagonism improved the insulin resistance but not the steatosis induced by a high-fat diet. Moreover, it attenuated the excessive insulin resistance caused by pharmacological inhibition of 5α-reductases but not genetic disruption of 5αR1. The use of dutasteride might increase the risk of type 2 diabetes mellitus and reduced exposure to glucocorticoids might be beneficial.


Assuntos
Colestenona 5 alfa-Redutase/deficiência , Fígado/fisiologia , Receptores de Glucocorticoides/fisiologia , Animais , Colestenona 5 alfa-Redutase/fisiologia , Ácidos Cólicos/farmacologia , Dieta Hiperlipídica , Dutasterida/farmacologia , Estrona/análogos & derivados , Estrona/farmacologia , Gluconeogênese , Resistência à Insulina , Metabolismo dos Lipídeos , Masculino , Camundongos , Camundongos Endogâmicos C57BL
8.
Endocrinology ; 148(10): 4836-43, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17628001

RESUMO

Glucocorticoids are metabolized by 11beta-hydroxysteroid dehydrogenase 1 (11betaHSD1) and the A-ring reductases (5alpha- and 5beta-reductases). Dysregulation of these enzymes has been reported in liver and adipose tissue in obese humans and animals, potentially leading to altered intracellular glucocorticoid concentrations and compensatory activation of the hypothalamic-pituitary-adrenal axis. This dysregulation of glucocorticoid metabolism in obesity is poorly understood. We hypothesized that changes in glucocorticoid metabolism in obesity are mediated by alterations in androgen action. Steroid metabolism was studied in obese and lean male Zucker rats (age 10 wk, 10 animals per group) 4 wk after gonadectomy or sham surgery. Oral glucose tolerance tests were performed, and activities and abundances of mRNAs for steroid metabolizing enzymes were quantified in liver and adipose tissue. Gonadectomy did not consistently alter weight gain, glucose intolerance, or hyperinsulinemia in obese animals. Gonadectomy increased adrenal mass (P < 0.05), suppressed 11betaHSD1 activity and/or mRNA in liver and adipose, increased 5alpha-reductase 1 mRNA in liver (P < 0.05), and increased 5beta-reductase activity only in obese animals (P < 0.05). Differences in hepatic 11betaHSD1 mRNA expression and adipose activity between lean and obese animals were normalized by gonadectomy, whereas obese gonadectomized animals maintained elevated liver 5alpha-reductase and had an exaggerated elevation of 5beta-reductase activity. We conclude that androgens tonically increase 11betaHSD1 in liver and adipose tissue in male rats and contribute to the dysregulation of 11betaHSD1 in obesity. By contrast, androgens tonically suppress hepatic A-ring reductases in male rats and do not contribute to dysregulation of these enzymes in obesity.


Assuntos
Androgênios/metabolismo , Glucocorticoides/metabolismo , Obesidade/metabolismo , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/genética , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/metabolismo , 3-alfa-Hidroxiesteroide Desidrogenase (B-Específica)/genética , 3-alfa-Hidroxiesteroide Desidrogenase (B-Específica)/metabolismo , Tecido Adiposo/enzimologia , Glândulas Suprarrenais/patologia , Animais , Peso Corporal , Colestenona 5 alfa-Redutase/genética , Colestenona 5 alfa-Redutase/metabolismo , Fígado/enzimologia , Masculino , Obesidade/enzimologia , Obesidade/patologia , Orquiectomia , Tamanho do Órgão , Oxirredutases/genética , Oxirredutases/metabolismo , Ratos , Ratos Zucker
9.
Endocrinology ; 158(11): 4047-4063, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28938454

RESUMO

The enzyme 11ß-hydroxysteroid dehydrogenase type 2 (11ß-HSD2) has an essential role in aldosterone target tissues, conferring aldosterone selectivity for the mineralocorticoid receptor (MR) by converting 11ß-hydroxyglucocorticoids to inactive 11-ketosteroids. Congenital deficiency of 11ß-HSD2 causes a form of salt-sensitive hypertension known as the syndrome of apparent mineralocorticoid excess. The disease phenotype, which ranges from mild to severe, correlates well with reduction in enzyme activity. Furthermore, polymorphisms in the 11ß-HSD2 coding gene (HSD11B2) have been linked to high blood pressure and salt sensitivity, major cardiovascular risk factors. 11ß-HSD2 expression is controlled by different factors such as cytokines, sex steroids, or vasopressin, but posttranslational modulation of its activity has not been explored. Analysis of 11ß-HSD2 sequence revealed a consensus site for conjugation of small ubiquitin-related modifier (SUMO) peptide, a major posttranslational regulatory event in several cellular processes. Our results demonstrate that 11ß-HSD2 is SUMOylated at lysine 266. Non-SUMOylatable mutant K266R showed slightly higher substrate affinity and decreased Vmax, but no effects on protein stability or subcellular localization. Despite mild changes in enzyme activity, mutant K266R was unable to prevent cortisol-dependent MR nuclear translocation. The same effect was achieved by coexpression of wild-type 11ß-HSD2 with sentrin-specific protease 1, a protease that catalyzes SUMO deconjugation. In the presence of 11ß-HSD2-K266R, increased nuclear MR localization did not correlate with increased response to cortisol or increased recruitment of transcriptional coregulators. Taken together, our data suggests that SUMOylation of 11ß-HSD2 at residue K266 modulates cortisol-mediated MR nuclear translocation independently of effects on transactivation.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 2/metabolismo , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Hidrocortisona/farmacologia , Receptores de Mineralocorticoides/metabolismo , Sumoilação , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/química , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/genética , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Transporte Ativo do Núcleo Celular/genética , Sequência de Aminoácidos , Animais , Células COS , Chlorocebus aethiops , Humanos , Modelos Moleculares , Domínios e Motivos de Interação entre Proteínas/genética , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/genética , Receptores de Mineralocorticoides/química , Ativação Transcricional/efeitos dos fármacos
10.
J Endocrinol ; 232(1): 29-36, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27647861

RESUMO

5α-Reductases irreversibly catalyse A-ring reduction of pregnene steroids, including glucocorticoids and androgens. Genetic disruption of 5α-reductase 1 in male mice impairs glucocorticoid clearance and predisposes to glucose intolerance and hepatic steatosis upon metabolic challenge. However, it is unclear whether this is driven by changes in androgen and/or glucocorticoid action. Female mice with transgenic disruption of 5α-reductase 1 (5αR1-KO) were studied, representing a 'low androgen' state. Glucocorticoid clearance and stress responses were studied in mice aged 6 months. Metabolism was assessed in mice on normal chow (aged 6 and 12 m) and also in a separate cohort following 1-month high-fat diet (aged 3 m). Female 5αR1-KO mice had adrenal suppression (44% lower AUC corticosterone after stress), and upon corticosterone infusion, accumulated hepatic glucocorticoids (~27% increased corticosterone). Female 5αR1-KO mice aged 6 m fed normal chow demonstrated insulin resistance (~35% increased area under curve (AUC) for insulin upon glucose tolerance testing) and hepatic steatosis (~33% increased hepatic triglycerides) compared with controls. This progressed to obesity (~12% increased body weight) and sustained insulin resistance (~38% increased AUC insulin) by age 12 m. Hepatic transcript profiles supported impaired lipid ß-oxidation and increased triglyceride storage. Female 5αR1-KO mice were also predisposed to develop high-fat diet-induced insulin resistance. Exaggerated predisposition to metabolic disorders in female mice, compared with that seen in male mice, after disruption of 5αR1 suggests phenotypic changes may be underpinned by altered metabolism of glucocorticoids rather than androgens.


Assuntos
Colestenona 5 alfa-Redutase/genética , Corticosterona/sangue , Metabolismo Energético/fisiologia , Sistema Hipotálamo-Hipofisário/metabolismo , Resistência à Insulina/fisiologia , Fígado/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Estresse Fisiológico/fisiologia , Animais , Colestenona 5 alfa-Redutase/metabolismo , Corticosterona/farmacologia , Dieta Hiperlipídica , Feminino , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Fígado/efeitos dos fármacos , Camundongos , Camundongos Transgênicos , Sistema Hipófise-Suprarrenal/efeitos dos fármacos , Receptores de Glucocorticoides/metabolismo
11.
Biochem Pharmacol ; 129: 73-84, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28131845

RESUMO

Use of topical glucocorticoid for inflammatory skin conditions is limited by systemic and local side-effects. This investigation addressed the hypothesis that topical 5α-tetrahydrocorticosterone (5αTHB, a corticosterone metabolite) inhibits dermal inflammation without affecting processes responsible for skin thinning and impaired wound healing. The topical anti-inflammatory properties of 5αTHB were compared with those of corticosterone in C57Bl/6 male mice with irritant dermatitis induced by croton oil, whereas its effects on angiogenesis, inflammation, and collagen deposition were investigated by subcutaneous sponge implantation. 5αTHB decreased dermal swelling and total cell infiltration associated with dermatitis similarly to corticosterone after 24h, although at a five fold higher dose, but in contrast did not have any effects after 6h. Pre-treatment with the glucocorticoid receptor antagonist RU486 attenuated the effect of corticosterone on swelling at 24h, but not that of 5αTHB. After 24h 5αTHB reduced myeloperoxidase activity (representative of neutrophil infiltration) to a greater extent than corticosterone. At equipotent anti-inflammatory doses 5αTHB suppressed angiogenesis to a limited extent, unlike corticosterone which substantially decreased angiogenesis compared to vehicle. Furthermore, 5αTHB reduced only endothelial cell recruitment in sponges whereas corticosterone also inhibited smooth muscle cell recruitment and decreased transcripts of angiogenic and inflammatory genes. Strikingly, corticosterone, but not 5αTHB, reduced collagen deposition. However, both 5αTHB and corticosterone attenuated macrophage infiltration into sponges. In conclusion, 5αTHB displays the profile of a safer topical anti-inflammatory compound. With limited effects on angiogenesis and extracellular matrix, it is less likely to impair wound healing or cause skin thinning.


Assuntos
Corticosterona/análogos & derivados , Modelos Animais de Doenças , Inflamação/tratamento farmacológico , Administração Tópica , Animais , Corticosterona/administração & dosagem , Corticosterona/uso terapêutico , Masculino , Camundongos , Camundongos Endogâmicos C57BL
12.
Endocrinology ; 146(2): 913-9, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15550507

RESUMO

Altered peripheral glucocorticoid metabolism may be important in the pathogenesis of obesity in humans and animal models. Genetically obese Zucker rats, Lep/ob mice, and obese humans exhibit increased regeneration of active glucocorticoids selectively in adipose tissue by 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD-1) and increased glucocorticoid clearance by hepatic A-ring reductases. We have examined whether dietary obesity in rats induces the same changes in glucocorticoid metabolism. Male Wistar rats were weaned onto high-fat (HF; 45% kcal from fat) or control (10% fat) diets. After 3 wk, HF rats showed no differences in weight but were glucose intolerant, had lower 11beta-HSD-1 activity in liver (3.8 +/- 0.2 vs. 4.9 +/- 0.2 pmol product/min.mg protein; P <0.01), sc fat (0.03 +/- 0.01 vs. 0.09 +/- 0.01 pmol product/min.mg protein; P <0.01), and omental fat (0.02 +/- 0.001 vs. 0.03 +/- 0.003 pmol/ product/min.mg protein; P <0.05) and higher hepatic 5beta-reductase activity (0.26 +/- 0.05 vs. 0.10 +/- 0.007 pmol product/min.mg protein; P <0.05). After 20 wk, HF rats were obese, hyperglycemic, and hyperinsulinemic, but differences in 11beta-HSD-1 and 5beta-reductase activities were no longer apparent. Mature male rats given HF diets for 24 or 72 h showed increased hepatic 5beta-reductase activity and a trend for decreased sc adipose 11beta-HSD-1 activity. Dietary obesity is not accompanied by the changes in 11beta-HSD-1 and 5beta-reductase expression and activity observed in genetically obese rodents. Acute exposure to HF diet alters glucocorticoid metabolism, predicting lower hepatic and adipose intracellular glucocorticoid concentrations, which may be a key mechanism protecting against the metabolic complications of obesity.


Assuntos
Tecido Adiposo/metabolismo , Gorduras na Dieta/farmacologia , Ingestão de Alimentos/fisiologia , Glucocorticoides/metabolismo , Fígado/metabolismo , Obesidade/fisiopatologia , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/genética , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/metabolismo , 3-Oxo-5-alfa-Esteroide 4-Desidrogenase/genética , 3-Oxo-5-alfa-Esteroide 4-Desidrogenase/metabolismo , Adaptação Fisiológica/fisiologia , Animais , Composição Corporal , Feminino , Sistema Hipotálamo-Hipofisário/fisiologia , Resistência à Insulina , Obesidade/metabolismo , Ratos , Ratos Wistar
13.
Diabetes ; 64(2): 447-58, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25239636

RESUMO

5α-Reductase type 1 (5αR1) catalyses A-ring reduction of androgens and glucocorticoids in liver, potentially influencing hepatic manifestations of the metabolic syndrome. Male mice, homozygous for a disrupted 5αR1 allele (5αR1 knockout [KO] mice), were studied after metabolic (high-fat diet) and fibrotic (carbon tetrachloride [CCl4]) challenge. The effect of the 5α-reductase inhibitor finasteride on metabolism was investigated in male obese Zucker rats. While eating a high-fat diet, male 5αR1-KO mice demonstrated greater mean weight gain (21.6 ± 1.4 vs 16.2 ± 2.4 g), hyperinsulinemia (insulin area under the curve during glucose tolerance test 609 ± 103 vs. 313 ± 66 ng ⋅ mL(-1) ⋅ min), and hepatic steatosis (liver triglycerides 136.1 ± 17.0 vs. 89.3 ± 12.1 µmol ⋅ g(-1)). mRNA transcript profiles in liver were consistent with decreased fatty acid ß-oxidation and increased triglyceride storage. 5αR1-KO male mice were more susceptible to fibrosis after CCl4 administration (37% increase in collagen staining). The nonselective 5α-reductase inhibitor finasteride induced hyperinsulinemia and hepatic steatosis (10.6 ± 1.2 vs. 7.0 ± 1.0 µmol ⋅ g(-1)) in obese male Zucker rats, both intact and castrated. 5αR1 deficiency induces insulin resistance and hepatic steatosis, consistent with the intrahepatic accumulation of glucocorticoids, and predisposes to hepatic fibrosis. Hepatic steatosis is independent of androgens in rats. Variations in 5αR1 activity in obesity and with nonselective 5α-reductase inhibition in men with prostate disease may have important consequences for the onset and progression of metabolic liver disease.


Assuntos
Colestenona 5 alfa-Redutase/metabolismo , Fígado Gorduroso/etiologia , Finasterida/farmacologia , Resistência à Insulina , Cirrose Hepática/metabolismo , Inibidores de 5-alfa Redutase/farmacologia , Animais , Colestenona 5 alfa-Redutase/genética , Gorduras na Dieta/administração & dosagem , Gorduras na Dieta/efeitos adversos , Ensaios Enzimáticos , Masculino , Camundongos , Camundongos Knockout , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Aumento de Peso
14.
J Clin Endocrinol Metab ; 88(8): 3983-8, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12915696

RESUMO

In idiopathic obesity circulating cortisol levels are not elevated, but high intraadipose cortisol concentrations have been implicated. 11beta-Hydroxysteroid dehydrogenase type 1 (11HSD1) catalyzes the conversion of inactive cortisone to active cortisol, thus amplifying glucocorticoid receptor (GR) activation. In cohorts of men and women, we have shown increased ex vivo 11HSD1 activity in sc adipose tissue associated with in vivo obesity and insulin resistance. Using these biopsies, we have now validated this observation by measuring 11HSD1 and GR mRNA and examined the impact on intraadipose cortisol concentrations, putative glucocorticoid regulated adipose target gene expression (angiotensinogen and leptin), and systemic measurements of cortisol metabolism. From aliquots of sc adipose biopsies from 16 men and 16 women we extracted RNA for real-time PCR and steroids for immunoassays. Adipose 11HSD1 mRNA was closely related to 11HSD1 activity [standardized beta coefficient (SBC) = 0.58; P < 0.01], and both were positively correlated with parameters of obesity (e.g. for BMI, SBC = 0.48; P < 0.05 for activity, and SBC = 0.63; P < 0.01 for mRNA) and insulin sensitivity (log fasting plasma insulin; SBC = 0.44; P < 0.05 for activity, and SBC = 0.33; P = 0.09 for mRNA), but neither correlated with urinary cortisol/cortisone metabolite ratios. Adipose GR-alpha and angiotensinogen mRNA levels were not associated with obesity or insulin resistance, but leptin mRNA was positively related to 11HSD1 activity (SBC = 0.59; P < 0.05) and tended to be associated with parameters of obesity (BMI: SBC = 0.40; P = 0.09), fasting insulin (SBC = 0.65; P < 0.05), and 11HSD1 mRNA (SBC = 0.40; P = 0.15). Intraadipose cortisol (142 +/- 30 nmol/kg) was not related to 11HSD1 activity or expression, but was positively correlated with plasma cortisol. These data confirm that idiopathic obesity is associated with transcriptional up-regulation of 11HSD1 in adipose, which is not detected by conventional in vivo measurements of urinary cortisol metabolites and is not accompanied by dysregulation of GR. Although this may drive a compensatory increase in leptin synthesis, whether it has an adverse effect on intraadipose cortisol concentrations and GR-dependent gene regulation remains to be established.


Assuntos
Tecido Adiposo/enzimologia , Hidroxiesteroide Desidrogenases/biossíntese , Obesidade/enzimologia , Obesidade/genética , Regulação para Cima/genética , 11-beta-Hidroxiesteroide Desidrogenases , Angiotensinogênio/biossíntese , Cortisona/metabolismo , Feminino , Humanos , Hidrocortisona/metabolismo , Hidroxiesteroide Desidrogenases/genética , Resistência à Insulina/genética , Leptina/biossíntese , Masculino , Pessoa de Meia-Idade , RNA Mensageiro/biossíntese , Receptores de Glucocorticoides/biossíntese
15.
J Clin Endocrinol Metab ; 87(12): 5587-93, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12466357

RESUMO

Recent evidence suggests that increased cortisol secretion, altered cortisol metabolism, and/or increased tissue sensitivity to cortisol may link insulin resistance, hypertension, and obesity. Whether these changes are important in type 2 diabetes mellitus (DM) is unknown. We performed an integrated assessment of glucocorticoid secretion, metabolism, and action in 25 unmedicated lean male patients with hyperglycemia (20 with type 2 diabetes and 5 with impaired glucose intolerance by World Health Organization criteria) and 25 healthy men, carefully matched for body mass index, age, and blood pressure. Data are mean +/- SE. Patients with hyperglycemia (DM) had higher HbA(1c) (6.9 +/- 0.2% vs. 6.0 +/- 0.1%, P < 0.0001) and triglycerides. Cortisol secretion was not different, as judged by 0900 h plasma cortisol and 24 h total urinary cortisol metabolites. However, the proportion of cortisol excreted as 5alpha- and 5beta-reduced metabolites was increased in DM patients. Following an oral dose of cortisone 25 mg, generation of plasma cortisol by hepatic 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD 1) was impaired in DM patients (area under the curve, 3617 +/- 281 nM.2 h vs. 4475 +/- 228; P < 0.005). In contrast, in sc gluteal fat biopsies from 17 subjects (5 DM and 12 controls) in vitro 11beta-HSD 1 activity was not different (area under the curve, 128 +/- 56% conversion.30 h DM vs. 119 +/- 21, P = 0.86). Sensitivity to glucocorticoids was increased in DM patients both centrally (0900 h plasma cortisol after overnight 250 micro g oral dexamethasone 172 +/- 16 nM vs. 238 +/- 20 nM, P < 0.01) and peripherally (more intense forearm dermal blanching following overnight topical beclomethasone; 0.56 +/- 0.92 ratio to vehicle vs. 0.82 +/- 0.69, P < 0.05). In summary, in patients with glucose intolerance, cortisol secretion, although normal, is inappropriately high given enhanced central and peripheral sensitivity to glucocorticoids. Normal 11beta-HSD 1 activity in adipose tissue with impaired hepatic conversion of cortisone to cortisol suggests that tissue-specific changes in 11beta-HSD 1 activity in hyperglycemia differ from those in primary obesity but may still be susceptible to pharmacological inhibition of the enzyme to reduce intracellular cortisol concentrations. Thus, altered cortisol action occurs not only in obesity and hypertension but also in glucose intolerance, and could therefore contribute to the link between these multiple cardiovascular risk factors.


Assuntos
Intolerância à Glucose/fisiopatologia , Hidrocortisona/metabolismo , Administração Tópica , Anti-Inflamatórios/farmacologia , Beclometasona/farmacologia , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/dietoterapia , Diabetes Mellitus Tipo 2/fisiopatologia , Humanos , Hiperglicemia/etiologia , Sistema Hipotálamo-Hipofisário/fisiopatologia , Masculino , Pessoa de Meia-Idade , Sistema Hipófise-Suprarrenal/fisiopatologia , Valores de Referência , Pele/irrigação sanguínea , Vasoconstrição/efeitos dos fármacos
16.
J Clin Endocrinol Metab ; 88(6): 2738-44, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12788882

RESUMO

Metabolic effects of cortisol may be critically modulated by glucocorticoid metabolism in tissues. Specifically, active cortisol is regenerated from inactive cortisone by the enzyme 11 beta-hydroxysteroid dehydrogenase type 1 (11-HSD1) in adipose and liver. We examined activity and mRNA levels of 11-HSD1 and tissue cortisol and cortisone levels in sc adipose tissue biopsies from 12 Caucasian (7 males and 5 females) and 19 Pima Indian (10 males and 9 females) nondiabetic subjects aged 28 +/- 7.6 yr (mean +/- SD; range, 18-45). Adipose 11-HSD1 activity and mRNA levels were highly correlated (r = 0.51, P = 0.003). Adipose 11-HSD1 activity was positively related to measures of total (body mass index, percentage body fat) and central (waist circumference) adiposity (P < 0.05 for all) and fasting glucose (r = 0.43, P = 0.02), insulin (r = 0.60, P = 0.0005), and insulin resistance by the homeostasis model (r = 0.70, P < 0.0001) but did not differ between sexes or ethnic groups. Intra-adipose cortisol was positively associated with fasting insulin (r = 0.37, P = 0.04) but was not significantly correlated with 11-HSD1 mRNA or activity or with other metabolic variables. In this cross-sectional study, higher adipose 11-HSD1 activity is associated with features of the metabolic syndrome. Our data support the hypothesis that increased regeneration of cortisol in adipose tissue influences metabolic sequelae of human obesity.


Assuntos
Tecido Adiposo/enzimologia , Hidroxiesteroide Desidrogenases/metabolismo , Indígenas Norte-Americanos , Insulina/sangue , Obesidade/etnologia , Obesidade/metabolismo , População Branca , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1 , Adulto , Cortisona/metabolismo , Feminino , Humanos , Hidroxiesteroide Desidrogenases/genética , Masculino , RNA Mensageiro/metabolismo , Tela Subcutânea/enzimologia
17.
J Clin Endocrinol Metab ; 87(7): 3330-6, 2002 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12107245

RESUMO

Cushing's syndrome and the metabolic syndrome share clinical similarities. Reports of alterations in the hypothalamic-pituitary-adrenal (HPA) axis are inconsistent, however, in the metabolic syndrome. Recent data highlight the importance of adipose 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1), which regenerates cortisol from cortisone and, when overexpressed in fat, produces central obesity and glucose intolerance. Here we assessed the HPA axis and 11beta-HSD1 activity in women with moderate obesity and insulin resistance. Forty women were divided into tertiles according to body mass index (BMI; median, 22.0, 27.5, and 31.4, respectively). Serum cortisol levels were measured after iv CRH, low dose dexamethasone suppression, and oral cortisone administration. Urinary cortisol metabolites were measured in a 24-h sample. A sc abdominal fat biopsy was obtained in 14 participants for determination of 11beta-HSD type 1 activity in vitro. Higher BMI was associated with higher total cortisol metabolite excretion (r = 0.49; P < 0.01), mainly due to increased 5alpha- and, to a lesser extent, 5beta-tetrahydrocortisol excretion, but no difference in plasma cortisol basally, after dexamethasone, or after CRH, and only a small increase in the ACTH response to CRH. Hepatic 11beta-HSD1 conversion of oral cortisone to cortisol was impaired in obese women (area under the curve, 147,736 +/- 28,528, 115,903 +/- 26,032, and 90,460 +/- 18,590 nmol/liter.min; P < 0.001). However, 11beta-HSD activity in adipose tissue was positively correlated with BMI (r = 0.55; P < 0.05). In obese females increased reactivation of glucocorticoids in fat may contribute to the characteristics of the metabolic syndrome. Increased inactivation of cortisol in liver may be responsible for compensatory activation of the HPA axis. These alterations in cortisol metabolism may be a basis for novel therapeutic strategies to reduce obesity-related complications.


Assuntos
Tecido Adiposo/enzimologia , Hidrocortisona/metabolismo , Hidroxiesteroide Desidrogenases/metabolismo , Obesidade/metabolismo , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1 , Hormônio Adrenocorticotrópico/sangue , Índice de Massa Corporal , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Distribuição Tecidual
18.
Eur J Endocrinol ; 148(1): 129-38, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12534366

RESUMO

OBJECTIVE: Glucocorticoids may contribute to the association between retarded growth in utero and insulin resistance in adulthood. Administration of dexamethasone (dex) to pregnant rats results in low birth weight offspring, which develop glucose intolerance, hyperinsulinaemia and hypercorticosteronaemia. This may be explained by tIssue-specific differences in expression of glucocorticoid receptors (GR) in adult offspring: GR is increased in visceral fat and liver, and decreased in hippocampus and soleus muscle. However, cause and effect between altered GR expression, hypercorticosteronaemia, and hyperinsulinaemia remains to be established. DESIGN AND METHODS: Rats were treated with dex (100 microg/kg per day) or saline during the third week of pregnancy. In 5-8-Month-old male offspring, GR expression in insulin target tIssues was quantified by RNase protection assay in rats that were adrenalectomised (ADX group), sham operated (SHAM group), or adrenalectomised with supra-physiological corticosterone replacement (CORT group) (n=7-8 per group), and in rats treated orally with vehicle, metformin (43 mg/kg per day) or rosiglitazone (1 mg/kg per day), after 3 weeks. RESULTS: Manipulation of corticosterone concentration did not affect GR mRNA in skeletal muscle or adipose. In liver, sham-operated animals showed lower GR mRNA, but there was no difference between adrenalectomised and hypercorticosteronaemic animals (SHAM 0.11+/-0.01 ratio to beta-actin, vs ADX 0.22+/-0.02, CORT 0.23+/-0.02, (values expressed as means+/-s.e.m.), P<0.001). Rosiglitazone reduced GR mRNA by approximately 30% in liver of dex- and saline-treated offspring (P<0.05), but had no effect on GR in adipose and skeletal muscle. Metformin abolished the 38% up-regulation of liver GR mRNA induced by antenatal dex and also reduced GR mRNA preferentially in muscle of dex-treated animals (0.14+/-0.01 vs 0.10+/-0.01; P=0.03). CONCLUSIONS: We conclude that neither hypercorticosteronaemia nor hyperinsulinaemia are sufficient to cause the changes in GR expression in dex-programmed rats, implying that these changes may be primary in determining the programmed insulin resistant phenotype. Normalisation of GR expression by metformin may be important in the mode of action of this anti-diabetic agent and may be especially useful to reverse-programmed up-regulation of GR.


Assuntos
Dexametasona/farmacologia , Glucocorticoides/farmacologia , Hiperinsulinismo/metabolismo , Efeitos Tardios da Exposição Pré-Natal , Receptores de Glucocorticoides/genética , Tiazolidinedionas , Animais , Apetite , Peso Corporal , Corticosterona/sangue , Feminino , Expressão Gênica/efeitos dos fármacos , Hiperinsulinismo/tratamento farmacológico , Hiperinsulinismo/genética , Hipoglicemiantes/farmacologia , Resistência à Insulina/fisiologia , Metformina/farmacologia , Tamanho do Órgão , Gravidez , RNA Mensageiro/análise , Ratos , Ratos Wistar , Rosiglitazona , Tiazóis/farmacologia
19.
J Clin Endocrinol Metab ; 99(8): E1397-406, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24823464

RESUMO

CONTEXT: 5α-Reductase (5αR) types 1 and 2 catalyze the A-ring reduction of steroids, including androgens and glucocorticoids. 5α-R inhibitors lower dihydrotestosterone in benign prostatic hyperplasia; finasteride inhibits 5αR2, and dutasteride inhibits both 5αR2 and 5αR1. In rodents, loss of 5αR1 promotes fatty liver. OBJECTIVE: Our objective was to test the hypothesis that inhibition of 5αR1 causes metabolic dysfunction in humans. DESIGN, SETTING, AND PARTICIPANTS: This double-blind randomized controlled parallel group study at a clinical research facility included 46 men (20-85 years) studied before and after intervention. INTERVENTION: Oral dutasteride (0.5 mg daily; n = 16), finasteride (5 mg daily; n = 16), or control (tamsulosin; 0.4 mg daily; n = 14) was administered for 3 months. MAIN OUTCOME MEASURE: Glucose disposal was measured during a stepwise hyperinsulinemic-euglycemic clamp. Data are mean (SEM). RESULTS: Dutasteride and finasteride had similar effects on steroid profiles, with reduced urinary androgen and glucocorticoid metabolites and reduced circulating DHT but no change in plasma or salivary cortisol. Dutasteride, but not finasteride, reduced stimulation of glucose disposal by high-dose insulin (dutasteride by -5.7 [3.2] µmol/kg fat-free mass/min, versus finasteride +7.2 [3.0], and tamsulosin +7.0 [2.0]). Dutasteride also reduced suppression of nonesterified fatty acids by insulin and increased body fat (by 1.6% [0.6%]). Glucose production and glycerol turnover were unchanged. Consistent with metabolic effects of dutasteride being mediated in peripheral tissues, mRNA for 5αR1 but not 5αR2 was detected in human adipose tissue. CONCLUSION: Dual inhibition of 5αRs, but not inhibition of 5αR2 alone, modulates insulin sensitivity in human peripheral tissues rather than liver. This may have important implications for patients prescribed dutasteride for prostatic disease.


Assuntos
3-Oxo-5-alfa-Esteroide 4-Desidrogenase/fisiologia , Inibidores de 5-alfa Redutase/farmacologia , Azasteroides/farmacologia , Finasterida/farmacologia , Resistência à Insulina , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Composição Corporal/efeitos dos fármacos , Método Duplo-Cego , Dutasterida , Humanos , Masculino , Pessoa de Meia-Idade , Hiperplasia Prostática/metabolismo , Hiperplasia Prostática/urina , Adulto Jovem
20.
J Endocrinol ; 222(2): 257-66, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24872577

RESUMO

Patients with critical illness or hepatic failure exhibit impaired cortisol responses to ACTH, a phenomenon known as 'relative adrenal insufficiency'. A putative mechanism is that elevated bile acids inhibit inactivation of cortisol in liver by 5α-reductases type 1 and type 2 and 5ß-reductase, resulting in compensatory downregulation of the hypothalamic-pituitary-adrenal axis and adrenocortical atrophy. To test the hypothesis that impaired glucocorticoid clearance can cause relative adrenal insufficiency, we investigated the consequences of 5α-reductase type 1 deficiency in mice. In adrenalectomised male mice with targeted disruption of 5α-reductase type 1, clearance of corticosterone was lower after acute or chronic (eightfold, P<0.05) administration, compared with WT control mice. In intact 5α-reductase-deficient male mice, although resting plasma corticosterone levels were maintained, corticosterone responses were impaired after ACTH administration (26% lower, P<0.05), handling stress (2.5-fold lower, P<0.05) and restraint stress (43% lower, P<0.05) compared with WT mice. mRNA levels of Nr3c1 (glucocorticoid receptor), Crh and Avp in pituitary or hypothalamus were altered, consistent with enhanced negative feedback. These findings confirm that impaired peripheral clearance of glucocorticoids can cause 'relative adrenal insufficiency' in mice, an observation with important implications for patients with critical illness or hepatic failure, and for patients receiving 5α-reductase inhibitors for prostatic disease.


Assuntos
3-Oxo-5-alfa-Esteroide 4-Desidrogenase/deficiência , Insuficiência Adrenal/etiologia , Proteínas de Membrana/deficiência , Inibidores de 5-alfa Redutase/efeitos adversos , Hormônio Adrenocorticotrópico/farmacologia , Animais , Corticosterona/sangue , Dexametasona/farmacologia , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Sistema Hipotálamo-Hipofisário/fisiologia , Masculino , Camundongos , Camundongos Knockout , Sistema Hipófise-Suprarrenal/efeitos dos fármacos , Sistema Hipófise-Suprarrenal/fisiologia , Estresse Psicológico/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA