Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Arch Toxicol ; 97(10): 2721-2740, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37528229

RESUMO

In silico methods can be used for an early assessment of arrhythmogenic properties of drug candidates. However, their use for decision-making is conditioned by the possibility to estimate the predictions' uncertainty. This work describes our efforts to develop uncertainty quantification methods for the predictions produced by multi-level proarrhythmia models. In silico models used in this field usually start with experimental or predicted IC50 values that describe drug-induced ion channel blockade. Using such inputs, an electrophysiological model computes how the ion channel inhibition, exerted by a drug in a certain concentration, translates to an altered shape and duration of the action potential in cardiac cells, which can be represented as arrhythmogenic risk biomarkers such as the APD90. Using this framework, we identify the main sources of aleatory and epistemic uncertainties and propose a method based on probabilistic simulations that replaces single-point estimates predicted using multiple input values, including the IC50s and the electrophysiological parameters, by distributions of values. Two selected variability types associated with these inputs are then propagated through the multi-level model to estimate their impact on the uncertainty levels in the output, expressed by means of intervals. The proposed approach yields single predictions of arrhythmogenic risk biomarkers together with value intervals, providing a more comprehensive and realistic description of drug effects on a human population. The methodology was tested by predicting arrhythmogenic biomarkers on a series of twelve well-characterised marketed drugs, belonging to different arrhythmogenic risk classes.


Assuntos
Arritmias Cardíacas , Coração , Humanos , Incerteza , Simulação por Computador , Arritmias Cardíacas/induzido quimicamente , Canais Iônicos/toxicidade , Biomarcadores
2.
J Chem Inf Model ; 60(10): 5172-5187, 2020 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-32786710

RESUMO

Drug-induced torsade de pointes (TdP) is a life-threatening ventricular arrhythmia responsible for the withdrawal of many drugs from the market. Although currently used TdP risk-assessment methods are effective, they are expensive and prone to produce false positives. In recent years, in silico cardiac simulations have proven to be a valuable tool for the prediction of drug effects. The objective of this work is to evaluate different biomarkers of drug-induced proarrhythmic risk and to develop an in silico risk classifier. Cellular simulations were performed using a modified version of the O'Hara et al. ventricular action potential model and existing pharmacological data (IC50 and effective free therapeutic plasma concentration, EFTPC) for 109 drugs of known torsadogenic risk (51 positive). For each compound, four biomarkers were tested: Tx (drug concentration leading to a 10% prolongation of the action potential over the EFTPC), TqNet (net charge carried by ionic currents when exposed to 10 times the EFTPC with respect to the net charge in control), Ttriang (triangulation for a drug concentration of 10 times the EFTPC over triangulation in control), and TEAD (drug concentration originating early afterdepolarizations over EFTPC). Receiver operating characteristic (ROC) curves were built for each biomarker to evaluate their individual predictive quality. At the optimal cutoff point, accuracies for Tx, TqNet, Ttriang, and TEAD were 89.9, 91.7, 90.8, and 78.9% respectively. The resulting accuracy of the hERG IC50 test (current biomarker) was 78.9%. When combining Tx, TqNet and Ttriang into a classifier based on decision trees, the prediction improves, achieving an accuracy of 94.5%. The sensitivity analysis revealed that most of the effects on the action potential are mainly due to changes in IKr, ICaL, INaL and IKs. In fact, considering that drugs affect only these four currents, TdP risk classification can be as accurate as when considering effects on the seven main currents proposed by the CiPA initiative. Finally, we built a ready-to-use tool (based on more than 450 000 simulations), which can be used to quickly assess the proarrhythmic risk of a compound. In conclusion, our in silico tool can be useful for the preclinical assessment of TdP-risk and to reduce costs related with new drug development. The TdP risk-assessment tool and the software used in this work are available at https://riunet.upv.es/handle/10251/136919.


Assuntos
Preparações Farmacêuticas , Torsades de Pointes , Potenciais de Ação , Arritmias Cardíacas/induzido quimicamente , Eletrocardiografia , Humanos , Torsades de Pointes/induzido quimicamente
3.
Diagnostics (Basel) ; 14(4)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38396407

RESUMO

We aimed to assess the correlation of cardiovascular magnetic resonance (CMR)-derived epicardial adipose tissue (EAT) with infarct size (IS) and residual systolic function in ST-segment elevation myocardial infarction (STEMI). We enrolled patients discharged for a first anterior reperfused STEMI submitted to undergo CMR. EAT, left ventricular (LV) ejection fraction (LVEF), and IS were quantified at the 1-week (n = 221) and at 6-month CMR (n = 167). At 1-week CMR, mean EAT was 31 ± 13 mL/m2. Patients with high EAT volume (n = 72) showed larger 1-week IS. After adjustment, EAT extent was independently related to 1-week IS. In patients with large IS at 1 week (>30% of LV mass, n = 88), those with high EAT showed more preserved 6-month LVEF. This association persisted after adjustment and in a 1:1 propensity score-matched patient subset. Overall, EAT decreased at 6 months. In patients with large IS, a greater reduction of EAT was associated with more preserved 6-month LVEF. In STEMI, a higher presence of EAT was associated with a larger IS. Nevertheless, in patients with large infarctions, high EAT and greater subsequent EAT reduction were linked to more preserved LVEF in the chronic phase. This dual and paradoxical effect of EAT fuels the need for further research in this field.

4.
Comput Methods Programs Biomed ; 230: 107345, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36689808

RESUMO

BACKGROUND AND OBJECTIVE: In silico prediction of drug-induced ventricular arrhythmia often requires computationally intensive simulations, making its application tedious and non-interactive. This inconvenience can be mitigated using matrices of precomputed simulation results, allowing instantaneous computation of biomarkers such as action potential duration at 90% of the repolarisation (APD90). However, preparing such matrices can be computationally intensive for the method developers, limiting the range of simulated conditions. In this work, we aim to optimise the generation of these matrices so that they can be obtained with less effort and for a broader range of input values. METHODS: Machine learning methods were applied, building models trained with only a small fraction of the originally simulated results. The predictive performances of the models were assessed by comparing their predicted values with the actual simulation results, using percentual mean absolute error and mean relative error, as well as the percentage of data with a relative error below 5%. RESULTS: Our method obtained highly accurate estimations of the original values, leading to a nearly one hundred-fold decrease in computation time. This method also allows precomputing more complex matrices, describing the effect of more ion channels on the APD90. The best results were obtained by applying Support Vector Machine models, which yielded errors below 1% in most cases. This approach was further validated by predicting the APD90 of a set of 12 CiPA compounds and exporting the optimal settings for predicting APD90 using a different set of ion channels, always with satisfactory results. CONCLUSIONS: The proposed method effectively reduces the computational effort required to generate matrices of precomputed electrophysiological simulation values. The same approach can be applied in other fields where computationally costly simulations are applied repeatedly using slightly different input values.


Assuntos
Arritmias Cardíacas , Aprendizado de Máquina , Humanos , Simulação por Computador , Arritmias Cardíacas/induzido quimicamente , Arritmias Cardíacas/diagnóstico , Potenciais de Ação
5.
Comput Methods Programs Biomed ; 242: 107860, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37844488

RESUMO

BACKGROUND AND OBJECTIVE: In silico methods are gaining attention for predicting drug-induced Torsade de Pointes (TdP) in different stages of drug development. However, many computational models tended not to account for inter-individual response variability due to demographic covariates, such as sex, or physiologic covariates, such as renal function, which may be crucial when predicting TdP. This study aims to compare the effects of drugs in male and female populations with normal and impaired renal function using in silico methods. METHODS: Pharmacokinetic models considering sex and renal function as covariates were implemented from data published in pharmacokinetic studies. Drug effects were simulated using an electrophysiologically calibrated population of cellular models of 300 males and 300 females. The population of models was built by modifying the endocardial action potential model published by O'Hara et al. (2011) according to the experimentally measured gene expression levels of 12 ion channels. RESULTS: Fifteen pharmacokinetic models for CiPA drugs were implemented and validated in this study. Eight pharmacokinetic models included the effect of renal function and four the effect of sex. The mean difference in action potential duration (APD) between male and female populations was 24.9 ms (p<0.05). Our simulations indicated that women with impaired renal function were particularly susceptible to drug-induced arrhythmias, whereas healthy men were less prone to TdP. Differences between patient groups were more pronounced for high TdP-risk drugs. The proposed in silico tool also revealed that individuals with impaired renal function, electrophysiologically simulated with hyperkalemia (extracellular potassium concentration [K+]o = 7 mM) exhibited less pronounced APD prolongation than individuals with normal potassium levels. The pharmacokinetic/electrophysiological framework was used to determine the maximum safe dose of dofetilide in different patient groups. As a proof of concept, 3D simulations were also run for dofetilide obtaining QT prolongation in accordance with previously reported clinical values. CONCLUSIONS: This study presents a novel methodology that combines pharmacokinetic and electrophysiological models to incorporate the effects of sex and renal function into in silico drug simulations and highlights their impact on TdP-risk assessment. Furthermore, it may also help inform maximum dose regimens that ensure TdP-related safety in a specific sub-population of patients.


Assuntos
Arritmias Cardíacas , Torsades de Pointes , Feminino , Humanos , Masculino , Sulfonamidas/efeitos adversos , Torsades de Pointes/induzido quimicamente , Potássio/efeitos adversos , Proteínas de Ligação a DNA
6.
Comput Methods Programs Biomed ; 221: 106934, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35687995

RESUMO

BACKGROUND AND OBJECTIVE: In silico tools are known to aid in drug cardiotoxicity assessment. However, computational models do not usually consider electrophysiological variability, which may be crucial when predicting rare adverse events such as drug-induced Torsade de Pointes (TdP). In addition, classification tools are usually binary and are not validated using an external data set. Here we analyze the role of incorporating electrophysiological variability in the prediction of drug-induced arrhythmogenic-risk, using a ternary classification and two external validation datasets. METHODS: The effects of the 12 training CiPA drugs were simulated at three different concentrations using a single baseline model and an electrophysiologically calibrated population of models. 9 biomarkers related with action potential (AP), calcium dynamics and net charge were measured for each simulated concentration. These biomarkers were used to build ternary classifiers based on Support Vector Machines (SVM) methodology. Classifiers were validated using two external drug sets: the 16 validation CiPA drugs and 81 drugs from CredibleMeds database. RESULTS: Population of models allowed to obtain different AP responses under the same pharmacological intervention and improve the prediction of drug-induced TdP with respect to the baseline model. The classification tools based on population of models achieve an accuracy higher than 0.8 and a mean classification error (MCE) lower than 0.3 for both validation drug sets and for the two electrophysiological action potential models studied (Tomek et al. 2020 and a modified version of O'Hara et al. 2011). In addition, simulations with population of models allowed the identification of individuals with lower conductances of IKr, IKs, and INaK and higher conductances of ICaL, INaL, and INCX, which are more prone to develop TdP. CONCLUSIONS: The methodology presented here provides new opportunities to assess drug-induced TdP-risk, taking into account electrophysiological variability and may be helpful to improve current cardiac safety screening methods.


Assuntos
Torsades de Pointes , Arritmias Cardíacas/induzido quimicamente , Biomarcadores , Proteínas de Ligação a DNA , Fenômenos Eletrofisiológicos , Humanos , Medição de Risco , Torsades de Pointes/induzido quimicamente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA