Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Hum Mol Genet ; 33(13): 1142-1151, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38557732

RESUMO

Lowe syndrome, a rare X-linked multisystem disorder presenting with major abnormalities in the eyes, kidneys, and central nervous system, is caused by mutations in OCRL gene (NG_008638.1). Encoding an inositol polyphosphate 5-phosphatase, OCRL catalyzes the hydrolysis of PI(4,5)P2 into PI4P. There are no effective targeted treatments for Lowe syndrome. Here, we demonstrate a novel gene therapy for Lowe syndrome in patient fibroblasts using an adenine base editor (ABE) that can efficiently correct pathogenic point mutations. We show that ABE8e-NG-based correction of a disease-causing mutation in a Lowe patient-derived fibroblast line containing R844X mutation in OCRL gene, restores OCRL expression at mRNA and protein levels. It also restores cellular abnormalities that are hallmarks of OCRL dysfunction, including defects in ciliogenesis, microtubule anchoring, α-actinin distribution, and F-actin network. The study indicates that ABE-mediated gene therapy is a feasible treatment for Lowe syndrome, laying the foundation for therapeutic application of ABE in the currently incurable disease.


Assuntos
Fibroblastos , Edição de Genes , Terapia Genética , Síndrome Oculocerebrorrenal , Monoéster Fosfórico Hidrolases , Síndrome Oculocerebrorrenal/genética , Síndrome Oculocerebrorrenal/metabolismo , Humanos , Fibroblastos/metabolismo , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Terapia Genética/métodos , Edição de Genes/métodos , Mutação , Adenina/metabolismo
2.
J Neurosci Res ; 102(1): e25273, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38284846

RESUMO

Primary cilia are microtubule-based sensory organelles that project from the apical surface of most mammalian cells, including oligodendrocytes, which are myelinating cells of the central nervous system (CNS) that support critical axonal function. Dysfunction of CNS glia is associated with aging-related white matter diseases and neurodegeneration, and ciliopathies are known to affect CNS white matter. To investigate age-related changes in ciliary profile, we examined ciliary length and frequency in the retinogeniculate pathway, a white matter tract commonly affected by diseases of aging but in which expression of cilia has not been characterized. We found expression of Arl13b, a marker of primary cilia, in a small group of Olig2-positive oligodendrocytes in the optic nerve, optic chiasm, and optic tract in young and aged C57BL/6 wild-type mice. While the ciliary length and ciliated oligodendrocyte cells were constant in young mice in the retinogeniculate pathway, there was a significant increase in ciliary length in the anterior optic nerve as compared to the aged animals. Morphometric analysis confirmed a specific increase in the ciliation rate of CC1+ /Olig2+ oligodendrocytes in aged mice compared with young mice. Thus, the prevalence of primary cilia in oligodendrocytes in the visual pathway and the age-related changes in ciliation suggest that they may play important roles in white matter and age-associated optic neuropathies.


Assuntos
Nervo Óptico , Substância Branca , Animais , Camundongos , Camundongos Endogâmicos C57BL , Oligodendroglia , Neuroglia , Mamíferos
3.
J Clin Invest ; 134(13)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38949024

RESUMO

Mitochondria-related neurodegenerative diseases have been implicated in the disruption of primary cilia function. Mutation in an intrinsic mitochondrial complex I component NDUFAF2 has been identified in Leigh syndrome, a severe inherited mitochondriopathy. Mutations in ARMC9, which encodes a basal body protein, cause Joubert syndrome, a ciliopathy with defects in the brain, kidney, and eye. Here, we report a mechanistic link between mitochondria metabolism and primary cilia signaling. We discovered that loss of NDUFAF2 caused both mitochondrial and ciliary defects in vitro and in vivo and identified NDUFAF2 as a binding partner for ARMC9. We also found that NDUFAF2 was both necessary and sufficient for cilia formation and that exogenous expression of NDUFAF2 rescued the ciliary and mitochondrial defects observed in cells from patients with known ARMC9 deficiency. NAD+ supplementation restored mitochondrial and ciliary dysfunction in ARMC9-deficient cells and zebrafish and ameliorated the ocular motility and motor deficits of a patient with ARMC9 deficiency. The present results provide a compelling mechanistic link, supported by evidence from human studies, between primary cilia and mitochondrial signaling. Importantly, our findings have significant implications for the development of therapeutic approaches targeting ciliopathies.


Assuntos
Cílios , Doenças Renais Císticas , Doença de Leigh , Mitocôndrias , Peixe-Zebra , Humanos , Peixe-Zebra/metabolismo , Peixe-Zebra/genética , Doença de Leigh/genética , Doença de Leigh/metabolismo , Doença de Leigh/patologia , Cílios/metabolismo , Cílios/patologia , Cílios/genética , Animais , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Mitocôndrias/genética , Doenças Renais Císticas/genética , Doenças Renais Císticas/metabolismo , Doenças Renais Císticas/patologia , Complexo I de Transporte de Elétrons/metabolismo , Complexo I de Transporte de Elétrons/genética , Proteínas do Domínio Armadillo/metabolismo , Proteínas do Domínio Armadillo/genética , Retina/metabolismo , Retina/patologia , Retina/anormalidades , Anormalidades do Olho/genética , Anormalidades do Olho/patologia , Anormalidades do Olho/metabolismo , Camundongos , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/metabolismo , Anormalidades Múltiplas/patologia , Cerebelo/metabolismo , Cerebelo/patologia , Cerebelo/anormalidades , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Masculino
4.
Sci Rep ; 13(1): 8205, 2023 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-37211572

RESUMO

Primary cilia are conserved organelles that integrate extracellular cues into intracellular signals and are critical for diverse processes, including cellular development and repair responses. Deficits in ciliary function cause multisystemic human diseases known as ciliopathies. In the eye, atrophy of the retinal pigment epithelium (RPE) is a common feature of many ciliopathies. However, the roles of RPE cilia in vivo remain poorly understood. In this study, we first found that mouse RPE cells only transiently form primary cilia. We then examined the RPE in the mouse model of Bardet-Biedl Syndrome 4 (BBS4), a ciliopathy associated with retinal degeneration in humans, and found that ciliation in BBS4 mutant RPE cells is disrupted early during development. Next, using a laser-induced injury model in vivo, we found that primary cilia in RPE reassemble in response to laser injury during RPE wound healing and then rapidly disassemble after the repair is completed. Finally, we demonstrated that RPE-specific depletion of primary cilia in a conditional mouse model of cilia loss promoted wound healing and enhanced cell proliferation. In summary, our data suggest that RPE cilia contribute to both retinal development and repair and provide insights into potential therapeutic targets for more common RPE degenerative diseases.


Assuntos
Ciliopatias , Degeneração Retiniana , Camundongos , Humanos , Animais , Epitélio Pigmentado da Retina , Cílios/fisiologia , Modelos Animais de Doenças , Proteínas Supressoras de Tumor , Proteínas Associadas aos Microtúbulos
5.
Commun Biol ; 6(1): 911, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37670137

RESUMO

The immune synapse, a highly organized structure formed at the interface between T lymphocytes and antigen-presenting cells (APCs), is essential for T cell activation and the adaptive immune response. It has been shown that this interface shares similarities with the primary cilium, a sensory organelle in eukaryotic cells, although the roles of ciliary proteins on the immune synapse remain elusive. Here, we find that inositol polyphosphate-5-phosphatase E (INPP5E), a cilium-enriched protein responsible for regulating phosphoinositide localization, is enriched at the immune synapse in Jurkat T-cells during superantigen-mediated conjugation or antibody-mediated crosslinking of TCR complexes, and forms a complex with CD3ζ, ZAP-70, and Lck. Silencing INPP5E in Jurkat T-cells impairs the polarized distribution of CD3ζ at the immune synapse and correlates with a failure of PI(4,5)P2 clearance at the center of the synapse. Moreover, INPP5E silencing decreases proximal TCR signaling, including phosphorylation of CD3ζ and ZAP-70, and ultimately attenuates IL-2 secretion. Our results suggest that INPP5E is a new player in phosphoinositide manipulation at the synapse, controlling the TCR signaling cascade.


Assuntos
Anticorpos , Monoéster Fosfórico Hidrolases , Fosfatidilinositóis , Receptores de Antígenos de Linfócitos T
6.
Elife ; 92020 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-32242819

RESUMO

Subdistal appendages (sDAPs) are centriolar elements that are observed proximal to the distal appendages (DAPs) in vertebrates. Despite the obvious presence of sDAPs, structural and functional understanding of them remains elusive. Here, by combining super-resolved localization analysis and CRISPR-Cas9 genetic perturbation, we find that although DAPs and sDAPs are primarily responsible for distinct functions in ciliogenesis and microtubule anchoring, respectively, the presence of one element actually affects the positioning of the other. Specifically, we find dual layers of both ODF2 and CEP89, where their localizations are differentially regulated by DAP and sDAP integrity. DAP depletion relaxes longitudinal occupancy of sDAP protein ninein to cover the DAP region, implying a role of DAPs in sDAP positioning. Removing sDAPs alter the distal border of centrosomal γ-tubulins, illustrating a new role of sDAPs. Together, our results provide an architectural framework for sDAPs that sheds light on functional understanding, surprisingly revealing coupling between DAPs and sDAPs.


Assuntos
Centríolos/ultraestrutura , Microscopia Eletrônica de Transmissão/métodos , Ciclo Celular , Proteínas de Ciclo Celular/química , Células Cultivadas , Proteínas do Citoesqueleto/química , Proteínas de Choque Térmico/química , Humanos , Proteínas Associadas aos Microtúbulos/química , Proteínas Nucleares/química
7.
Oncogene ; 39(37): 5933-5949, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32753649

RESUMO

Gastric cancer (GC) is the third leading cause of cancer-related mortality worldwide and prognosis after potentially curative gastrectomy remains poor. Administration of GC-targeting molecules in combination with adjuvant chemo- or radiotherapy following surgical resection has been proposed as a potentially effective treatment option. Here, we have identified DOCK6, a guanine nucleotide exchange factor (GEF) for Rac1 and CDC42, as an independent biomarker for GC prognosis. Clinical findings indicate the positive correlation of higher DOCK6 expression with tumor size, depth of invasion, lymph node metastasis, vascular invasion, and pathological stage. Furthermore, elevated DOCK6 expression was significantly associated with shorter cumulative survival in both univariate and multivariate analyses. Gene ontology analysis of three independent clinical GC cohorts revealed significant involvement of DOCK6-correlated genes in the WNT/ß-catenin signaling pathway. Ectopic expression of DOCK6 promoted GC cancer stem cell (CSC) characteristics and chemo- or radioresistance concomitantly through Rac1 activation. Conversely, depletion of DOCK6 suppressed CSC phenotypes and progression of GC, further demonstrating the pivotal role of DOCK6 in GC progression. Our results demonstrate a novel mechanistic link between DOCK6, Rac1, and ß-catenin in GCCSC for the first time, supporting the utility of DOCK6 as an independent marker of GC.


Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Células-Tronco Neoplásicas/metabolismo , Tolerância a Radiação/genética , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Via de Sinalização Wnt , Animais , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Modelos Animais de Doenças , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Xenoenxertos , Humanos , Imuno-Histoquímica , Imunofenotipagem , Camundongos , Fenótipo , Neoplasias Gástricas/patologia , Neoplasias Gástricas/terapia
8.
J Cell Biol ; 218(10): 3489-3505, 2019 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-31455668

RESUMO

Primary cilia are microtubule-based organelles that play important roles in development and tissue homeostasis. Tau-tubulin kinase-2 (TTBK2) is genetically linked to spinocerebellar ataxia type 11, and its kinase activity is crucial for ciliogenesis. Although it has been shown that TTBK2 is recruited to the centriole by distal appendage protein CEP164, little is known about TTBK2 substrates associated with its role in ciliogenesis. Here, we perform superresolution microscopy and discover that serum starvation results in TTBK2 redistribution from the periphery toward the root of distal appendages. Our biochemical analyses uncover CEP83 as a bona fide TTBK2 substrate with four phosphorylation sites characterized. We also demonstrate that CEP164-dependent TTBK2 recruitment to distal appendages is required for subsequent CEP83 phosphorylation. Specifically, TTBK2-dependent CEP83 phosphorylation is important for early ciliogenesis steps, including ciliary vesicle docking and CP110 removal. In summary, our results reveal a molecular mechanism of kinase regulation in ciliogenesis and identify CEP83 as a key substrate of TTBK2 during cilia initiation.


Assuntos
Cílios/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Células Cultivadas , Células HEK293 , Humanos , Fosforilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA