Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 20389, 2022 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-36437278

RESUMO

Despite cold-water coral (CWC) reefs being considered biodiversity hotspots, very little is known about the main processes driving their morphological development. Indeed, there is a considerable knowledge gap in quantitative experimental studies that help understand the interaction between reef morphology, near-bed hydrodynamics, coral growth, and (food) particle transport processes. In the present study, we performed a 2-month long flume experiment in which living coral nubbins were placed on a reef patch to determine the effect of a unidirectional flow on the growth and physiological condition of Lophelia pertusa. Measurements revealed how the presence of coral framework increased current speed and turbulence above the frontal part of the reef patch, while conditions immediately behind it were characterised by an almost stagnant flow and reduced turbulence. Owing to the higher current speeds that likely promoted a higher food encounter rate and intake of ions involved in the calcification process, the coral nubbins located on the upstream part of the reef presented a significantly enhanced average growth and a lower expression of stress-related enzymes than the downstream ones. Yet, further experiments would be needed to fully quantify how the variations in water hydrodynamics modify particle encounter and ion intake rates by coral nubbins located in different parts of a reef, and how such discrepancies may ultimately affect coral growth. Nonetheless, the results acquired here denote that a reef influenced by a unidirectional water flow would grow into the current: a pattern of reef development that coincides with that of actual coral reefs located in similar water flow settings. Ultimately, the results of this study suggest that at the local scale coral reef morphology has a direct effect on coral growth thus, indicating that the spatial patterns of living CWC colonies in reef patches are the result of spatial self-organisation.


Assuntos
Antozoários , Animais , Antozoários/fisiologia , Retroalimentação , Recifes de Corais , Biodiversidade , Água
2.
Mar Pollut Bull ; 172: 112861, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34523427

RESUMO

Bottom trawling in submarine canyons can affect their natural sedimentation rates, but studies addressing this issue are still scarce. In the Gulf of Palermo (SW Mediterranean), bottom trawling occurs on the slope around Oreto, Arenella and Eleuterio canyons. Analyses of excess 210Pb concentrations and grain size fractions in sediment cores from their canyon axes revealed that sedimentation rates and silt contents increased in all canyons in the 1980s, due to the expansion of more powerful trawlers (>500 HP) to deeper fishing grounds. In Eleuterio and Arenella canyons, sedimentation rates increased by an order of magnitude (0.1-1.4 cm·yr-1), whereas they increased less (0.1-0.7 cm·yr-1) in Oreto Canyon, since the enhanced trawling-derived sediment fluxes into this canyon are affected by sediment resuspension from trawling along its axis. Considering the global expansion of bottom trawling, we anticipate similar alterations in other trawled canyons, with ecological consequences that should be addressed by management strategies.


Assuntos
Ecossistema , Navios , Animais
3.
Nat Commun ; 10(1): 3482, 2019 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-31477689

RESUMO

Large continental faults extend for thousands of kilometres to form boundaries between rigid tectonic blocks. These faults are associated with prominent topographic features and can produce large earthquakes. Here we show the first evidence of a major tectonic structure in its initial-stage, the Al-Idrissi Fault System (AIFS), in the Alboran Sea. Combining bathymetric and seismic reflection data, together with seismological analyses of the 2016 Mw 6.4 earthquake offshore Morocco - the largest event ever recorded in the area - we unveil a 3D geometry for the AIFS. We report evidence of left-lateral strike-slip displacement, characterise the fault segmentation and demonstrate that AIFS is the source of the 2016 events. The occurrence of the Mw 6.4 earthquake together with historical and instrumental events supports that the AIFS is currently growing through propagation and linkage of its segments. Thus, the AIFS provides a unique model of the inception and growth of a young plate boundary fault system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA