Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Physiol ; 182(2): 707-720, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31744934

RESUMO

Root hydraulic conductivity is a limiting factor along the water pathways between the soil and the leaf, and root radial conductivity is itself defined by cell-scale hydraulic properties and anatomical features. However, quantifying the influence of anatomical features on the radial conductivity remains challenging due to complex time-consuming experimental procedures. We present an open-source computational tool, the Generator of Root Anatomy in R (GRANAR; http://granar.github.io), that can be used to rapidly generate digital versions of contrasted monocotyledon root anatomical networks. GRANAR uses a limited set of root anatomical parameters, easily acquired with existing image analysis tools. The generated anatomical network can then be used in combination with hydraulic models to estimate the corresponding hydraulic properties. We used GRANAR to reanalyze large maize (Zea mays) anatomical datasets from the literature. Our model was successful at creating virtual anatomies for each experimental observation. We also used GRANAR to generate anatomies not observed experimentally over wider ranges of anatomical parameters. The generated anatomies were then used to estimate the corresponding radial conductivities with the hydraulic model MECHA (model of explicit cross-section hydraulic architecture). Our simulations highlight the large importance of the width of the stele and the cortex. GRANAR is a computational tool that generates root anatomical networks from experimental data. It enables the quantification of the effect of individual anatomical features on the root radial conductivity.


Assuntos
Raízes de Plantas/anatomia & histologia , Sementes/anatomia & histologia , Zea mays/anatomia & histologia , Transporte Biológico/fisiologia , Simulação por Computador , Células Vegetais/fisiologia , Raízes de Plantas/fisiologia , Sementes/metabolismo , Sementes/fisiologia , Software , Solo , Água/metabolismo , Zea mays/fisiologia
2.
Plant Physiol ; 178(4): 1689-1703, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30366980

RESUMO

As water often limits crop production, a more complete understanding of plant water capture and transport is necessary. Here, we developed MECHA, a mathematical model that computes the flow of water across the root at the scale of walls, membranes, and plasmodesmata of individual cells, and used it to test hypotheses related to root water transport in maize (Zea mays). The model uses detailed root anatomical descriptions and a minimal set of experimental cell properties, including the conductivity of plasma membranes, cell walls, and plasmodesmata, which yield quantitative and scale-consistent estimations of water pathways and root radial hydraulic conductivity (k r). MECHA revealed that the mainstream hydraulic theories derived independently at the cell and root segment scales are compatible only if osmotic potentials within the apoplastic domains are uniform. The results suggested that the convection-diffusion of apoplastic solutes explained most of the offset between estimated k r in pressure clamp and osmotic experiments, while the contribution of water-filled intercellular spaces was limited. Furthermore, sensitivity analyses quantified the relative impact of cortex and endodermis cell conductivity of plasma membranes on root k r and suggested that only the latter contributed substantially to k r due to the composite nature of water flow across roots. The explicit root hydraulic anatomy framework brings insights into contradictory interpretations of experiments from the literature and suggests experiments to efficiently address questions pertaining to root water relations. Its scale consistency opens avenues for cross-scale communication in the world of root hydraulics.


Assuntos
Modelos Biológicos , Raízes de Plantas/metabolismo , Água/metabolismo , Zea mays/metabolismo , Transporte Biológico , Modelos Teóricos , Raízes de Plantas/anatomia & histologia , Plasmodesmos/fisiologia , Zea mays/anatomia & histologia
3.
Plant Physiol ; 177(4): 1368-1381, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29895611

RESUMO

If we want to understand how the environment has shaped the appearance and behavior of living creatures, we need to compare groups of individuals that differ in genetic makeup and environment experience. For complex phenotypic features, such as body posture or facial expression in humans, comparison is not straightforward because some of the contributing factors cannot easily be quantified or averaged across individuals. Therefore, computational methods are used to reconstruct representative prototypes using a range of algorithms for filling in missing information and calculating means. The same problem applies to the root system architecture (RSA) of plants. Several computer programs are available for extracting numerical data from root images, but they usually do not offer customized data analysis or visual reconstruction of RSA. We developed Root-VIS, a free software tool that facilitates the determination of means and variance of many different RSA features across user-selected sets of root images. Furthermore, Root-VIS offers several options to generate visual reconstructions of root systems from the averaged data to enable screening and modeling. We confirmed the suitability of Root-VIS, combined with a new version of EZ-Rhizo, for the rapid characterization of genotype-environment interactions and gene discovery through genome-wide association studies in Arabidopsis (Arabidopsis thaliana).


Assuntos
Arabidopsis/genética , Processamento de Imagem Assistida por Computador/métodos , Raízes de Plantas/anatomia & histologia , Software , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Interação Gene-Ambiente , Estudo de Associação Genômica Ampla , Raízes de Plantas/crescimento & desenvolvimento , Polimorfismo de Nucleotídeo Único
4.
Plant Physiol ; 177(3): 896-910, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29752308

RESUMO

Recent progress in root phenotyping has focused mainly on increasing throughput for genetic studies, while identifying root developmental patterns has been comparatively underexplored. We introduce a new phenotyping pipeline for producing high-quality spatiotemporal root system development data and identifying developmental patterns within these data. The SmartRoot image-analysis system and temporal and spatial statistical models were applied to two cereals, pearl millet (Pennisetum glaucum) and maize (Zea mays). Semi-Markov switching linear models were used to cluster lateral roots based on their growth rate profiles. These models revealed three types of lateral roots with similar characteristics in both species. The first type corresponds to fast and accelerating roots, the second to rapidly arrested roots, and the third to an intermediate type where roots cease elongation after a few days. These types of lateral roots were retrieved in different proportions in a maize mutant affected in auxin signaling, while the first most vigorous type was absent in maize plants exposed to severe shading. Moreover, the classification of growth rate profiles was mirrored by a ranking of anatomical traits in pearl millet. Potential dependencies in the succession of lateral root types along the primary root were then analyzed using variable-order Markov chains. The lateral root type was not influenced by the shootward neighbor root type or by the distance from this root. This random branching pattern of primary roots was remarkably conserved, despite the high variability of root systems in both species. Our phenotyping pipeline opens the door to exploring the genetic variability of lateral root developmental patterns.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Pennisetum/crescimento & desenvolvimento , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/crescimento & desenvolvimento , Zea mays/crescimento & desenvolvimento , Ácidos Indolacéticos/metabolismo , Cadeias de Markov , Modelos Biológicos , Modelos Estatísticos , Pennisetum/anatomia & histologia , Raízes de Plantas/fisiologia , Zea mays/genética
5.
J Exp Bot ; 70(9): 2345-2357, 2019 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-30329081

RESUMO

In recent years, many computational tools, such as image analysis, data management, process-based simulation, and upscaling tools, have been developed to help quantify and understand water flow in the soil-root system, at multiple scales (tissue, organ, plant, and population). Several of these tools work together or at least are compatible. However, for the uninformed researcher, they might seem disconnected, forming an unclear and disorganized succession of tools. In this article, we show how different studies can be further developed by connecting them to analyse soil-root water relations in a comprehensive and structured network. This 'explicit network of soil-root computational tools' informs readers about existing tools and helps them understand how their data (past and future) might fit within the network. We also demonstrate the novel possibilities of scale-consistent parameterizations made possible by the network with a set of case studies from the literature. Finally, we discuss existing gaps in the network and how we can move forward to fill them.


Assuntos
Simulação por Computador , Raízes de Plantas , Solo , Água
6.
Ann Bot ; 121(5): 1033-1053, 2018 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-29432520

RESUMO

Background and Aims: Root architecture development determines the sites in soil where roots provide input of carbon and take up water and solutes. However, root architecture is difficult to determine experimentally when grown in opaque soil. Thus, root architecture models have been widely used and been further developed into functional-structural models that simulate the fate of water and solutes in the soil-root system. The root architecture model CRootBox presented here is a flexible framework to model root architecture and its interactions with static and dynamic soil environments. Methods: CRootBox is a C++-based root architecture model with Python binding, so that CRootBox can be included via a shared library into any Python code. Output formats include VTP, DGF, RSML and a plain text file containing coordinates of root nodes. Furthermore, a database of published root architecture parameters was created. The capabilities of CRootBox for the unconfined growth of single root systems, as well as the different parameter sets, are highlighted in a freely available web application. Key results: The capabilities of CRootBox are demonstrated through five different cases: (1) free growth of individual root systems; (2) growth of root systems in containers as a way to mimic experimental setups; (3) field-scale simulation; (4) root growth as affected by heterogeneous, static soil conditions; and (5) coupling CRootBox with code from the book Soil physics with Python to dynamically compute water flow in soil, root water uptake and water flow inside roots. Conclusions: CRootBox is a fast and flexible functional-structural root model that is based on state-of-the-art computational science methods. Its aim is to facilitate modelling of root responses to environmental conditions as well as the impact of roots on soil. In the future, this approach will be extended to the above-ground part of the plant.


Assuntos
Modelos Biológicos , Raízes de Plantas/anatomia & histologia , Software , Água/metabolismo , Transporte Biológico , Simulação por Computador , Fenótipo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/fisiologia , Solo/química
7.
Nucleic Acids Res ; 44(D1): D1167-71, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26476447

RESUMO

Flowering is a hot topic in Plant Biology and important progress has been made in Arabidopsis thaliana toward unraveling the genetic networks involved. The increasing complexity and the explosion of literature however require development of new tools for information management and update. We therefore created an evolutive and interactive database of flowering time genes, named FLOR-ID (Flowering-Interactive Database), which is freely accessible at http://www.flor-id.org. The hand-curated database contains information on 306 genes and links to 1595 publications gathering the work of >4500 authors. Gene/protein functions and interactions within the flowering pathways were inferred from the analysis of related publications, included in the database and translated into interactive manually drawn snapshots.


Assuntos
Arabidopsis/genética , Bases de Dados Genéticas , Flores/genética , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Genes de Plantas , Internet
8.
Plant Physiol ; 167(3): 617-27, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25614065

RESUMO

The number of image analysis tools supporting the extraction of architectural features of root systems has increased in recent years. These tools offer a handy set of complementary facilities, yet it is widely accepted that none of these software tools is able to extract in an efficient way the growing array of static and dynamic features for different types of images and species. We describe the Root System Markup Language (RSML), which has been designed to overcome two major challenges: (1) to enable portability of root architecture data between different software tools in an easy and interoperable manner, allowing seamless collaborative work; and (2) to provide a standard format upon which to base central repositories that will soon arise following the expanding worldwide root phenotyping effort. RSML follows the XML standard to store two- or three-dimensional image metadata, plant and root properties and geometries, continuous functions along individual root paths, and a suite of annotations at the image, plant, or root scale at one or several time points. Plant ontologies are used to describe botanical entities that are relevant at the scale of root system architecture. An XML schema describes the features and constraints of RSML, and open-source packages have been developed in several languages (R, Excel, Java, Python, and C#) to enable researchers to integrate RSML files into popular research workflow.


Assuntos
Raízes de Plantas/anatomia & histologia , Linguagens de Programação , Software , Imageamento Tridimensional , Modelos Biológicos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/fisiologia , Fluxo de Trabalho
9.
Plant Physiol ; 164(4): 1619-27, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24515834

RESUMO

Over the last decade, investigations on root water uptake have evolved toward a deeper integration of the soil and roots compartment properties, with the goal of improving our understanding of water acquisition from drying soils. This evolution parallels the increasing attention of agronomists to suboptimal crop production environments. Recent results have led to the description of root system architectures that might contribute to deep-water extraction or to water-saving strategies. In addition, the manipulation of root hydraulic properties would provide further opportunities to improve water uptake. However, modeling studies highlight the role of soil hydraulics in the control of water uptake in drying soil and call for integrative soil-plant system approaches.


Assuntos
Dessecação , Plantas/metabolismo , Solo , Água/metabolismo , Modelos Biológicos , Raízes de Plantas/metabolismo
10.
Plant Physiol ; 163(4): 1487-503, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24143806

RESUMO

Genetic and genomic approaches in model organisms have advanced our understanding of root biology over the last decade. Recently, however, systems biology and modeling have emerged as important approaches, as our understanding of root regulatory pathways has become more complex and interpreting pathway outputs has become less intuitive. To relate root genotype to phenotype, we must move beyond the examination of interactions at the genetic network scale and employ multiscale modeling approaches to predict emergent properties at the tissue, organ, organism, and rhizosphere scales. Understanding the underlying biological mechanisms and the complex interplay between systems at these different scales requires an integrative approach. Here, we describe examples of such approaches and discuss the merits of developing models to span multiple scales, from network to population levels, and to address dynamic interactions between plants and their environment.


Assuntos
Redes Reguladoras de Genes/genética , Modelos Biológicos , Raízes de Plantas/genética , Rizosfera , Biologia de Sistemas
11.
Plant Direct ; 8(4): e582, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38590783

RESUMO

Root hydraulic properties are key physiological traits that determine the capacity of root systems to take up water, at a specific evaporative demand. They can strongly vary among species, cultivars or even within the same genotype, but a systematic analysis of their variation across plant functional types (PFTs) is still missing. Here, we reviewed published empirical studies on root hydraulic properties at the segment-, individual root-, or root system scale and determined its variability and the main factors contributing to it. This corresponded to a total of 241 published studies, comprising 213 species, including woody and herbaceous vegetation. We observed an extremely large range of variation (of orders of magnitude) in root hydraulic properties, but this was not caused by systematic differences among PFTs. Rather, the (combined) effect of factors such as root system age, driving force used for measurement, or stress treatments shaped the results. We found a significant decrease in root hydraulic properties under stress conditions (drought and aquaporin inhibition, p < .001) and a significant effect of the driving force used for measurement (hydrostatic or osmotic gradients, p < .001). Furthermore, whole root system conductance increased significantly with root system age across several crop species (p < .01), causing very large variation in the data (>2 orders of magnitude). Interestingly, this relationship showed an asymptotic shape, with a steep increase during the first days of growth and a flattening out at later stages of development. We confirmed this dynamic through simulations using a state-of-the-art computational model of water flow in the root system for a variety of crop species, suggesting common patterns across studies and species. These findings provide better understanding of the main causes of root hydraulic properties variations observed across empirical studies. They also open the door to better representation of hydraulic processes across multiple plant functional types and at large scales. All data collected in our analysis has been aggregated into an open access database (https://roothydraulic-properties.shinyapps.io/database/), fostering scientific exchange.

12.
Nat Genet ; 56(6): 1245-1256, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38778242

RESUMO

The maize root system has been reshaped by indirect selection during global adaptation to new agricultural environments. In this study, we characterized the root systems of more than 9,000 global maize accessions and its wild relatives, defining the geographical signature and genomic basis of variation in seminal root number. We demonstrate that seminal root number has increased during maize domestication followed by a decrease in response to limited water availability in locally adapted varieties. By combining environmental and phenotypic association analyses with linkage mapping, we identified genes linking environmental variation and seminal root number. Functional characterization of the transcription factor ZmHb77 and in silico root modeling provides evidence that reshaping root system architecture by reducing the number of seminal roots and promoting lateral root density is beneficial for the resilience of maize seedlings to drought.


Assuntos
Adaptação Fisiológica , Domesticação , Secas , Raízes de Plantas , Plântula , Água , Zea mays , Zea mays/genética , Zea mays/fisiologia , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Adaptação Fisiológica/genética , Plântula/genética , Água/metabolismo , Mapeamento Cromossômico , Fenótipo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
13.
Plant Physiol ; 157(1): 29-39, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21771915

RESUMO

We present in this paper a novel, semiautomated image-analysis software to streamline the quantitative analysis of root growth and architecture of complex root systems. The software combines a vectorial representation of root objects with a powerful tracing algorithm that accommodates a wide range of image sources and quality. The root system is treated as a collection of roots (possibly connected) that are individually represented as parsimonious sets of connected segments. Pixel coordinates and gray level are therefore turned into intuitive biological attributes such as segment diameter and orientation as well as distance to any other segment or topological position. As a consequence, user interaction and data analysis directly operate on biological entities (roots) and are not hampered by the spatially discrete, pixel-based nature of the original image. The software supports a sampling-based analysis of root system images, in which detailed information is collected on a limited number of roots selected by the user according to specific research requirements. The use of the software is illustrated with a time-lapse analysis of cluster root formation in lupin (Lupinus albus) and an architectural analysis of the maize (Zea mays) root system. The software, SmartRoot, is an operating system-independent freeware based on ImageJ and relies on cross-platform standards for communication with data-analysis software.


Assuntos
Raízes de Plantas/anatomia & histologia , Lupinus , Software , Zea mays
14.
Plant Phenomics ; 2022: 9758532, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35693120

RESUMO

Root systems of crops play a significant role in agroecosystems. The root system is essential for water and nutrient uptake, plant stability, symbiosis with microbes, and a good soil structure. Minirhizotrons have shown to be effective to noninvasively investigate the root system. Root traits, like root length, can therefore be obtained throughout the crop growing season. Analyzing datasets from minirhizotrons using common manual annotation methods, with conventional software tools, is time-consuming and labor-intensive. Therefore, an objective method for high-throughput image analysis that provides data for field root phenotyping is necessary. In this study, we developed a pipeline combining state-of-the-art software tools, using deep neural networks and automated feature extraction. This pipeline consists of two major components and was applied to large root image datasets from minirhizotrons. First, a segmentation by a neural network model, trained with a small image sample, is performed. Training and segmentation are done using "RootPainter." Then, an automated feature extraction from the segments is carried out by "RhizoVision Explorer." To validate the results of our automated analysis pipeline, a comparison of root length between manually annotated and automatically processed data was realized with more than 36,500 images. Mainly the results show a high correlation (r = 0.9) between manually and automatically determined root lengths. With respect to the processing time, our new pipeline outperforms manual annotation by 98.1-99.6%. Our pipeline, combining state-of-the-art software tools, significantly reduces the processing time for minirhizotron images. Thus, image analysis is no longer the bottle-neck in high-throughput phenotyping approaches.

15.
Elife ; 112022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36047575

RESUMO

The plant kingdom contains a stunning array of complex morphologies easily observed above-ground, but more challenging to visualize below-ground. Understanding the magnitude of diversity in root distribution within the soil, termed root system architecture (RSA), is fundamental in determining how this trait contributes to species adaptation in local environments. Roots are the interface between the soil environment and the shoot system and therefore play a key role in anchorage, resource uptake, and stress resilience. Previously, we presented the GLO-Roots (Growth and Luminescence Observatory for Roots) system to study the RSA of soil-grown Arabidopsis thaliana plants from germination to maturity (Rellán-Álvarez et al., 2015). In this study, we present the automation of GLO-Roots using robotics and the development of image analysis pipelines in order to examine the temporal dynamic regulation of RSA and the broader natural variation of RSA in Arabidopsis, over time. These datasets describe the developmental dynamics of two independent panels of accessions and reveal highly complex and polygenic RSA traits that show significant correlation with climate variables of the accessions' respective origins.


Assuntos
Arabidopsis , Raízes de Plantas , Arabidopsis/fisiologia , Fenômica , Fenótipo , Solo
16.
Methods Mol Biol ; 2395: 259-283, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34822158

RESUMO

In this chapter, we present the Root and Soil Water Movement and Solute transport model R-SWMS, which can be used to simulate flow and transport in the soil-plant system. The equations describing water flow in soil-root systems are presented and numerical solutions are provided. An application of R-SWMS is then briefly discussed, in which we combine in vivo and in silico experiments in order to decrypt water flow in the soil-root domain. More precisely, light transmission imaging experiments were conducted to generate data that can serve as input for the R-SWMS model. These data include the root system architecture, the soil hydraulic properties and the environmental conditions (initial soil water content and boundary conditions, BC). Root hydraulic properties were not acquired experimentally, but set to theoretical values found in the literature. In order to validate the results obtained by the model, the simulated and experimental water content distributions were compared. The model was then used to estimate variables that were not experimentally accessible, such as the actual root water uptake distribution and xylem water potential.


Assuntos
Raízes de Plantas , Solo , Agricultura , Água , Xilema
17.
Plant Direct ; 5(7): e334, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34355112

RESUMO

Root hydraulic properties play a central role in the global water cycle, in agricultural systems productivity, and in ecosystem survival as they impact the canopy water supply. However, the existing experimental methods to quantify root hydraulic conductivities, such as the root pressure probing, are particularly challenging, and their applicability to thin roots and small root segments is limited. Therefore, there is a gap in methods enabling easy estimations of root hydraulic conductivities in diverse root types. Here, we present a new pipeline to quickly estimate root hydraulic conductivities across different root types, at high resolution along root axes. Shortly, free-hand root cross-sections were used to extract a selected number of key anatomical traits. We used these traits to parametrize the Generator of Root Anatomy in R (GRANAR) model to simulate root anatomical networks. Finally, we used these generated anatomical networks within the Model of Explicit Cross-section Hydraulic Anatomy (MECHA) to compute an estimation of the root axial and radial hydraulic conductivities (k x and k r , respectively). Using this combination of anatomical data and computational models, we were able to create a root hydraulic conductivity atlas at the root system level, for 14-day-old pot-grown Zea mays (maize) plants of the var. B73. The altas highlights the significant functional variations along and between different root types. For instance, predicted variations of radial conductivity along the root axis were strongly dependent on the maturation stage of hydrophobic barriers. The same was also true for the maturation rates of the metaxylem vessels. Differences in anatomical traits along and across root types generated substantial variations in radial and axial conductivities estimated with our novel approach. Our methodological pipeline combines anatomical data and computational models to turn root cross-section images into a detailed hydraulic atlas. It is an inexpensive, fast, and easily applicable investigation tool for root hydraulics that complements existing complex experimental methods. It opens the way to high-throughput studies on the functional importance of root types in plant hydraulics, especially if combined with novel phenotyping techniques such as laser ablation tomography.

18.
Ecol Evol ; 11(8): 3516-3526, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33898007

RESUMO

Learning biology, and in particular systematics, requires learning a substantial amount of specific vocabulary, both for botanical and zoological studies. While crucial, the precise identification of structures serving as evolutionary traits and systematic criteria is not per se a highly motivating task for students. Teaching this in a traditional teaching setting is quite challenging especially with a large crowd of students to be kept engaged. This is even more difficult if, as during the COVID-19 crisis, students are not allowed to access laboratories for hands-on observation on fresh specimens and sometimes restricted to short-range movements outside their home. Here, we present QuoVidi, a new open-source web platform for the organization of large-scale treasure hunts. The platform works as follows: students, organized in teams, receive a list of quests that contain morphologic, ecologic, or systematic terms. They have to first understand the meaning of the quests, then go and find them in the environment. Once they find the organism corresponding to a quest, they upload a geotagged picture of their finding and submit this on the platform. The correctness of each submission is evaluated by the staff. During the COVID-19 lockdown, previously validated pictures were also submitted for evaluation to students that were locked in low-biodiversity areas. From a research perspective, the system enables the creation of large image databases by the students, similar to citizen science projects. Beside the enhanced motivation of students to learn the vocabulary and perform observations on self-found specimens, this system allows instructors to remotely follow and assess the work performed by large numbers of students. The interface is freely available, open-source and customizable. Unlike existing naturalist platforms, allows the educators to fully customize the quests of interest. This enables the creation of multiple teaching scenarios, without being bound to a fixed scope. QuoVidi can be used in other disciplines with adapted quests and we expect it to be of interest in many classroom settings.

19.
Front Plant Sci ; 12: 814110, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35154211

RESUMO

Root system architecture (RSA) has a direct influence on the efficiency of nutrient uptake and plant growth, but the genetics of RSA are often studied only at the seedling stage. To get an insight into the genetic blueprint of a more mature RSA, we exploited natural variation and performed a detailed in vitro study of 241 Arabidopsis thaliana accessions using large petri dishes. A comprehensive analysis of 17 RSA traits showed high variability among the different accessions, unveiling correlations between traits and conditions of the natural habitat of the plants. A sub-selection of these accessions was grown in water-limiting conditions in a rhizotron set-up, which revealed that especially the spatial distribution showed a high consistency between in vitro and ex vitro conditions, while in particular, a large root area in the lower zone favored drought tolerance. The collected RSA phenotype data were used to perform genome-wide association studies (GWAS), which stands out from the previous studies by its exhaustive measurements of RSA traits on more mature Arabidopsis accessions used for GWAS. As a result, we found not only several genes involved in the lateral root (LR) development or auxin signaling pathways to be associated with RSA traits but also new candidate genes that are potentially involved in the adaptation to the natural habitats.

20.
J Exp Bot ; 61(8): 2145-55, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20453027

RESUMO

Due in part to recent progress in root genetics and genomics, increasing attention is being devoted to root system architecture (RSA) for the improvement of drought tolerance. The focus is generally set on deep roots, expected to improve access to soil water resources during water deficit episodes. Surprisingly, our quantitative understanding of the role of RSA in the uptake of soil water remains extremely limited, which is mainly due to the inherent complexity of the soil-plant continuum. Evidently, there is a need for plant biologists and hydrologists to develop together their understanding of water movement in the soil-plant system. Using recent quantitative models coupling the hydraulic behaviour of soil and roots in an explicit 3D framework, this paper illustrates that the contribution of RSA to root water uptake is hardly separable from the hydraulic properties of the roots and of the soil. It is also argued that the traditional view that either the plant or the soil should be dominating the patterns of water extraction is not generally appropriate for crops growing with a sub-optimal water supply. Hopefully, in silico experiments using this type of model will help explore how water fluxes driven by soil and plant processes affect soil water availability and uptake throughout a growth cycle and will embed the study of RSA within the domains of root hydraulic architecture and sub-surface hydrology.


Assuntos
Raízes de Plantas/química , Raízes de Plantas/fisiologia , Solo/análise , Água/metabolismo , Meio Ambiente , Cinética , Modelos Teóricos , Raízes de Plantas/crescimento & desenvolvimento , Transpiração Vegetal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA