Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biochem J ; 481(15): 1043-1056, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39093337

RESUMO

Rubisco activity is highly regulated and frequently limits carbon assimilation in crop plants. In the chloroplast, various metabolites can inhibit or modulate Rubisco activity by binding to its catalytic or allosteric sites, but this regulation is complex and still poorly understood. Using rice Rubisco, we characterised the impact of various chloroplast metabolites which could interact with Rubisco and modulate its activity, including photorespiratory intermediates, carbohydrates, amino acids; as well as specific sugar-phosphates known to inhibit Rubisco activity - CABP (2-carboxy-d-arabinitol 1,5-bisphosphate) and CA1P (2-carboxy-d-arabinitol 1-phosphate) through in vitro enzymatic assays and molecular docking analysis. Most metabolites did not directly affect Rubisco in vitro activity under both saturating and limiting concentrations of Rubisco substrates, CO2 and RuBP (ribulose-1,5-bisphosphate). As expected, Rubisco activity was strongly inhibited in the presence of CABP and CA1P. High physiologically relevant concentrations of the carboxylation product 3-PGA (3-phosphoglyceric acid) decreased Rubisco activity by up to 30%. High concentrations of the photosynthetically derived hexose phosphates fructose 6-phosphate (F6P) and glucose 6-phosphate (G6P) slightly reduced Rubisco activity under limiting CO2 and RuBP concentrations. Biochemical measurements of the apparent Vmax and Km for CO2 and RuBP (at atmospheric O2 concentration) and docking interactions analysis suggest that CABP/CA1P and 3-PGA inhibit Rubisco activity by binding tightly and loosely, respectively, to its catalytic sites (i.e. competing with the substrate RuBP). These findings will aid the design and biochemical modelling of new strategies to improve the regulation of Rubisco activity and enhance the efficiency and sustainability of carbon assimilation in rice.


Assuntos
Cloroplastos , Simulação de Acoplamento Molecular , Oryza , Ribulose-Bifosfato Carboxilase , Ribulose-Bifosfato Carboxilase/metabolismo , Ribulose-Bifosfato Carboxilase/química , Cloroplastos/metabolismo , Cloroplastos/enzimologia , Oryza/metabolismo , Oryza/enzimologia , Fotossíntese , Proteínas de Plantas/metabolismo , Proteínas de Plantas/química , Dióxido de Carbono/metabolismo , Ribulosefosfatos/metabolismo , Frutosefosfatos/metabolismo
2.
New Phytol ; 241(1): 35-51, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38058283

RESUMO

Efficient plant acclimation to changing environmental conditions relies on fast adjustments of the transcriptome, proteome, and metabolome. Regulation of enzyme activity depends on the activity of specific chaperones, chemical post-translational modifications (PTMs) of amino acid residues, and changes in the cellular and organellar microenvironment. Central to carbon assimilation, and thus plant growth and yield, Rubisco activity is regulated by its chaperone Rubisco activase (Rca) and by adjustments in the chloroplast stroma environment. Focused on crops, this review highlights the main PTMs and stromal ions and metabolites affecting Rubisco and Rca in response to environmental stimuli. Rca isoforms differ in regulatory properties and heat sensitivity, with expression changing according to the surrounding environment. Much of the physiological relevance of Rubisco and Rca PTMs is still poorly understood, though some PTMs have been associated with Rubisco regulation in response to stress. Ion and metabolite concentrations in the chloroplast change in response to variations in light and temperature. Some of these changes promote Rubisco activation while others inhibit activation, deactivate the enzyme, or change the rates of catalysis. Understanding these regulatory mechanisms will aid the development of strategies to improve carbon fixation by Rubisco under rapidly changing environments as experienced by crop plants.


Assuntos
Proteínas de Plantas , Ribulose-Bifosfato Carboxilase , Ribulose-Bifosfato Carboxilase/metabolismo , Proteínas de Plantas/metabolismo , Cloroplastos/metabolismo , Isoformas de Proteínas/metabolismo , Temperatura , Produtos Agrícolas/metabolismo , Fotossíntese/fisiologia
3.
Methods Mol Biol ; 2790: 417-426, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38649584

RESUMO

Rubisco fixes CO2 through the carboxylation of ribulose 1,5-bisphosphate (RuBP) during photosynthesis, enabling the synthesis of organic compounds. The natural diversity of Rubisco properties represents an opportunity to improve its performance and there is considerable research effort focusing on better understanding the properties and regulation of the enzyme. This chapter describes a method for large-scale purification of Rubisco from leaves. After the extraction of Rubisco from plant leaves, the enzyme is separated from other proteins by fractional precipitation with polyethylene glycol followed by ion-exchange chromatography. This method enables the isolation of Rubisco in large quantities for a wide range of biochemical applications.


Assuntos
Folhas de Planta , Ribulose-Bifosfato Carboxilase , Ribulose-Bifosfato Carboxilase/isolamento & purificação , Ribulose-Bifosfato Carboxilase/química , Ribulose-Bifosfato Carboxilase/metabolismo , Folhas de Planta/química , Folhas de Planta/enzimologia , Cromatografia por Troca Iônica/métodos , Polietilenoglicóis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA