Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(30): e202303570, 2023 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-37186020

RESUMO

Simultaneous photothermal ablation of multiple tumors is limited by unpredictable photo-induced apoptosis, caused by individual intratumoral differences. Here, a multi-channel lanthanide nanocomposite was used to achieve tailored synergistic treatment of multiple subcutaneous orthotopic tumors under non-uniform whole-body infrared irradiation prescription. The nanocomposite reduces intratumoral glutathione by simultaneously activating the fluorescence and photothermal channels. The fluorescence provides individual information on different tumors, allowing customized prescriptions to be made. This enables optimal induction of hyperthermia and dosage of chemo drugs, to ensure treatment efficacy, while avoiding overtherapy. With an accessional therapeutic laser system, customized synergistic treatment of subcutaneous orthotopic cancer cases with multiple tumors is possible with both high efficacy and minimized side effects.


Assuntos
Antineoplásicos , Hipertermia Induzida , Nanocompostos , Nanopartículas , Neoplasias , Humanos , Fototerapia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Nanocompostos/uso terapêutico , Doxorrubicina/farmacologia , Linhagem Celular Tumoral
2.
J Am Chem Soc ; 144(43): 19832-19837, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36269942

RESUMO

Automated chemical synthesis has revolutionized synthetic access to biopolymers in terms of simplicity and speed. While automated oligosaccharide synthesis has become faster and more versatile, the parallel synthesis of oligosaccharides is not yet possible. Here, a chemical vapor glycosylation strategy (VaporSPOT) is described that enables the simultaneous synthesis of oligosaccharides on a cellulose membrane solid support. Different linkers allow for flexible and straightforward cleavage, purification, and characterization of the target oligosaccharides. This method is the basis for the development of parallel automated glycan synthesis platforms.


Assuntos
Oligossacarídeos , Oligossacarídeos/química , Glicosilação
3.
Langmuir ; 38(7): 2220-2226, 2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35138112

RESUMO

Polymer modification plays an important role in the construction of devices, but the lack of fundamental understanding on polymer-surface adhesion limits the development of miniaturized devices. In this work, a thermoplastic polymer collection was established using the combinatorial laser-induced forward transfer technique as a research platform, to assess the adhesion of polymers to substrates of different wettability. Furthermore, it also revealed the influence of adhesion on dewetting phenomena during the laser transfer and relaxation process, resulting in polymer spots of various morphologies. This gives a general insight into polymer-surface adhesion and connects it with the generation of defined polymer microstructures, which can be a valuable reference for the rational use of polymers.

4.
Chemistry ; 27(65): 16098-16102, 2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34634174

RESUMO

Fluorescence signals have been widely used in information encryption for a few decades, but still suffer from limited reliability. Here, reversible multichannel fluorescent devices with encrypted information were constructed, based on two fluorescent positional isomers of a diphenylquinoxaline derivative. Possessing the same core fluorescent group and acid-/pH-responsive mechanism, the two isomers showed different fluorescence colors in an acidic environment; this allowed us to realize stepwise encryption of information in orthogonal fluorescence channels. Because the protonation was reversible, the revealed information could be re-encrypted simply by heating. This approach highlights the value of positional isomers to build multichannel encryption devices, improving their reliability on the molecular level.

5.
Org Biomol Chem ; 19(45): 9829-9832, 2021 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-34734957

RESUMO

We report the automated glycan assembly (AGA) of different oligosaccharide fragments of the bacterial peptidoglycan (PGN) backbone. Iterative addition on a solid support of an acetyl glucosamine and a new muramic acid building block is followed by cleavage from the solid support and final deprotection providing 10 oligosaccharides up to six units.


Assuntos
Peptidoglicano/química , Polissacarídeos/química , Automação , Sequência de Carboidratos
6.
Mol Cell Proteomics ; 18(4): 642-656, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30630936

RESUMO

High-density peptide arrays are an excellent means to profile anti-plasmodial antibody responses. Different protein intrinsic epitopes can be distinguished, and additional insights are gained, when compared with assays involving the full-length protein. Distinct reactivities to specific epitopes within one protein may explain differences in published results, regarding immunity or susceptibility to malaria. We pursued three approaches to find specific epitopes within important plasmodial proteins, (1) twelve leading vaccine candidates were mapped as overlapping 15-mer peptides, (2) a bioinformatical approach served to predict immunogenic malaria epitopes which were subsequently validated in the assay, and (3) randomly selected peptides from the malaria proteome were screened as a control. Several peptide array replicas were prepared, employing particle-based laser printing, and were used to screen 27 serum samples from a malaria-endemic area in Burkina Faso, West Africa. The immunological status of the individuals was classified as "protected" or "unprotected" based on clinical symptoms, parasite density, and age. The vaccine candidate screening approach resulted in significant hits in all twelve proteins and allowed us (1) to verify many known immunogenic structures, (2) to map B-cell epitopes across the entire sequence of each antigen and (3) to uncover novel immunogenic epitopes. Predicting immunogenic regions in the proteome of the human malaria parasite Plasmodium falciparum, via the bioinformatics approach and subsequent array screening, confirmed known immunogenic sequences, such as in the leading malaria vaccine candidate CSP and discovered immunogenic epitopes derived from hypothetical or unknown proteins.


Assuntos
Epitopos de Linfócito B/imunologia , Malária/imunologia , Peptídeos/metabolismo , Análise Serial de Proteínas , Adolescente , Adulto , Anticorpos Antiprotozoários/imunologia , Automação , Estudos de Casos e Controles , Criança , Análise por Conglomerados , Feminino , Humanos , Imunidade Humoral , Lactente , Malária/sangue , Vacinas Antimaláricas/imunologia , Masculino , Pessoa de Meia-Idade , Biblioteca de Peptídeos , Plasmodium falciparum/imunologia , Adulto Jovem
7.
J Proteome Res ; 19(11): 4339-4354, 2020 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-32892628

RESUMO

Emergence and re-emergence of pathogens bearing the risk of becoming a pandemic threat are on the rise. Increased travel and trade, growing population density, changes in urbanization, and climate have a critical impact on infectious disease spread. Currently, the world is confronted with the emergence of a novel coronavirus SARS-CoV-2, responsible for yet more than 800 000 deaths globally. Outbreaks caused by viruses, such as SARS-CoV-2, HIV, Ebola, influenza, and Zika, have increased over the past decade, underlining the need for a rapid development of diagnostics and vaccines. Hence, the rational identification of biomarkers for diagnostic measures on the one hand, and antigenic targets for vaccine development on the other, are of utmost importance. Peptide microarrays can display large numbers of putative target proteins translated into overlapping linear (and cyclic) peptides for a multiplexed, high-throughput antibody analysis. This enabled for example the identification of discriminant/diagnostic epitopes in Zika or influenza and mapping epitope evolution in natural infections versus vaccinations. In this review, we highlight synthesis platforms that facilitate fast and flexible generation of high-density peptide microarrays. We further outline the multifaceted applications of these peptide array platforms for the development of serological tests and vaccines to quickly encounter pandemic threats.


Assuntos
Doenças Transmissíveis , Mapeamento de Epitopos , Epitopos , Pandemias , Análise Serial de Proteínas/métodos , Betacoronavirus , Teste para COVID-19 , Técnicas de Laboratório Clínico , Doenças Transmissíveis/imunologia , Doenças Transmissíveis/terapia , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/virologia , Epitopos/química , Epitopos/imunologia , Ensaios de Triagem em Larga Escala , Humanos , SARS-CoV-2 , Fatores de Tempo
8.
Chemistry ; 26(6): 1243-1248, 2020 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-31834652

RESUMO

Considerable research efforts have been devoted to surface-enhanced Raman spectroscopy (SERS), due to its excellent performance in biosensing and imaging. Here, a novel and facile strategy for the fabrication of well-defined and uniform nanodimers as SERS substrates is presented. By the assistance of ultrasound, the violent polyol process for particle generation becomes controllable, enabling the self-assembly of nanostars to nanodimers. Moreover, the aggregation of nanodimers can be easily tuned by post-ultrasonic treatment, which gives a sensitive substrate for SERS.

9.
Chemistry ; 26(44): 9954-9963, 2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-32315099

RESUMO

Single glycan-protein interactions are often weak, such that glycan binding partners commonly utilize multiple, spatially defined binding sites to enhance binding avidity and specificity. Current array technologies usually neglect defined multivalent display. Laser-based array synthesis technology allows for flexible and rapid on-surface synthesis of different peptides. By combining this technique with click chemistry, neo-glycopeptides were produced directly on a functionalized glass slide in the microarray format. Density and spatial distribution of carbohydrates can be tuned, resulting in well-defined glycan structures for multivalent display. The two lectins concanavalin A and langerin were probed with different glycans on multivalent scaffolds, revealing strong spacing-, density-, and ligand-dependent binding. In addition, we could also measure the surface dissociation constant. This approach allows for a rapid generation, screening, and optimization of a multitude of multivalent scaffolds for glycan binding.


Assuntos
Glicopeptídeos/análise , Glicopeptídeos/síntese química , Análise em Microsséries , Polissacarídeos/análise , Polissacarídeos/síntese química , Sítios de Ligação , Humanos
10.
Faraday Discuss ; 219(0): 9-32, 2019 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-31298252

RESUMO

Glycan microarrays have become a powerful technology to study biological processes, such as cell-cell interaction, inflammation, and infections. Yet, several challenges, especially in multivalent display, remain. In this introductory lecture we discuss the state-of-the-art glycan microarray technology, with emphasis on novel approaches to access collections of pure glycans and their immobilization on surfaces. Future directions to mimic the natural glycan presentation on an array format, as well as in situ generation of combinatorial glycan collections, are discussed.


Assuntos
Análise em Microsséries/métodos , Polissacarídeos/análise , Animais , Bioimpressão/instrumentação , Bioimpressão/métodos , Química Click/instrumentação , Química Click/métodos , Desenho de Equipamento , Glicômica/instrumentação , Glicômica/métodos , Humanos , Análise em Microsséries/instrumentação
11.
Macromol Rapid Commun ; 40(6): e1800533, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30576035

RESUMO

Here, the combinatorial synthesis of molecule arrays via a laser-assisted process is reported. Laser-transferred polymer nanolayers with embedded monomers, activators, or bases can be reliably stacked on top of each other, spot-by-spot, to synthesize molecule arrays. These various chemicals in the nanometer-thin layers are mixed by heat or solvent vapor, inducing coupling reactions. As an example, peptoid arrays with a density of 10 000 spots per cm2 with the sub-monomer or monomer method are generated. Moreover, successful reactions spot-by-spot are verified by laser-transferring MALDI-matrix (Matrix-assisted laser desorption/ionization) followed by MALDI mass spectrometry imaging.


Assuntos
Lasers , Nanoestruturas/química , Peptoides/síntese química , Polímeros/síntese química , Análise Serial de Proteínas , Estrutura Molecular , Peptoides/química , Polímeros/química
12.
RSC Adv ; 14(7): 4730-4733, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38318628

RESUMO

A heterophase structure combining semiconducting 2H- and metallic 1T-MoS2 exhibits significantly enhanced photoelectrochemical performance due to the electrical coupling and synergistic effect between the phases. Therefore, site-selective effective phase engineering is crucial for the fabrication of MoS2-based photoelectrochemical devices. Here, we employed a flash phase engineering (FPE) strategy to precisely fabricate a 2H-1T heterophase structure. This technique allows simple, efficient, and precise control over the micropatterning of MoS2 nanofilms while enabling site-selective phase transition from the 1T to the 2H phase. The detection of reduced glutathione (GSH) showed an approximately 5-fold increase in sensitivity when using the electrode fabricated by FPE.

13.
Nanoscale ; 16(17): 8627-8638, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38606506

RESUMO

Laser carbonization is a rapid method to produce functional carbon materials for electronic devices, but many typical carbon precursors are not sustainable and/or require extensive processing for electrochemical applications. Here, a sustainable concept to fabricate laser patterned carbon (LP-C) electrodes from biomass-derived sodium lignosulfonate, an abundant waste product from the paper industry is presented. By introducing an adhesive polymer interlayer between the sodium lignosulfonate and a graphite foil current collector, stable, abrasion-resistant LP-C electrodes can be fabricated in a single laser irradiation step. The electrode properties can be systematically tuned by controlling the laser processing parameters. The optimized LP-C electrodes demonstrate a promising performance in supercapacitors and electrochemical dopamine biosensors. They exhibit high areal capacitances of 38.9 mF cm-2 in 1 M H2SO4 and high energy and power densities of 4.3 µW h cm-2 and 16 mW cm-2 in 17 M NaClO4, showing the best performance among biomass-derived LP-C materials reported so far. After 20 000 charge/discharge cycles, they retain a high capacitance of 81%. Dopamine was linearly detected in the range of 0.1 to 20 µM with an extrapolated limit of detection of 0.5 µM (S/N = 3) and high sensitivity (13.38 µA µM-1 cm-2), demonstrating better performance than previously reported biomass-derived LP-C dopamine sensors.

14.
Nat Commun ; 15(1): 1040, 2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38310090

RESUMO

Counterfeiting has become a serious global problem, causing worldwide losses and disrupting the normal order of society. Physical unclonable functions are promising hardware-based cryptographic primitives, especially those generated by chemical processes showing a massive challenge-response pair space. However, current chemical-based physical unclonable function devices typically require complex fabrication processes or sophisticated characterization methods with only binary (bit) keys, limiting their practical applications and security properties. Here, we report a flexible laser printing method to synthesize unclonable electronics with high randomness, uniqueness, and repeatability. Hexadecimal resistive keys and binary optical keys can be obtained by the challenge with an ohmmeter and an optical microscope. These readout methods not only make the identification process available to general end users without professional expertise, but also guarantee device complexity and data capacity. An adopted open-source deep learning model guarantees precise identification with high reliability. The electrodes and connection wires are directly printed during laser writing, which allows electronics with different structures to be realized through free design. Meanwhile, the electronics exhibit excellent mechanical and thermal stability. The high physical unclonable function performance and the widely accessible readout methods, together with the flexibility and stability, make this synthesis strategy extremely attractive for practical applications.

15.
Adv Mater ; 36(23): e2402981, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38513638

RESUMO

The photothermal therapeutic effect on tumors located at different subcutaneous depths varies due to the attenuation of light by tissue. Here, based on the wavelength-dependent optical attenuation properties of tissues, the tumor depth is assessed using a multichannel lanthanide nanocomposite. A zeolitic imidazolate framework (ZIF-8)-coated nanocomposite is able to deliver high amounts of the hydrophilic heat shock protein 90 inhibitor epigallocatechin gallate through a hydrogen-bonding network formed by the encapsulated highly polarized polyoxometalate guest. It is superior to both bare and PEGylated ZIF-8 for drug delivery. With the assessment of tumor depth and accumulated amount of nanocomposite by fluorescence, an irradiation prescription can be customized to release sufficient HSP90 inhibitor and generate heat for sensitized photothermal treatment of tumors, which not only ensured therapeutic efficacy but also minimized damage to the surrounding tissues.


Assuntos
Catequina , Elementos da Série dos Lantanídeos , Nanocompostos , Nanocompostos/química , Nanocompostos/uso terapêutico , Elementos da Série dos Lantanídeos/química , Animais , Catequina/análogos & derivados , Catequina/química , Camundongos , Humanos , Linhagem Celular Tumoral , Estruturas Metalorgânicas/química , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Terapia Fototérmica , Imidazóis/química , Temperatura , Zeolitas/química , Portadores de Fármacos/química
16.
NPJ Vaccines ; 9(1): 20, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38278816

RESUMO

In response to the COVID-19 pandemic, multiple vaccines were developed using platforms such as viral vectors and mRNA technology. Here, we report humoral and cellular immunogenicity data from human phase 1 clinical trials investigating two recombinant Modified Vaccinia virus Ankara vaccine candidates, MVA-SARS-2-S and MVA-SARS-2-ST, encoding the native and the prefusion-stabilized SARS-CoV-2 spike protein, respectively. MVA-SARS-2-ST was more immunogenic than MVA-SARS-2-S, but both were less immunogenic compared to licensed mRNA- and ChAd-based vaccines in SARS-CoV-2 naïve individuals. In heterologous vaccination, previous MVA-SARS-2-S vaccination enhanced T cell functionality and MVA-SARS-2-ST boosted the frequency of T cells and S1-specific IgG levels when used as a third vaccination. While the vaccine candidate containing the prefusion-stabilized spike elicited predominantly S1-specific responses, immunity to the candidate with the native spike was skewed towards S2-specific responses. These data demonstrate how the spike antigen conformation, using the same viral vector, directly affects vaccine immunogenicity in humans.

17.
Nat Nanotechnol ; 18(9): 1027-1035, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37277535

RESUMO

In addition to causing trillion-dollar economic losses every year, counterfeiting threatens human health, social equity and national security. Current materials for anti-counterfeiting labelling typically contain toxic inorganic quantum dots and the techniques to produce unclonable patterns require tedious fabrication or complex readout methods. Here we present a nanoprinting-assisted flash synthesis approach that generates fluorescent nanofilms with physical unclonable function micropatterns in milliseconds. This all-in-one approach yields quenching-resistant carbon dots in solid films, directly from simple monosaccharides. Moreover, we establish a nanofilm library comprising 1,920 experiments, offering conditions for various optical properties and microstructures. We produce 100 individual physical unclonable function patterns exhibiting near-ideal bit uniformity (0.492 ± 0.018), high uniqueness (0.498 ± 0.021) and excellent reliability (>93%). These unclonable patterns can be quickly and independently read out by fluorescence and topography scanning, greatly improving their security. An open-source deep-learning model guarantees precise authentication, even if patterns are challenged with different resolutions or devices.

18.
Adv Mater ; 35(47): e2306615, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37738281

RESUMO

Recyclable fluorescence assays that can be stored at room temperature would greatly benefit biomedical diagnostics by bringing sustainability and cost-efficiency, especially for point-of-care serodiagnostics in developing regions. Here, a general strategy is proposed to generate recyclable fluorescent probes by using engineered enzymes with enhanced thermo-/chemo-stability, which maintains an outstanding serodiagnostic performance (accuracy >95%) after 10 times of recycling as well as after storage at elevated temperatures (37 °C for 10 days). With these three outstanding properties, recyclable fluorescent probes can be designed to detect various biomarkers of clinical importance by using different enzymes.


Assuntos
Diagnóstico , Enzimas , Corantes Fluorescentes , Biomarcadores
19.
Nat Commun ; 14(1): 7104, 2023 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-37925550

RESUMO

Organic semiconductors, such as carbon nitride, when employed as powders, show attractive photocatalytic properties, but their photoelectrochemical performance suffers from low charge transport capability, charge carrier recombination, and self-oxidation. High film-substrate affinity and well-designed heterojunction structures may address these issues, achieved through advanced film generation techniques. Here, we introduce a spin coating pretreatment of a conductive substrate with a multipurpose polymer and a supramolecular precursor, followed by chemical vapor deposition for the synthesis of dual-layer carbon nitride photoelectrodes. These photoelectrodes are composed of a porous microtubular top layer and an interlayer between the porous film and the conductive substrate. The polymer improves the polymerization degree of carbon nitride and introduces C-C bonds to increase its electrical conductivity. These carbon nitride photoelectrodes exhibit state-of-the-art photoelectrochemical performance and achieve high yield in C-H functionalization. This carbon nitride photoelectrode synthesis strategy may be readily adapted to other reported processes to optimize their performance.

20.
Adv Mater ; 34(8): e2108493, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34882864

RESUMO

Laser-induced forward transfer (LIFT) has the potential to be an alternative approach to atomic force microscopy based scanning probe lithography techniques, which have limitations in high-speed and large-scale patterning. However, traditional donor slides limit the resolution and chemical flexibility of LIFT. Here, a hematite nanolayer absorber for donor slides to achieve high-resolution transfers down to sub-femtoliters is proposed. Being wettable by both aqueous and organic solvents, this new donor significantly increases the chemical scope for the LIFT process. For parallel amino acid coupling reactions, the patterning resolution can now be increased more than five times (>111 000 spots cm- 2 for hematite donor vs 20 000 spots cm- 2 for standard polyimide donor) with even faster scanning (2 vs 6 ms per spot). Due to the increased chemical flexibility, other types of reactions inside ultrasmall polymer reactors: copper (I) catalyzed click chemistry and laser-driven oxidation of a tetrahydroisoquinoline derivative, suggesting the potential of LIFT for both deposition of chemicals, and laser-driven photochemical synthesis in femtoliters within milliseconds can be explored. Since the hematite shows no damage after typical laser transfer, donors can be regenerated by heat treatment. These findings will transform the LIFT process into an automatable, precise, and highly efficient technology for high-throughput femtoliter chemistry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA